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Amyloid precursor protein (APP) is a transmembrane protein highly expressed in

neurons. The full-length protein has cell-adhesion and receptor-like properties, which

play roles in synapse formation and stability. Furthermore, APP can be cleaved by

several proteases into numerous fragments, many of which affect synaptic function

and stability. This review article focuses on the mechanisms of APP in structural spine

plasticity, which encompasses the morphological alterations at excitatory synapses.

These occur as changes in the number and morphology of dendritic spines,

which correspond to the postsynaptic compartment of excitatory synapses. Both

overexpression and knockout (KO) of APP lead to impaired synaptic plasticity. Recent

data also suggest a role of APP in the regulation of astrocytic D-serine homeostasis,

which in turn regulates synaptic plasticity.
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STRUCTURAL PLASTICITY

Structural synaptic plasticity refers to morphologically observable changes of synapses which

accompany the classical electrophysiological events during synaptic plasticity. Most prominent

among them are dynamic changes in the number and shape of dendritic spines, which correspond

to the postsynaptic compartment of glutamatergic excitatory synapses. Dendritic spines are small

(1–2 µm long) protrusions of the dendritic shaft, which receive excitatory synaptic input and

compartmentalize calcium (Majewska et al., 2000; Yuste and Bonhoeffer, 2001; Yuste, 2011)

and therefore dictate the biophysical characteristics of a postsynapse. They are fundamental

players in establishing and maintaining the neuronal network as well as other complex functions

such as learning and memory. Conventionally, dendritic spines are classified according to

their morphology into three different groups: thin spines, which are fine and long but have a

discernible head; stubby spines, with a large head and an indiscernible neck and mushroom

spines with big head and thin neck (Yuste and Bonhoeffer, 2004; Alvarez and Sabatini, 2007;

Herms and Dorostkar, 2016). Additionally, filopodia are very motile protrusions that can

transform themselves into mushroom or thin spines (Alvarez and Sabatini, 2007). However,

a STED and EM based study revealed a higher degree of heterogeneity of both spine size and

morphology (Tønnesen et al., 2014). These morphologies reflect different functional properties:

for example, thin spines are more dynamic and more plastic than mushroom and stubby

spines, which are thought to be more stable (Yuste and Bonhoeffer, 2001; Knott et al., 2006).

A fraction of spines are continuously retracted and newly formed, and this process, expressed as

turnover rate (TOR), is accelerated during learning and memory formation (Fu and Zuo, 2011).
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Dendritic spines were discovered by Ramon y Cajal, who used

Golgi’s silver staining method to visualize dendrites and their

processes (Yuste and Bonhoeffer, 2001). While essentially the

same technical approach is still used today, modern research on

spines is typically conducted on transgenic animals expressing

a fluorophore in a sparse subset of neurons (Feng et al., 2000).

This allows visualization of spines on confocal microscopes, and,

more importantly, in vivo observation of the dynamic changes

comprising structural plasticity.

AMYLOID PRECURSOR PROTEIN IS
A SYNAPTIC PROTEIN

Amyloid precursor protein (APP) is a member of a family

of conserved type I membrane proteins which also includes

APP like one protein (APLP1) and APP like two protein

(APLP2; Wasco et al., 1992, 1993; Slunt et al., 1994). The

major APP isoform expressed in neurons is 695 amino acids

long, while longer isoforms are expressed in other tissues.

Full-length APP consists of four main domains: the extracellular

domains E1 (Dahms et al., 2010) and E2; a transmembrane

sequence (Dulubova et al., 2004; Keil et al., 2004; Dahms

et al., 2012); and the APP intracellular domain (AICD; Kroenke

et al., 1997; Radzimanowski et al., 2008; Coburger et al., 2014;

Figure 1). APP can be cleaved by a large number of proteases,

which are grouped into α-, β- and γ-secretases, depending

on the cleavage site. However, proteases which cleave APP

outside these three sites also exist (Vella and Cappai, 2012;

Willem et al., 2015; Zhang et al., 2015; Baranger et al., 2016).

Depending on the combination of proteases which process

APP, a vast number of different cleavage products may be

generated, which have various biological properties (Nhan et al.,

2015; Andrew et al., 2016). Among them are, for instance,

amyloid β fragments which are generated by the action of β,

and γ-secretases and which are known to be involved in the

pathogenesis of Alzheimer’s disease. Other proteolytic products,

such as the soluble fragment sAPPα and CTFs have been

shown to be neuroprotective (Chasseigneaux and Allinquant,

2012; Hick et al., 2015; Andrew et al., 2016). Furthermore,

in vitro evidence suggests that CTFs induce axonal outgrowth

by interacting with G-protein αs subunits, which in turn activate

adenylyl cyclase/PKA-dependent pathways (Copenhaver and

Kögel, 2017), although these findings have not been corroborated

in vivo.

In the brain, APP reaches its highest expression level during

early postnatal development (from P1 to P36 in mice) and is

preferentially localized at pre- and postsynapses (De Strooper

and Annaert, 2000). During this period, synaptogenesis occurs

and neuronal connections are formed (Hoe et al., 2009; Wang

et al., 2009). Accordingly, many studies described putative roles

of APP in the modulation of neurite outgrowth and synaptic

connectivity (Moya et al., 1994; De Strooper and Annaert,

2000; Herms et al., 2004; Wang et al., 2009; Hoe et al., 2012;

Müller and Zheng, 2012; Weyer et al., 2014; Hick et al.,

2015). Synaptogenesis and neurite outgrowth may be mediated

by full-length APP, which has been shown to exhibit cell

adhesion- and receptor-like properties (Qiu et al., 1995; Ando

et al., 1999; Turner et al., 2003; Soba et al., 2005; Müller and

Zheng, 2012; Coburger et al., 2014; Deyts et al., 2016): there is

convincing evidence that two distinct extracellular E1 domains

from neighboring molecules of APP, APLP1 and APLP2 (Soba

et al., 2005; Baumkötter et al., 2012; Deyts et al., 2016) can

interact via their heparin binding domains (HBDs), and form

a so-called heparin cross-linked dimer (Coburger et al., 2014).

The interaction of the E2 domains with heparin cross-linked

dimers further strengthens the dimerization process (Wang et al.,

2009; Hoefgen et al., 2014). As APP is present both on pre-

and postsynaptic terminals, a dimerization across the synapse

may be relevant for synapse formation and stabilization (Wang

et al., 2009; Baumkötter et al., 2014; Stahl et al., 2014). Moreover,

the interaction of E1 and E2 domains with extracellular matrix

components, like collagen, heparin, laminin, glypican, F-spondin

and β1- integrin reinforces APP dimerization, and may further

modulate the stability or plasticity of dendritic spines (Beher

et al., 1996; Williamson et al., 1996; Rice et al., 2013; Wade et al.,

2013).

Furthermore, growth factors and receptor-like proteins have

been shown to interact with the APP-extracellular domains

(Reinhard et al., 2005; Coburger et al., 2014; Deyts et al.,

2016). Thus, activation of growth factor receptors could be an

alternative mode of action of how APP affects spine plasticity.

Additionally, the intra-cellular domain AICD itself may mediate

receptor-like activity (Cao and Südhof, 2001, 2004; McLoughlin

and Miller, 2008; Müller et al., 2008; Klevanski et al., 2015).

Here, an intracellular response is triggered by the interaction of

AICD-cleavage products with effector and adaptor proteins from

the cytosolic compartment (Okamoto et al., 1990; Timossi et al.,

2004; Deyts et al., 2012; Figure 1).

In addition to developmental processes, APP has also been

shown to be involved in synaptic plasticity of mature synapses.

For instance, some AICD-proteolytic products can be directly

translocated into the nucleus and activate several transcription

factors, like CP2/LSF/LBP1 or Tip60 (Müller et al., 2008;

Schettini et al., 2010; Pardossi-Piquard and Checler, 2012), which

are known to be involved in the regulation of dendritic spine

plasticity.

APP IS INVOLVED IN STRUCTURAL SPINE
PLASTICITY

Two main bodies of evidence support a role of APP in

structural plasticity. On one hand, overexpression of APP,

which is often used to model Alzheimer’s disease, may

alter dendritic spines independently of typical Alzheimer’s

disease pathology. These findings are described later in

this section. On the other hand, knockout (KO) of APP

alters spine dynamics: in the hippocampus, APP KO

causes a range of synaptic alterations, depending on the

model and paradigm studied. For instance, in cultured

hippocampal neurons of APP KO animals, we found enhanced

amplitudes of evoked AMPA- and NMDA-receptor-mediated

EPSCs, which were reduced by pre-conditioned wildtype
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FIGURE 1 | Schematic representation of amyloid precursor protein (APP) structure and function at synapses. The dimerization of APP as well as the

signal cascade triggered by APP intracellular domain (AICD) are important for the regulation of spine stability. Astrocytes play a role in the regulation of spine

dynamics via the calcium dependent release of the glio-transmitter D-serine. 1. Schematic representation of APP domain structure. From the N-terminal region; the

E1 domain formed by: heparin binding domain (HBD), growth factor like domain (GFLD) and cupper binding domain (CuBD). The E2 domain that includes the

heparin binding domain and the pentapetide sequence (RERMS). Aβ region and transmembrane region precede the AICD intracellular domain. 2, 3. Example of APP

dimerization occurring at the synapses and between two molecules of APP on the same neuron. The dimerization is stabilized by the formation of disulfide bridges

(SH-SH) highlighted in yellow. 4. Schematic representation of AICD intracellular pathway. Phosphorylated AICD interacts with JNK triggering cell death, with JIP

stimulating cell differentiation and with Fe65 or JIP to get transport into the nucleus and modulate gene transcription. 5. Representation of astrocytic D-serine

release. D-serine is stored inside vesicles. Upon increase of intracellular calcium these vesicles fuse with the cellular membrane releasing D-serine into the

extracellular space. The precise role played by APP is still not clear 6. D-serine together with Glutamate (Glu) activates NMDA receptors (NMDAR). NMDAR activation

leads to the increase expression of AMPA receptors (AMPAR) on the membrane and triggers the activation of transcriptional factors into the nucleus.

medium. Additionally, we found an increased density of

synaptophysin-positive presynaptic puncta (Priller et al.,

2006). The number of dendritic spines, in contrast was

reduced (Tyan et al., 2012) in APP KO neurons, while it

was increased in APP overexpressing neurons (Lee et al.,

2010). In organotypic slice cultures APP-KO neurons showed

a pronounced decrease in spine density and reductions in the

number of mushroom spines, which was rescued by sAPPα

expression (Weyer et al., 2014). These results suggest that

soluble sAPPα modulates synaptic function in the neonatal

hippocampus. A study in hippocampal slices of adult APP

KO mice found decreased paired-pulse facilitation in the

dentate gyrus, while granule cell excitatory transmission

was unaltered (Jedlicka et al., 2012). These contrasting

findings may be the result of region-specific differences

in APP expression in the hippocampus (Del Turco et al.,

2016).

We recently studied dendritic spines of layer V pyramidal

neurons of the somatosensory cortex in 4 month old

APP-KO × GFP-Mmice (Zou et al., 2016), which is accessible to

chronic in vivo imaging. The density and the TOR of dendritic

spines were monitored for a period of 9 weeks in comparison to

GFP-M control mice (Figure 2). No differences were detected

in the overall spine densities between the groups, whereas

the fate of individual spines over time exhibited significant

changes in their elimination and formation rates, resulting

in reduced spine TOR (Zou et al., 2016). Since an alteration

in spine plasticity is often correlated with alteration in spine

morphology, we performed morphological analyses and found

a decrease in the fraction of thin spines and an increase in

the fraction of mushroom spines (Zou et al., 2016). These

findings mirror the dynamic changes in TOR as thin spines

are typically less stable than mushroom or stubby spines. In an

earlier article (Bittner et al., 2009), in contrast, we had found an
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FIGURE 2 | Stimulation-induced synaptic plasticity is deficient in APP

knockout (KO) mice and can be restored upon D-serine

administration. (A) In vivo images of apical dendrites from layer V pyramidal

neurons in the somatosensory cortex of WT, APP KO and APP KO mice

treated with D-serine, before and after exposure to enriched environment (EE),

which broadly stimulates sensory and motor function. Scale bar, 10 µm.

(B) Statistical summary of alterations in relative spine density over time. WT

mice respond with increased spine density and turnover, while APP KO mice

do not. Treatment with D-serine restores EE-induced synaptic plasticity in APP

KO. (WT, n = 5; APP KO, n = 6; APP KO + D-serine, n = 4). Figured modified

from Zou et al. (2016).

increased number of spines in APP KO, while turnover was not

analyzed in detail. Two main factors may explain this apparent

discrepancy: first, the data from the 2009 article were recorded

almost a decade earlier, on an older generation multiphoton

microscope. Modern microscopes have become considerably

better at resolving thin spines. APP KO changes the morphology

from thin to mushroom spines, which are more voluminous

and thus easier to detect. Since thin spines used to be harder

to detect, the results may have been interpreted as an apparent

increase in spine densities. Second, the 2009 study used the

YFP-H mouse line to label neurons, while the 2016 study used

the GFP-M line. Although the populations of neurons which

are labeled in both lines overlap, they are not identical. Thus,

the subset of neurons analyzed in the earlier study may have

had a different response to APP KO or it may have had a

relatively higher fraction of thin spines, thus aggravating the first

factor.

In order to understand whether the reduced TOR in APP-KO

can be increased by physiological stimuli, we exposed APP KO

mice to enriched environment (EE) which enhances the spine

plasticity in several brain regions and increases TOR (Berman

et al., 1996; Kozorovitskiy et al., 2005; Nithianantharajah and

Hannan, 2006; Mora et al., 2007; Jung and Herms, 2014; Sale

et al., 2014). However, APP KO mice exposed to EE for 5 weeks

did not exhibit the physiological increase in spine density which

was observed inWT controls (Zou et al., 2016). Thus, loss of APP

leads to impaired adaptive spine plasticity (Figure 2).

In order to elucidate which domain of APP modulates

dendritic spine plasticity, spine density and TOR were

investigated in APP-∆CT15 mice (Ring et al., 2007). These

mice express a truncated form of APP, lacking 15 amino acids at

the C-terminus, which correspond to the AICD. It was shown

that several other phenotypes of APP-KO mice were rescued

in APP-∆CT15 mice, such as growth rates, brain weight, grip

strength, locomotor alterations and spatial learning associated

with long term potentiation (LTP) impairment in aged mice

(Müller et al., 1994; Zheng et al., 1995; Dawson et al., 1999;

Magara et al., 1999; Ring et al., 2007).

To further elucidate the role of APP in spine dynamics, our

team conducted a study on 4–5 month old APP 23-GFP-M

mice by 2-photon microscopy in vivo. APP 23-GFP-M mice

overexpress human APP (isoform 751) with the Swedish

(KM670/671NL) mutation under the murine Thy1 promoter

(Sturchler-Pierrat et al., 1997). This leads to the formation of

amyloid β deposits starting at 6 months of age and therefore

this mouse line is considered to be a model of amyloidosis.

However, our study revealed a significant decrease in dendritic

spine density of layer V neurons of the somatosensory cortex

(Zou et al., 2015) before the appearance of Aβ plaques, which was

correlated with the amount of intracellular APP accumulating

in neurons. Intracellular APP accumulation has been shown to

mediate neuro- and synaptotoxicity in a number of publications

(Neve et al., 1992; Fukuchi et al., 1994; Oster-Granite et al.,

1996; Lu et al., 2003). Thus, it is crucial to distinguish between

these different causes of synaptotoxicity when studying models

of amyloidosis, as they do not all necessarily reflect human

disease.

APP REGULATES SPINE PLASTICITY BY
MODULATION OF ASTROCYTIC D-SERINE

An additional mechanism for APP-mediated spine-arrangement

is suggested by its modulation of astrocytic D-serine homeostasis,

which is a modulator of synaptic NMDA receptors (Engert

and Bonhoeffer, 1999; Hering and Sheng, 2001; Lai and Ip,

2013). The calcium-dependent astrocytic release of D-serine

modulates NMDA-dependent LTP (Henneberger et al., 2010).

It has been shown that full-length APP and its fragments

modulate D-serine secretion (Wu and Barger, 2004; Wu

et al., 2007) as well as astrocytic calcium homeostasis (Hamid

et al., 2007; Linde et al., 2011). More recently, biosensor

measurements in the cortex of 4–6 month old APP KO

mice revealed decreased extracellular D-serine levels, while

total D-serine was increased (Zou et al., 2016). These results

suggest an alteration of D-serine homeostasis in APP deficient

mice may underlie the altered regulation of spine dynamics.

Treatment with exogenous D-serine for 5 weeks, supplemented

in drinking water of standard housed and EE mice, restored

extracellular D-serine levels and normalized the concentrations

of total D-serine and L-serine in APP-KO brain (Zou

et al., 2016). Furthermore, the administration of D-serine

rescued the impaired dendritic structural plasticity in APP-KO

mice: D-serine treated APP-KO mice had restored spine
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dynamics under standard housing conditions. Moreover, upon

environmental enrichment, the fraction of thin spines was

enhanced, while fraction of mushrooms spines was decreased

(Figure 2). Although these data do not contest the synaptic role

played by APP, they suggest a new interaction between APP and

the D-serine homeostasis which is involved in spine dynamics

and plasticity.

CONCLUSIONS

Several mechanisms by which APPmaymodulate spine plasticity

have been identified (summarized in Figure 1): structural

properties of the full-length protein may help stabilizing

synapses, while binding of ligands to the extracellular part

may trigger intracellular cascades, similar to a classical receptor

molecules. Additionally, recent findings demonstrate that APP

modulates astrocytic D-serine homeostasis, which interacts with

NDMA receptors to modify synaptic function. Lastly, neurotoxic

and neuroprotective APP fragments may trigger or alleviate

pathophysiological mechanisms involved in neurodegenerative

diseases. Thus, APP seems to regulate synaptic plasticity at

several levels. Yet, the relative importance of each of these

mechanisms in physiology and disease remains to be elucidated.
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