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The Adenosine diphosphate-Ribosylation Factor (ARF) family belongs to the RAS
superfamily of small GTPases and is involved in a wide variety of physiological
processes, such as cell proliferation, motility and differentiation by regulating membrane
traffic and associating with the cytoskeleton. Like other members of the RAS
superfamily, ARF family proteins are activated by Guanine nucleotide Exchange Factors
(GEFs) and inactivated by GTPase-Activating Proteins (GAPs). When active, they bind
effectors, which mediate downstream functions. Several studies have reported that
cancer cells are able to subvert membrane traffic regulators to enhance migration and
invasion. Indeed, members of the ARF family, including ARF-Like (ARL) proteins have
been implicated in tumorigenesis and progression of several types of cancer. Here, we
review the role of ARF family members, their GEFs/GAPs and effectors in tumorigenesis
and cancer progression, highlighting the ones that can have a pro-oncogenic behavior
or function as tumor suppressors. Moreover, we propose possible mechanisms and
approaches to target these proteins, toward the development of novel therapeutic
strategies to impair tumor progression.

Keywords: ARL, migration, invasion, tumorigenesis, guanine nucleotide exchange factor, GTPase-activating
protein, membrane traffic

Abbreviations: 4-HPR, N-(4-hydroxyphenil retinamide); Akt, Protein kinase B; ARF, ADP-Ribosylation Factor; ARL, ARF-
Like; ARLTS1, ADP-Ribosylation factor-Like Tumor Suppressor gene 1; ATRA, All-Trans Retinoic Acid; BART, Binder of
ARL Two; Bax, B-cell lymphoma 2-Associated X protein; CDR, Circular Dorsal Ruffle; CIDEC, Cell Death Inducing DFFA-
like Effector C; ECM, ExtraCellular Matrix; EGF, Epidermal Growth Factor; EGFR, Epidermal Growth Factor Receptor; EMT,
Epithelial-Mesenchymal Transition; ER, Endoplasmic Reticulum; ERK, Extracellular signal-Regulated Kinase; FA, Focal
Adhesion; FAK, Focal Adhesion Kinase; FOXO1, Forkhead bOX O1; GAP, GTPase-Activating Protein; GDP, Guanosine
DiPhosphate; GEF, Guanine nucleotide Exchange Factor; GTP, Guanosine TriPhosphate; HER2, Human Epidermal growth
factor Receptor 2; HGF, Human Growth Factor; Hh, Hedgehog; IGFR, Insulin Growth Factor Receptor; MAPK, Mitogen-
Activated Protein Kinase; miRs, microRNAs; mTOR, mammalian Target of Rapamycin; mTORC, mammalian Target of
Rapamycin Complex; NF, Nuclear Factor; NMIIA, Non-Muscle Myosin heavy chain II A; PAK, p21-Activated Kinase; PI,
PhosphoInositide; PI3K, PhosphoInositide 3-Kinase; PI3KCD, PhosphoInositide 3-Kinase Catalytic subunit Delta; PIX, PAK-
Interacting eXchange factor; PLD, PhosphoLipase D; PMA, Phorbol-12-Myristate 13-Acetate; PP2A, Protein Phosphatase
2A; PTEN, Phosphatase and TENsin homolog deleted on chromosome 10; Rho, RAS homolog gene family member; Rac,
RAS-related C3 botulinum toxin substrate; ROS, Reactive Oxygen Species; SAR, Secretion-Associated RAS-related; Smo,
Smoothened; SP1, Specificity Protein 1; Src, Rous Sarcoma oncogene cellular homolog; TET; Ten-Eleven Translocation
methylcytosine dioxygenase; TRIM23; TRIpartite Motif-containing protein 23; UCA1, Urothelial Cancer Associated 1.
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INTRODUCTION

The Adenosine diphosphate-Ribosylation Factor (ARF) family
of proteins belongs to the RAS superfamily of small GTPases
and comprises around 30 members in mammals (Sztul et al.,
2019). This family includes 6 ARFs (5 in humans since ARF2
is absent), 21 ARLs, 2 Secretion-Associated RAS-related (SARs)
and the TRIpartite Motif-containing protein 23 (TRIM23).
ARF1-5 regulate vesicle budding at the Golgi apparatus by
recruiting coat complexes (Li et al., 2004; Kahn et al., 2006).
ARF6 localizes to the plasma membrane, as well as endosomes
and is involved in actin cytoskeleton dynamics and endocytic
recycling (Donaldson, 2003). The functions of ARL proteins
are more heterogeneous and currently unknown for several
of them. ARL2 and ARL3 interact with microtubules and
function in tubulin assembly and cytokinesis, respectively, while
ARL4C and ARL4D are involved in actin remodeling and
regulate cell migration (Li C.-C. et al., 2007; Chiang et al.,
2017). Our laboratory has shown that ARL13B binds actin
and regulates cell migration (Barral et al., 2012; Casalou et al.,
2014). Interestingly, several ARLs, namely ARL3, ARL6 and
ARL13B are associated with the cilium and play different roles
in ciliary biology and signaling pathways associated with this
organelle (Marwaha et al., 2019). ARL8B is well characterized
and has been shown to localize to lysosomes and regulate
several aspects of lysosome biology, such as positioning and
motility (Khatter et al., 2015). Finally, SARs play a well-described
role in the budding of COPII-coated vesicles from the ER,
while TRIM23 was implicated in antiviral defense and adipocyte
differentiation (Arimoto et al., 2010; Watanabe et al., 2015;
Saito et al., 2017).

Like other GTPases, ARF family proteins switch between an
active state, in which proteins are GTP-bound and an inactive
state, in which proteins are GDP-bound. For this reason, they
are referred to as “molecular switches.” Nucleotide exchange is
catalyzed by GEFs and GTP hydrolysis is promoted by GAPs.
When they are active, ARF proteins associate with membranes
via lipid modifications, namely myristoylation, palmitoylation
or acetylation and bind effectors. These are responsible for the
downstream functions of ARF family proteins and are highly
diverse. Among the effectors identified are coat complexes and
adaptors, cytoskeleton-binding proteins and tethering factors
(Donaldson and Jackson, 2012). The functions of ARF and
ARL proteins, as well as their GEFs and GAPs are thoroughly
reviewed in two excellent recent reviews (Marwaha et al., 2019;
Sztul et al., 2019).

Since ARFs and their regulators play essential functions in
cell cycle, cytoskeleton remodeling, cell migration and adhesion,
it is not surprising that they can be subverted by cancer cells
for proliferation, migration and invasion. Indeed, the expression
and/or activity of several ARF family proteins and their GEFs and
GAPs has been shown to be modulated in several types of cancer
(Tables 1, 2). Moreover, the amplification and overexpression
of ARF family genes, as well as the overexpression of their
GEFs and GAPs, and variance in post-translational modifications
are the most commonly detected alterations thought to be
implicated in cancer. Here, we review the members of the ARF

family and their activity regulators and effectors that have been
implicated in cancer, and can either function as oncogenes or
tumor suppressors and propose possible therapeutic approaches
to target ARF family proteins or their effectors, GEFs and GAPs.

ARF FAMILY PROTEINS AND THEIR
ACTIVITY REGULATORS AND
EFFECTORS THAT CAN FUNCTION AS
ONCOGENES

Dysregulation of expression and/or activity of ARF family
proteins and/or their effectors, GEFs and GAPs has been
associated with enhanced cell migration, invasion and
proliferation in several types of cancer. In this section, we
review the ARF family members, as well as their activity
regulators and effectors that have been found overexpressed in
cancer and play essential roles in cancer progression (Tables 1, 2).

ARF1
ARF1 plays a central role in maintaining the structure and
function of the Golgi apparatus and is highly expressed in
breast, prostate and ovarian cancers (Schlienger et al., 2015;
Davis et al., 2016; Gu et al., 2017). In the context of cancer,
ARF1 has an important function in inter- and intracellular
signaling, cell cycle regulation and DNA repair, as well as necrosis
and apoptosis (D’Souza-Schorey and Chavrier, 2006; Gu et al.,
2017). Moreover, ARF1 regulates breast cancer cell adhesion and
proliferation, being essential for EGF-mediated phosphorylation
of Focal Adhesion Kinase (FAK) and Src (Schlienger et al., 2015).
Furthermore, ARF1 sensitizes MDA-MB-231 breast cancer cells
to the anti-tumor drugs actinomycin D and vinblastine through
ERK and Akt signaling (Luchsinger et al., 2018). In prostate
cancer, ARF1 promotes tumorigenesis by controlling MAPK
activation and cell growth (Davis et al., 2016). In myeloma cells,
ARF1 expression promotes cell proliferation and inhibits cell
adhesion, controlling proliferation- and cell adhesion-mediated
drug resistance (Xu et al., 2017). Finally, ARF1 is upregulated
in ovarian tumors, when compared with adjacent non-cancerous
tissues and its overexpression is associated with ovarian cancer
cell proliferation and migration through the PhosphoInositide
3-Kinase (PI3K) pathway (Gu et al., 2017).

ARF3
Like ARF1, ARF3 is involved in the recruitment of coat
complexes to the Golgi apparatus, activation of PhosphoLipase D
(PLD) and PI-kinases. Recently, ARF3 expression was positively
correlated with breast cancer clinical stages, being upregulated
in 92.8% of malignant cases, relative to benign ones (Huang
et al., 2019). Indeed, ARF3 mRNA and protein expression
levels are upregulated in human breast cancer cell lines and
tissues (Huang et al., 2019). Moreover, ARF3 overexpression
promotes breast cancer cell proliferation by regulating the cell-
cycle G1/S transition, through inhibition of FOXO1 transcription
factor activity (Huang et al., 2019). Additionally, ARF3 was
found to be a candidate gene involved in the progression of
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TABLE 1 | Expression of ARF family members in human neoplastic tissues and cancer cells.

ARF/ARL Expression Cancer type References

ARF1 ↑ Breast, Colon/Colorectal, Gastric, Liver, Ovarian,
Osteosarcoma, Prostate

Olstad et al., 2003; Ma et al., 2005; Kannangai et al., 2007;
Tsai et al., 2012; Schlienger et al., 2015; Davis et al., 2016;
Gu et al., 2017

ARF3 ↑ Breast Huang et al., 2019

↓ Gastric Chang et al., 2009

ARF4 ↑ Breast, Glioma, Lung, Ovarian Woo et al., 2009; Bidkhori et al., 2013; Howley et al., 2018;
Wu Q. et al., 2018

ARF6 ↑ Breast, Gastric, Glioma, Liver, Lung, Melanoma, Pancreatic,
Prostate, Renal Cell Carcinoma

Hashimoto et al., 2004; Hu et al., 2009; Knizhnik et al., 2011;
Oka et al., 2014; Morgan et al., 2015; Zhang et al., 2015;
Hashimoto et al., 2016; Liang et al., 2017; Qi et al., 2019;
Yoo et al., 2019

ARL2 ↑ Bladder, Cervical, Liver Hass et al., 2016; Li H.-J. et al., 2017; Peng et al., 2017

↓ Breast Beghin et al., 2009

ARL3 ↓ Glioma Wang et al., 2019b

ARL4C ↑ Colon/Colorectal, Gastric, Glioma, Head and Neck, Liver, Lung,
Muscle, Renal Cell Carcinoma

Fujii et al., 2014; Guo et al., 2015; Fujii et al., 2016; Hu et al.,
2018; Chen et al., 2019; Harada et al., 2019; Isono et al., 2019

↓ Ovarian Su et al., 2015

ARL4D ↑ Glioma Chi et al., 2008

ARL5A ↑ Colon/Colorectal Wang et al., 2014

ARL6 ↑ Muscle Liu et al., 2016

ARL11 ↓ Breast, Leukemia, Lung, Ovarian, Prostate Calin et al., 2005; Petrocca et al., 2006; Yendamuri et al., 2008;
Siltanen et al., 2013

ARL13B ↑ Breast, Gastric Shao et al., 2018; Casalou et al., 2019

ARL14 ↑ Bladder Wang L. et al., 2019

ARFRP1 ↑ Gastric Mao et al., 2018

TRIM23 ↑ Gastric Yao et al., 2018

SARI A ↑ Liver He et al., 2002

SAR1B ↓ Colon/Colorectal Huang and Wang, 2019

(↑), upregulated; (↓), downregulated.

pregnancy-associated breast cancer, based on integrated analysis
of microarray profile datasets (Zhang et al., 2019).

ARF4
Together with the upregulation of COPB1 and USO1, which
encode for the COPI subunit β1 and General vesicular transport
factor p115, respectively and regulate ER-Golgi trafficking, ARF4
has been reported to be upregulated in breast cancer patient
samples (Howley et al., 2018). This establishes a role for ARF4,
COPB1, and USO1 in the regulation of breast cancer cell growth
and invasion through the retrograde transport of proteins from
the Golgi to ER via COPI-coated vesicles. ARF4 has also been
associated with the regulation of breast cancer cell migration in
response to Phorbol-12-Myristate 13-Acetate (PMA) (Jang et al.,
2012). Finally, ARF4 has been found upregulated in other types
of epithelial cancers, such as ovarian cancer (Wu Q. et al., 2018)
and lung adenocarcinomas (Bidkhori et al., 2013). In U373MG
human glioblastoma-derived cells, ARF4 has an anti-apoptotic
function by reducing the generation of ROS in response to the
expression of B-cell lymphoma 2 (Bcl-2)-Associated X protein
(Bax) or the synthetic retinoid derivative N-(4-hydroxyphenyl)
retinamide (Woo et al., 2009).

ARF6
ARF6 is well characterized in the context of cancer and known
to regulate cancer cell invasion and metastasis, as well as tumor

angiogenesis and growth (reviewed in Hongu et al., 2016; Li R.
et al., 2017). Clinically, ARF6 expression and activation of its
downstream signaling pathways was determined and associated
with poor overall survival of breast, lung adenocarcinoma,
pancreatic ductal adenocarcinoma and head and neck cancer
patients (Li R. et al., 2017). Also, elevated ARF6 expression has
been reported in prostate and non-small cell lung and squamous
cell lung cancers (Knizhnik et al., 2011; Morgan et al., 2015).
Moreover, a direct correlation between ARF6 protein expression
levels and breast cancer cell invasiveness was shown in breast
cancer cell lines with different invasive abilities (Hashimoto
et al., 2004). Furthermore, ARF6 silencing impairs invasion of
breast cancer, melanoma and glioma (Hashimoto et al., 2004;
Hu et al., 2009; Grossmann et al., 2014), providing evidence
that ARF6 is an important driver of cancer cell invasion and
metastasis. In lung adenocarcinoma, the combined expression
of ARF6, its GEF BRAG2/GEP100 and EGFR is associated with
decreased patient survival (Oka et al., 2014). ARF6 is known to
recruit actin binding proteins, adhesion molecules and proteases,
which are essential for invadopodia formation and ExtraCellular
Matrix (ECM) degradation (Schweitzer et al., 2011). Indeed,
ARF6 activation was shown to promote invadopodia formation
through activation of Rho- and Rac1-dependent pathways
(Muralidharan-chari et al., 2009). ARF6 is also necessary for
Human Growth Factor (HGF)-induced tumor angiogenesis and
growth (Hongu et al., 2015). It has also been shown that ARF6
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TABLE 2 | Expression of ARF GEFs in human neoplastic tissues and cancer cells.

ARF GEF/GAP Expression Cancer type References

Cytohesin 1 ↑ Leukemia/Lymphoma Villalva et al., 2002

Cytohesin 2 ↑ Colon/Colorectal, Liver Xu et al., 2013; Pan et al., 2014; Qi et al., 2019

Cytohesin 3 ↑ Liver Fu et al., 2014

BRAG2 ↑ Breast, Lung, Pancreatic Hiroi et al., 2006; Morishige et al., 2008; Menju et al., 2011;
Oka et al., 2014

BIG2 ↑ Pancreatic Park et al., 2011

EFA6 ↑ Glioma, Renal Cell Carcinoma Li et al., 2006; Hashimoto et al., 2016

↓ Breast, Brain, Ovarian Pils et al., 2005; Van Den Boom et al., 2006; Zangari et al.,
2014

ASAP1 ↑ Bladder, Breast, Colon/Colorectal, Esophagus, Gastric, Head
and Neck, Melanoma, Ovarian, Pacreatic, Prostate, Renal Cell
Carcinoma, Thyroid

Ehlers et al., 2005; Onodera et al., 2005; Lin et al., 2008;
Müller et al., 2010; Hou et al., 2014; Li et al., 2014; Sato et al.,
2014

↓ Cervical Müller et al., 2010

ASAP3 ↑ Liver, Lung, Ovarian Okabe et al., 2004; Fan et al., 2014; Willis et al., 2016

AGAP1 ↑ Leukemia/Lymphoma Harvey et al., 2010

AGAP2 ↑ Bladder, Breast, Brain, Cervical, Colon/Colorectal, Gastric,
Glioma, Head and Neck, Leukemia/Lymphoma, Liver, Lung,
Ovarian, Prostate

Ahn et al., 2004; Knobbe et al., 2005; Van Den Boom et al.,
2006; Liu et al., 2007; Cai et al., 2009; Xie et al., 2012;
Doush et al., 2019

GIT1 ↑ Breast, Cervical, Colon/Colorectal, Head and neck, Liver, Lung,
Melanoma, Renal Cell Carcinoma

Yoo et al., 2012; Chan et al., 2014; Huang et al., 2014;
Peng et al., 2014; Chang et al., 2015; Lu et al., 2016

GIT2 ↓ Breast Sirirattanakul et al., 2015

SMAP1 ↓ Colon/Colorectal Sangar et al., 2014

ARFGAP3 ↑ Prostate Nalla et al., 2016

ARAP3 ↓ Gastric Yagi et al., 2011

(↑), upregulated; (↓), downregulated.

coordinates signaling and function of several oncogenes, like
EGFR, ERBB2, and CTNNB1, which encode for EGFR, HER2,
and β-catenin, respectively (Morishige et al., 2008; Menju et al.,
2011; Pellon-Cardenas et al., 2013; Yoo et al., 2016). In agreement,
it was recently observed that ARF6 is a downstream target of
mutant KRAS and maintains KRAS-induced ERK activation,
promoting pancreatic tumorigenesis (Liang et al., 2017). Also,
ARF6 was linked to liver cancer through the regulation of the
endocytic recycling of CD147, a tumor-related adhesive protein
that promotes invasion of liver cancer cells (Qi et al., 2019).
Moreover, the increased expression of ARF6-CD147 signaling
components, like Cytohesin 2/ARNO, an ARF6 GEF and Rac1
were associated with poor overall survival of hepatocellular
carcinoma patients (Qi et al., 2019).

ARF GEFs and GAPs
Amplification of ARF GAPs has been associated with several
types of cancer. Indeed, AGAP2, which acts on ARF1 and
ARF5, promotes cancer cell survival, migration and invasion in
gliobastomas (Qi et al., 2017). Moreover, ASAP1 expression is
correlated with the metastatic potential of melanoma, prostate
cancer and colorectal cancer and increased invasiveness of
breast cancer and melanoma cells (Ehlers et al., 2005; Onodera
et al., 2005; Lin et al., 2008; Müller et al., 2010). Cancer cell
migration requires coordinated assembly and disassembly of cell-
ECM contacts, mediated by FAs. Indeed, several ARF GAPs,
namely ASAP1, ASAP2, GIT1 and GIT2 have been found to be
localized at FAs (Casalou et al., 2016). GIT1, which inactivates
ARF6 specifically, is highly expressed in several types of cancers,

including breast, cervical, colon and liver (Yoo et al., 2012; Chan
et al., 2014; Huang et al., 2014; Peng et al., 2014). Moreover,
GIT1 interacts with Paxillin and p21-activated kinase Interacting
eXchange factor (PIX) at FAs, regulating cancer cell migration
(Nayal et al., 2006). Furthermore, GIT1 silencing has been shown
to inhibit cell migration and invasion in oral squamous cell
carcinoma and breast cancer (Chan et al., 2014; Huang et al.,
2014). Although GIT1 is associated with several types of cancer, it
is not clear whether ARF6 inactivation by GIT1 is a requirement
for cancer progression.

Regarding the ARF GEFs, BRAG2/GEP100 and EFA6, which
activate ARF6 specifically, are known to be involved in cancer
progression. BRAG2 induces breast cancer cell invasion and
metastasis (Morishige et al., 2008). After BRAG2 binding to
phosphorylated EGFR, ARF6 is activated in breast cancer cells,
leading to the formation of invadopodia with recruitment of
Cortactin, Paxillin and the ARF GAP ASAP1 (Onodera et al.,
2005; Morishige et al., 2008). In lung adenocarcinoma, the
pathway involving EGFR, ARF6 and ASAP1 was reported to be
associated with reduced patient survival (Oka et al., 2014). In
melanoma cells, the stimulation of WNT5A, a member of the
Wnt signaling pathway, induces ARF6 activation mediated by
BRAG2, which facilitates the release of β-catenin from cadherin
and stimulates tumor cell invasion (Grossmann et al., 2014).

Concerning the EFA6 GEFs, they regulate tumor progression
either positively or negatively, depending on the cancer
types. In glioma and renal carcinoma, EFA6 GEFs are
upregulated, controlling cancer cell invasion (Li et al., 2006;
Hashimoto et al., 2016). The ARF GEFs Cytohesin 1-3 function
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as regulators of cytoskeleton reorganization and integrin
signaling (Kolanus, 2007) and target ARF6, among other ARFs.
In prostate cancer, inhibiton of Cytohesin 1 by siRNA, reduces the
pro-tumorigenic role of Insulin Growth Factor Receptor (IGFR)
signaling (Weizhong et al., 2011), suggesting that this ARF
GEF could be targeted to impair prostate cancer progression.
Additionally, the ectopic expression of the constitutively active
form of ARF6 (ARF Q67L) enhances melanoma progression and
metastasis in vivo (Muralidharan-chari et al., 2009).

ARL2
ARL2 was first reported to behave as a tumor suppressor in
breast cancer. However, several publications thereafter suggest
that this might not be the case for other types of cancers.
Indeed, it was shown that BART binds to active ARL2,
inhibiting the inactivation of RhoA and thus impairing the
invasive potential of pancreatic cancer cells (Taniuchi et al.,
2011). Other studies evaluated the effect of ARL2-targeting
microRNAs (miRs). In particular, miR-214 was found to suppress
growth and increased apoptosis in colon cancer (Long et al.,
2015). Moreover, miR-214 was studied in the context of
cervical cancer, in which its expression is able to suppress
proliferation, migration and invasion of cancer cells (Peng et al.,
2017). Two other miRs were found to be involved in cancer
progression. miR-497-5p overexpression leads to a decrease in
osteosarcoma cell proliferation and an increase in apoptosis (Sun
et al., 2017). On the other hand, miR-195, which is regulated
by Urothelial Cancer Associated 1 (UCA1) targets ARL2 in
bladder cancer (Li H.-J. et al., 2017). Studies performed in
mice showed that bladder tumor size is reduced upon UCA1
downregulation and the expression of miR-195 is increased,
resulting in ARL2 downregulation. The authors concluded that
the effects in bladder cancer cells mediated by UCA1/miR-
195/ARL2 are a consequence of mitochondrial metabolism
modulation, which regulates cancer cell survival (Li H.-J. et al.,
2017). Finally, ARL2 was found to be overexpressed in human
hepatocellular carcinoma samples by gene expression analysis
(Hass et al., 2016).

ARL4
ARL4C was initially found to be upregulated at the mRNA
level in both colorectal and lung cancers (Fujii et al., 2014).
Moreover, the same authors found that ARL4C silencing leads
to a decrease in cell migration and invasion in vitro, and
proliferation both in vitro and in vivo, dependently on aberrant
Wnt/β-catenin and EGF/RAS signaling. ARL4C was also found
to be overexpressed in leiomyosarcoma type II (Guo et al.,
2015). Furthermore, analysis of ARL4C expression in colorectal
cancer samples revealed that this ARL is more expressed in
tumor samples, comparing with adjacent normal tissue (Chen
et al., 2016). The prognostic value of ARL4C in colorectal
cancer was also evaluated and the same authors concluded that
patients with higher expression of ARL4C have lower survival
on average (Chen et al., 2016). In the case of lung and tongue
squamous cell carcinoma, it was found that ARL4C promotes
proliferation and migration of cells from these types of cancers
(Fujii et al., 2016). Interestingly, ARL4C overexpression in lung

tumors was shown to be due to hypomethylation of ARL4C in
the 3′-UTR through Ten-Eleven Translocation methylcytosine
dioxygenases (TETs) (Fujii et al., 2016). Recently, several groups
investigated the role of ARL4C in different types of cancer.
ARL4C was identified as a peritoneal dissemination-associated
gene and found to be highly expressed in gastric cancer cells
(Hu et al., 2018). Indeed, ARL4C silencing impairs migration and
invasion of gastric cancer cells in vitro (Hu et al., 2018). Moreover,
the reduced expression of ARL4C leads to a decrease of the
epithelial-mesenchymal transition (EMT) marker SLUG, as well
as a reduction in lamellipodia and filopodia formation in gastric
cancer cells (Hu et al., 2018). ARL4C expression was also found to
be increased in primary and metastatic hepatocellular carcinoma.
Additionally, the decrease in ARL4C expression leads to the
impairment of cancer cell proliferation and migration in vitro
and in vivo, as well as a reduction in expression of PI3K Catalytic
subunit Delta (PI3KCD) mRNA and activity of Akt (Harada et al.,
2019). This suggests that the molecular mechanisms involved in
the role of ARL4C in hepatocellular carcinoma are different from
those in lung and colorectal cancers. Furthermore, upregulation
of ARL4C was associated with a poor prognosis in endometriosis-
associated ovarian cancer, Phosphatase and TENsin homolog
deleted on chromosome 10 (PTEN)-deficient glioblastomas and
renal cell carcinomas (Wakinoue et al., 2018; Chen et al., 2019;
Isono et al., 2019). Another ARL4 isoform, ARL4D was first
identified as a glioma-associated antigen (Nonaka et al., 2002).
Later, a study revealed that ARL4D expression in gliomas is
dependent on the loss of PTEN tumor suppressor and consequent
activation of the Akt/mammalian Target of Rapamycin (mTOR)
pathway (Chi et al., 2008).

ARL5, ARL6, ARL8, ARL14, and ARFRP1
ARL5A was found to be highly expressed in colorectal cancer
and a target of miR-202-3P (Wang et al., 2014). Furthermore, the
same study demonstrated that the downregulation of ARL5A and
miR-202-3P expression leads to a similar reduction in colorectal
cancer cell proliferation (Wang et al., 2014).

In rhabdomyosarcoma, ARL6 was demonstrated to be
upregulated in cilia-dependent cancer cells and its silencing
decreases cell proliferation (Liu et al., 2016). Additionally,
ARL6 downregulation leads to an increase in apoptosis of
rhabdomyosarcoma cancer cells due to defects in ciliogenesis and
a reduction of Hedgehog (Hh) signaling (Liu et al., 2016).

In the case of ARL8, depletion of ARL8B leads to a reduction
in invasion and protease secretion by prostate cancer cells (Dykes
et al., 2016). Moreover, ARL8B silencing prevents the growth
of prostate tumors in mice (Dykes et al., 2016). Furthermore,
the same study revealed that the role of ARL8B in cancer
progression is dependent on its function in regulation of
lysosomal motility and fusion.

A recent study reported that ARL14 silencing in lung cancer
cells blocks ERK1/2 and p28 signaling and upregulates the cell
death inducing DFFA-like effector C (CIDEC), leading to cell
cycle arrest (Guo et al., 2019). Also, hypermethylation of ARL14
was found to be correlated with a poor prognosis of bladder
cancer patients (Wang L. et al., 2019).
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Finally, in the case of ARFRP1, it was found upregulated in
gastric cancer (Mao et al., 2018).

ARL13B
The role of ARL13B in medulloblastoma and gastric cancer
progression, dependent on cilia and Hh signaling was described
recently (Bay et al., 2018; Shao et al., 2018). Shao and co-authors
showed that ARL13B promotes proliferation, migration and
invasion of gastric cancer cells both in vitro and in vivo, through
activation of Smoothened (Smo) and consequent activation of
Hh signaling (Shao et al., 2018). In medulloblastoma, ARL13B
depletion was reported to lead to a decrease in cilia-dependent
oncogenic Hh signaling (Bay et al., 2018). Recently, our group
found evidence that ARL13B plays a role in breast tumorigenesis
and cancer progression, likely independently of cilia. Indeed,
depletion of ARL13B in breast cancer cells leads to a reduction
in cell migration and invasion in vitro and impaired tumor
progression in vivo (Casalou et al., 2019). Moreover, our results
revealed a new mechanism to explain the role of ARL13B
in tumor progression, through the modulation of cell-ECM
adhesion and integrin-mediated signaling.

Non-Muscle myosin heavy chain II A (NMIIA) was identified
by us as an effector of ARL13B, since it binds to the active
form of this protein (Casalou et al., 2014). In the same study,
we found that NMIIA mediates ARL13B binding to actin and
that both proteins are required for the formation of circular
dorsal ruffles (CDRs), which are actin-rich structures required
for cell migration (Casalou et al., 2014). Our group also found
that GTP-bound ARL13B interacts with NMIIA in breast cancer
cells (Casalou et al., 2019). Other studies reported the role of
NMIIA in different types of cancers and indicate that NMIIA
can function as a tumor suppressor or oncogene. For example,
NMIIA was found to be overexpressed in gastric cancer (Liu
et al., 2012) and promote tumor progression in different types
of cancers (Derycke et al., 2011; Katono et al., 2015; Liao
et al., 2017; Ye et al., 2017). On the other hand, NMIIA was
described as a potential tumor suppressor gene in squamous
cell carcinomas, since the downregulation of NMIIA associates
with poor survival, increased cancer cell invasion and decreased
p53 stabilization, in vitro and in vivo (Schramek et al., 2014).
These studies are described in greater detail in two recent reviews
(Pecci et al., 2019; Wang et al., 2019a). Other evidence suggests
that NMIIA expression is increased in colorectal cancer and
that NMIIA enhances tumor aggressiveness through activation of
mitogen-activated protein kinase (MAPK) Akt signaling, which
promotes EMT (Wang B. et al., 2019). NMIIA was also found
to be a promoter of EMT in pancreatic cancer (Zhou et al.,
2019). Moreover, in the same study it was observed that NMIIA
downregulation results in decreased invasion and metastasis
formation through the suppression of canonical Wnt/β-catenin
signaling (Zhou et al., 2019).

TRIM23 and SAR1
In hepatocellular carcinomas, miR-194, which targets TRIM23
was found to be downregulated. Moreover, overexpression of
miR-194 decreases cell migration, invasion and metastasis of
hepatocellular carcinoma cells, through inhibition of Nuclear

Factor (NF)-κb activity (Bao et al., 2015). Furthermore, TRIM23
was found to be overexpressed in gastric cancer, both in cell lines
and tissues (Yao et al., 2018).

In the case of SAR1, it was found to be overexpressed in liver
cancer (He et al., 2002). More recently, SAR1b was identified as a
promoter of drug resistance, namely mTOR Complex (mTORC)
inhibitors, in liver tumor initiating stem cells and hepatocellular
carcinoma cells (Wu R. et al., 2018).

ARF FAMILY PROTEINS AND THEIR
ACTIVITY REGULATORS AND
EFFECTORS THAT CAN FUNCTION AS
TUMOR SUPPRESSOR GENES

In some cases, the expression of membrane traffic regulators,
namely ARF family proteins or their effectors, GEFs or GAPs is
found downregulated in tumor cells (Tables 1, 2).

ARF3
Besides its behavior as an oncogene in breast cancer, ARF3 has
been found downregulated in gastric cancer (Chang et al., 2009).
In fact, ARF3 expression is significantly decreased in gastric
cancer stages I-III, when compared with paired normal gastric
mucosa tissues, indicating that this protein could be a marker
for gastric cancers without metastasis. The clinical significance of
these results remains to be elucidated.

ARF GEFs and GAPs
SMAP1 or ARFGAP1 is a member of the ARF GAP family that
is involved in clathrin-dependent endocytosis of the Transferrin
receptor and E-cadherin (Kon et al., 2008; Kobayashi et al.,
2014). In colorectal cancers with microsatellite instability,
short deletions or insertions frequently occur in SMAP1,
generating a premature termination codon. This results in
reduced or abolished SMAP1 protein levels in colorectal tumors
(Kon et al., 2014).

Unlike other phosphotyrosine proteins that are usually
overexpressed or hyperphosphorylated in gastric tumor cells, the
ARF GAP ARAP3 is downregulated in gastric cancer tissues
(Yagi et al., 2011). Furthermore, GIT2 stabilizes FAs by reducing
Rac1 activity in the breast cancer cell line MDA-MB-231 (Frank
et al., 2017). Also, in a gene expression profile analysis of
breast cancer patient samples, GIT2 was found downregulated
in a group of lymph node-positive breast cancer patients
(Sirirattanakul et al., 2015).

Finally, EFA6 GEFs are downregulated in breast, brain and
ovarian cancers (Pils et al., 2005; Van Den Boom et al., 2006;
Zangari et al., 2014).

ARL2
ARL2 has been shown to directly influence α/β-tubulin
polymerization in the breast cancer cell line MCF-7 (Beghin
et al., 2007). Moreover, MCF-7 cells expressing higher levels
of ARL2 are more sensitive to cytotoxic agents, while cells
with reduced expression of ARL2 show enhanced resistance
to the same agents (Beghin et al., 2008). This resistance is
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mediated by Protein Phosphatase 2A (PP2A), whose activity
is regulated by ARL2. When ARL2 is decreased, impaired
dephosphorylation of p53 by PP2A occurs, leading to an increase
of phosphorylated p53, which alters PP2A localization and causes
a chemo-resistant phenotype (Beghin et al., 2008). Moreover,
in vitro assays using breast cancer cells depleted for ARL2
show less contact inhibition, an enhanced clonogenic potential
and increased proliferation than control cells (Beghin et al.,
2009). Furthermore, using orthotopic mouse models, depletion
of ARL2 was shown to impair cancer progression (Beghin
et al., 2009). Additionally, ARL2 downregulation was recently
correlated with more aggressive cases of glioma and a lower
survival of the patients (Wang et al., 2018). Finally, ARL2
overexpression inhibits proliferation, as well as migration and
tumorigenicity of glioma cells, through regulation of the receptor
tyrosine kinase AXL, a known regulator of glioma tumorigenesis
(Wang et al., 2018).

ARL3, ARL4, and SAR1
ARL3 mRNA and protein expression were shown to be
downregulated in gliomas (Wang et al., 2019b). Furthermore,
an extensive bioinformatics analysis suggested that ARL3 plays
a role in angiogenesis and immune cell infiltration in the tumor
microenvironment (Wang et al., 2019b).

ARL4C was associated with reduced metastatic potential of
ovarian cancer cells, in which it inhibits cell motility but not
cell proliferation (Su et al., 2015). Furthermore, ARL4C mRNA
expression is lower in ovarian cancer samples of patients with
a poor treatment response, while patients with higher ARL4C
expression show increased overall survival (Su et al., 2015).

Finally, SAR1B was identified as a potential metastatic
suppressor in colorectal cancer, through a targeted proteomic
approach (Huang and Wang, 2019). Also, migration and
invasion assays showed that SAR1B silencing leads to an
increase in colorectal cancer cell motility and invasive capacity
(Huang and Wang, 2019).

ARL11
ARL11, also known as ADP Ribosylation factor-Like Tumor
Suppressor gene 1 (ARLTS1) was described as a potential
low-penetrance tumor suppressor gene in different types
of cancers, such as breast cancer, melanoma and chronic
lymphocytic leukemia (Calin et al., 2005). Different variants
of ARLTS1 have been associated with familial and sporadic
cancers, where the mutations Trp149Stop and Cys148Arg are the
most studied (Yendamuri et al., 2008). The nonsense mutation
Trp149Stop leads to the production of a truncated protein unable
to bind GTP, which results in decreased apoptotic potential of
the cell (Petrocca et al., 2006). Both variants were found to
be associated with predisposition to familial breast cancer and,
more recently to familial hematological malignancies (Calin et al.,
2005; Frank et al., 2006b; Hamadou et al., 2017). Additionally,
the Cys148Arg variant was associated with melanoma and both
familial and sporadic colorectal cancers (Frank et al., 2006a,c;
Castellví-Bel et al., 2007). Furthermore, ARLTS1 expression was
found to be decreased in different types of tumors, including
ovarian, lung and prostate cancer, as well as chronic lymphocytic
leukemia (Yendamuri et al., 2008; Siltanen et al., 2013). More
recently, a study in ovarian cancer suggested that ARLST1
increases tumor cell sensitivity to chemotherapeutic agents by
regulating apoptosis (Yang et al., 2011).

THERAPEUTIC STRATEGIES

As can be concluded from Tables 1, 2, several ARFs and ARF
GEFs and GAPs are overexpressed in different types of cancers.
Therefore, therapeutic strategies aiming to inhibit the expression
of these proteins can be proposed. Other approaches like the
use of small GTPase inhibitors that impair GTP binding or the
binding to membranes, the blockade of GEF activity or ARF-
GEF interaction, should also be considered. Furthermore, the
stimulation of GAP activity/expression and the inhibition of the

FIGURE 1 | Putative therapeutic strategies to target ARF proteins, GEFs, GAPs and effectors. (A) In the case of ARF family members that can act as oncogenes,
their expression or activity could be downregulated (1); GEF activity or expression downregulated (2); ARF-GEF binding blocked or nucleotide binding blocked (3);
active ARF binding to membranes (4) or effectors blocked (5); effector function impaired (6); GAP expression or activity upregulated (7). (B) Regarding ARF proteins
that can act as tumor suppressors, their expression or activity could be upregulated (1); GEF activity or expression upregulated (2); GAP activity or expression
downregulated (3).
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interaction with downstream effectors or the function/expression
of these effectors can also be envisaged (Figure 1). For instance,
the inhibitor LM11 can abolish specifically ARF1 activation
through the blockade of the binding of the ARF GEF Cytohesin
2/ARNO (Flisiak et al., 2008; Xie et al., 2016). Indeed, it has been
shown that the aggressiveness of breast tumors that overexpress
ARF1 is reduced after treatment with this inhibitor through
the decrease in cell invasion and proliferation and increased
apoptosis (Schlienger et al., 2015; Xie et al., 2016). Also, the small
inhibitor EXO2 reduces ARF1 activation and effectively impairs
the proliferation of prostate cancer cells by blocking ERK1/2
activation (Lang et al., 2017). Moreover, EXO2 inhibits invasion
of prostate cancer cells and induces their apoptosis. Furthermore,
the same study shows that the simultaneous blockade of ARF1
and RAS activation in prostate cancer is a potential targeted
strategy to prevent the development of this type of tumor
(Lang et al., 2017).

Since some ARF proteins like ARF6 and ARF1, are
ubiquitously expressed and perform essential functions in all
cell types (D’Souza-Schorey and Chavrier, 2006), targeting
the proteins themselves could have dramatic and unwanted
consequences. In alternative, targeting their regulators, such as
ARF GEFs or GAPs, might represent a viable strategy for the
development of specific anti-cancer therapies. Regarding the
targeting of ARF GEFs, it has been shown that SecinH3, an
ARF GEF inhibitor that impairs both ARF1 and ARF6-dependent
signaling, is effective in decreasing the growth of breast cancer
xenografts and reducing lung metastasis (Zhao et al., 2016),
while suppressing angiogenesis of melanoma and lung carcinoma
tumors (Grossmann et al., 2014; Hongu et al., 2015). Thus,
inhibitors of the ARF6-dependent signaling pathway could be
useful to control specifically tumor invasion and angiogenesis.

It has been observed that several ARF GAPs are overexpressed
in cancer (Table 2), even though overexpression of ARF GAPs
does not imply increased GAP activity. For instance, AGAP2
expression in chronic myeloid leukemia cells and prostate cancer
is regulated by Specific Protein 1 (SP1) and ATRA (Doush et al.,
2019). Additionally, the authors observed that the treatment of
cells of these types of cancer with the polyphenol curcumin, leads
to a decrease in ATRA-mediated AGAP2 expression (Doush et al.,
2019; Giordano and Tommonaro, 2019). This data illustrates the
relevance of regulating ARF GAP expression levels in cancer. On
the other hand, it was observed that QS11, the only inhibitor of
ARF GAPs known, binds to ARF GAP1 and inhibits the activity
of this GAP on ARF1 and ARF6 (Zhang et al., 2007; Zhu et al.,
2012). Interestingly, it was observed that QS11 blocks migration
of metastatic breast cancer cells, in vitro (Zhang et al., 2007).
Thus, inhibitors of ARF GAP activity could also be effective in
controlling cancer cell migration and invasion.

Inhibition of the expression or function of downstream
effectors of ARF family proteins is also a plausible strategy to
impair the oncogenic potential of ARFs and ARLs. An interesting
candidate is NMII. Indeed, several types of cancer exhibit
differential expression and/or activation of NMII isoforms,
leading to alterations in cell migration and invasion that
are involved in tumorigenesis (Newell-Litwa et al., 2015).
Moreover, we found that NMIIA is an effector of ARL13B

(Casalou et al., 2014, 2019). Furthermore, blebbistatin inhibits
the ATPase activity of NMIIA and has been found to block
invasiveness of both breast cancer cells (Derycke et al., 2011) and
pancreatic adenocarcinoma cells (Duxbury et al., 2004), and is
phototoxic in human cancer cells under exposure to blue light
(Mikulich et al., 2012).

CONCLUSION AND PERSPECTIVES

Members of the RAS superfamily of small GTPases are master
regulators of all the steps involved in membrane traffic. Thus,
it is not surprising that many of them are hijacked by cancer
cells to enhance their capacity to form a tumor and spread
to other organs. In particular, ARF family proteins, their
GEFs, GAPs and effectors are often upregulated in expression
and/or activity in several types of cancer. Moreover, upregulated
expression/activity can be linked to enhanced cancer progression
and aggressiveness. Therefore, these proteins are good candidates
to serve as therapeutic targets and, indeed several strategies have
already been proposed and tested. These include the targeting of
ARF proteins themselves or their GEFs, GAPs or effectors. While
our knowledge of the GEFs, GAPs and effectors of ARFs is fairly
complete, much less is known about the functions and identity of
GEFs, GAPs and effectors of ARL subfamily members. Hence, the
knowledge about these molecular players should be developed in
order to find new therapeutic strategies for cancer types where
ARLs or their regulators/effectors are subverted. Since most ARF
family proteins are ubiquitous and required for essential cellular
functions, the targeting of specific effectors and GEFs/GAPs
could ensure tissue/function specificity. Nevertheless, specificity
could also be achieved through targeted delivery of vectors/drugs.

In conclusion, the study of the mechanisms subverted by
cancer cells involving ARF family proteins and their regulators
of activity and effectors can shed light on the functions of these
proteins and simultaneously provide clues about new therapeutic
targets and strategies, which continue to be a pressing need in
the cancer field.
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