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Abstract

The incidence of pediatric wheeze is extremely high. Poor control of wheeze in young children affects lung function 
in adulthood and is closely associated with the occurrence of chronic obstructive pulmonary disease. Substantial 
efforts worldwide have been aimed at developing methods to identify the etiology of wheezing symptoms as 
early as possible to aid in early management strategies. However, the diagnosis of childhood wheeze relies heavily 
on the clinical experience of pediatricians, most of whom lack sufficient training to accurately diagnose children 
with wheezing symptoms. Artificial intelligence is an approach that may improve general pediatricians’ diagnostic 
ability for wheezing symptoms by identifying patterns and trends from large and complex clinical datasets. 
However, few studies have used artificial intelligence to diagnose wheeze in children. Therefore, this review aims 
to comprehensively assess these studies in this field, analyze their interpretability and limitations, and explore and 
discuss future research directions in real-world clinical applications.
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1. INTRODUCTION

Wheeze is one of the most common respiratory symp-
toms in children [1]. In recent years, the incidence of 
wheeze in children has steadily increased. Relevant stud-
ies have shown that poorly controlled wheeze in chil-
dren can affect lung function in adulthood and is closely 
associated with the development of chronic obstructive 
pulmonary disease (COPD), which can severely affect 
quality of life, and place a great burden on families and 
society [2-6]. Given the numerous etiologies of wheeze, 
identifying the etiology of wheezing symptoms as early 
as possible is essential to enable early management 
strategies. However, most general pediatricians in China 
cannot make an accurate diagnosis because of the lack 
of standardized training in the diagnosis of wheez-
ing symptoms. Data-driven artificial intelligence (AI) 
approaches may effectively improve general pediatri-
cians’ differential diagnostic ability for wheezing symp-
toms by identifying patterns and trends from large and 
complex clinical datasets. However, to date, few studies 

have used AI to diagnose wheeze in children. Therefore, 
this review aims to comprehensively summarize pub-
lished studies on AI approaches to the diagnosis of pedi-
atric wheeze, and discuss future research directions in 
clinical applications.

2. THE NEED FOR EARLY IDENTIFICATION OF THE 
ETIOLOGY OF WHEEZE IN CHILDREN

Wheezing symptoms in children occur at very high prev-
alence, owing to a decrease in the internal diameter of 
the lower airways and an increase in airway resistance 

[7]. Approximately 34% of children younger than 3 years 
of age have at least one episode of wheeze, and 50% 
of children younger than 6 years have had wheezing 
[8]. Asthma, one of the major causes of wheezing, had 
a prevalence among Chinese urban children of 1.09% 
in 1990 and 1.97% in 2000, and increased to 3.02% by 
2010 [9]. The recent 2018 Global Initiative for Asthma 
has indicated a global prevalence of asthma of 4.4% 
in preschool aged children and up to 6.4% in primary 
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school children [10]. The World Health Organization has 
estimated that approximately 235 million people world-
wide will have asthma by 2020.

Multiple factors, such as air pollution, chemical or 
physical stimuli, viral infections, exercise, body mass 
index, gastroesophageal reflux and sleep-disordered 
breathing, can lead to wheeze in children [11]. In addi-
tion to asthma, common causes of wheezing include 
acute bronchiolitis due to viral infections, congenital 
airway maldevelopment, endotracheal tuberculosis, 
mediastinal lymph nodes or neoplasms compressing the 
airway, and bronchial foreign bodies [12]. Recurrent 
wheeze in infancy is also a risk factor closely associ-
ated with pediatric pneumonia [13]. Wheezing can 
cause shortness of breath, respiratory distress, and 
even hypoxia and death in children in its acute phase. 
Recurrent wheeze can lead to chronic airway inflam-
mation that causes airway remodeling and impairs chil-
dren’s airway development. Imaging techniques are 
important in distinguishing asthma from asthma-like 
diseases, and chest radiographs are most commonly 
used for rule-out diagnosis [14]. Chest high-resolution 
CT and sinus CT are used as further imaging modalities 
to identify other non-asthmatic causes closely associ-
ated with wheezing, such as diffuse bronchiolitis, sinus 
disease and pneumothorax. The etiologic diagnosis of 
wheezing symptoms is extremely complex and requires 
a combination of disease history, physical examination, 
imaging examination, laboratory tests and diagnostic 
treatment to establish an effective differential diag-
nosis. Meanwhile, China has an extreme shortage of 
pediatricians and pediatric specialty clinics. According 
to a survey in a white paper on the status of pediat-
ric resources in China [15], the proportion of pediat-
ric specialty clinics among medical providers in urban 
areas is only 0.5%, whereas that in rural areas is 0%. 
Furthermore, most pediatricians lack the necessary 
training and clinical experience to accurately diagnose 
wheezing symptoms. However, diagnosis of etiology 
as early as possible is essential for timely intervention, 
controlling the disease, and preventing its development 
into asthma and other severe respiratory conditions.

3. ARTIFICIAL INTELLIGENCE PROVIDES NEW 
SOLUTIONS FOR THE DIAGNOSIS OF WHEEZING 
SYMPTOMS IN CHILDREN

3.1 AI research on diagnosis of wheezing 
symptoms in children
AI has already been applied in several medical fields 
and yielded excellent results. By combining the clinical 
experience of pediatric experts and medical big data, 
machine learning (ML) techniques are being used to 
build AI diagnostic models for diagnosis of childhood 
wheezing, which can effectively improve the diagnostic 
accuracy of pediatricians with low seniority or primary 
care clinicians. According to the data modality used 
for modeling, AI based diagnosis of wheezing can be 

divided into two categories based on clinical medical 
records or based on medical images.

3.1.1 Diagnosis of wheezing on the basis of clinical 
 medical records. Clinical medical records include the 
diagnosis and treatment associated with a patient’s onset 
and development of the disease. These records consist 
of large amounts of textual information regarding the 
patient’s condition, such as complaints, symptoms, signs 
and disease history. Clinical medical records are usu-
ally in the form of text and tables. The text records the 
patient’s physical examination findings, past medical 
history and other information, in a strictly standardized 
form. The tables record the patient’s examination data, 
such as routine blood test results. Existing AI techniques 
for medical records usually use traditional ML algo-
rithms such as linear models, Bayesian networks, and 
decision trees with structured data, which are interpret-
able to a certain extent. Himes et al. [16] have extracted 
demographic information and disease data from clini-
cal medical records, and explained the correlations and 
interactions between variables by using a multivariate 
model of Bayesian networks to explore the clinical fac-
tors to predict patients’ asthma developing into COPD. 
Pennington et al. [17] have evaluated the effects of sev-
eral methods of defining asthma in medical records on 
the estimation of the onset of asthma in children 3 years 
of age and also determined the validity of defining early 
asthma for the prediction of pediatric asthma. Afzal 
et al. [18] have proposed a method that can automati-
cally extract information from extensive clinical records 
and identify children with asthma. Xi et al. [19] have 
developed a retrospective graphical analysis method to 
identify informative fields in medical records, extract 
their correlation with asthma and develop a method 
for asthma diagnosis through serial combinations of 
Boolean operators. Quinto et al. [20] have developed a 
multiple logistic regression model based on information 
extracted from medical records to establish the rela-
tionship between asthma and the severity of obesity in 
children. In addition, ML has been successfully used to 
interpret pulmonary function tests associated with the 
differential diagnosis of obstructive pulmonary disease, 
and has also shown promising results in other diagnos-
tic examinations, such as breath analysis, lung sound 
analysis and telemedicine, although those findings 
were based on limited sample sizes [21]. Nonetheless, 
transforming existing AI methods from research to real-
world practical applications requires interpretability of 
the diagnostic algorithms, which is currently lacking in 
the existing literature.

3.1.2 Diagnosis of wheezing on the basis of medical 
images. Medical imaging, one of the most common 
diagnostic tools used by physicians, plays an important 
role in observing lesions and understanding the cause 
of diseases. For example, three-dimensional volume ren-
dering imaging of airways by using multi-row spiral CT 
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can visualize airway lesions more intuitively and clearly 
especially when observing their shape and spatial rela-
tionship. By proposing a mathematical function that 
constructs a three-dimensional spatial model of the air-
way, Tgavalekos et al. [22] have effectively measured 
the airway width, which not only matched the size and 
location of ventilation defects, but also identified the 
causes of inhomogeneous ventilation in asthma. Amaral 
et al. [23] have used ML methods such as random forest 
and AdaBoost with a decision tree to improve the accu-
racy of the diagnosis of airway obstruction in asthma. 
Schilham et al. [24] have studied an ML-based algorithm 
for lung nodule detection through finding local max-
ima in multi-scale Gaussian space to identify candidate 
boxes of images; identify pixel edge points from large 
to small to detect the boundary location of nodules; and 
classify the features extracted by multi-scale Gaussian fil-
ters. Yedururi et al. [25] have analyzed the clinical and 
imaging manifestations of various common tracheal and 
bronchial diseases in children to develop a systematic 
approach for their imaging and classification, which may 
help physicians accurately and effectively diagnose tra-
cheal and bronchial diseases in children. Recent advances 
in deep learning techniques, specifically models based 
on convolutional neural networks (CNN), have been 
widely used in image data analysis. However, research 
on image-based AI-assisted diagnosis for the differential 
diagnosis of wheezing symptoms remains in its infancy. 
Xu et al. [26] have introduced deep CNN transferred 
multiple instance learning and proposed identification 
of COPD from CT images. In this work, a pre-trained 
CNN model was used as a feature extractor to extract 
the image features for each view of a CT instance, and 
KNN was used for classification. González et al. [27] have 
evaluated the performance of CNNs for COPD detection 
in chest CT by using statistical analysis. Zhang et al. [28] 
have detected and classified COPD in chest CT by using 
CNN models. Bharati et al. [29] have developed a hybrid 
CNN for COPD and asthma detection from X-ray images.

3.2 Limitations of existing AI research on 
diagnosis of wheezing symptoms and 
exploratory research on interpretability
Existing AI technologies, particularly deep learn-
ing-based methods, have achieved excellent disease 
diagnostic performance. However, most of the diagnos-
tic process is performed in an end-to-end “black box” 
mode, thus hindering primary-level pediatricians’ under-
standing of diagnosis results and detection of diagnosis 
errors. Interpretability is particularly important for AI 
clinical diagnosis [30, 31].

3.2.1 Interpretable AI research. In general, two 
approaches to interpretability are used: model inter-
pretability and inference interpretability. Model 
interpretability involves understanding how a model 
behaves, whereas inference interpretability is aimed at 
demonstrating how the model determines the output 

for each situation. In both approaches, interpretabil-
ity can be achieved by displaying symbols (e.g., struc-
tured languages or natural language such as logical 
forms) to explain the model reasoning. Interpretable AI 
can also be categorized as model-based methods and 
model- agnostic methods (Table 1). Linear models and 
Bayesian-based models are typical model-based inter-
pretable models. Model-agnostic models can generally 
be divided into three types: visual interpretation, agent 
interpretation and importance ranking interpretation. 
Visual interpretation explains how the model works 
by plotting the effect of the prediction results of the 
model with the numerical changes in features in a cer-
tain range. Friedman et al. [32] have proposed partial 
dependence plots characterizing the marginal effects of 
features on the model’s predicted outcomes. Goldstein 
et al. [33] have proposed individual conditional expec-
tation plots visualizing dependencies between features 
and predictions for each instance in the form of lines. 
Apley [34] has proposed the accumulated local effects 
plot describing how feature values affect the prediction 
on average. In agent interpretation, the target model is 
interpreted on the basis of relatively more interpretable 
agent models, such as linear models, which are trained to 
approximate the output of the target model on the same 
inputs. Ribeiro et al. [35] have proposed the local inter-
pretable model-agnostic explanation method, in which 
an agent model is trained on a set of sampled instances. 
The importance ranking interpretation determines the 
features that dominate the output of the model by cal-
culating their contributions and ranking them. Typical 
methods include Shapley Additive Explanations and 
Model Reliance [36, 37]. The interpretability of deep 
learning-based models for image data analysis has been 
achieved primarily by visualization of the relationship 
between input images and model outputs [38-40]. Zeiler 
et al. [38] have proposed to visualize the characteristics 
of high-level neurons through a deconvolution network 
and explained the learning process of the network. 
Zhou et al. [41] have designed a category activation 
mapping (CAM) method to visualize categorical fea-
tures, observe the activation states of neural networks 
and analyze their decision-making process. Selvaraju 
et al. [42] have proposed a gradient-based category 
activation mapping method (grad-CAM) that combines 
category activation mapping with guided backpropa-
gation and deconvolution to visualize the fine-grained 
features of images. The study has also explained genera-
tion of classification results, thus making the processing 
flow of the CNN based AI models clearer and more inter-
pretable. Recently, variants of CAM, including Grad-
CAM++, XGrad-CAM, AblationCAM and HiResCAM, 
have become an active area of visualization-based inter-
pretable research [43-49]. Figure 1 shows an example of 
visualization of Grad-CAM in chest radiograph. Wagner 
et al. [40] have improved the interpretability of CNN 
models by investigating the internal working mecha-
nism of neural networks, generating fine-grained visual 
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interpretations in image space, selectively filtering the 
gradients in the optimization process, and refining the 
interpretability at the pixel level.

3.2.2 Interpretable AI auxiliary diagnosis in medical and 
diagnostic research on wheezing. With recent advances 
in interpretable AI technology, some progress has also 
been made in interpretable AI in medical and diagnos-
tic research [50-57]. The AI algorithms used in clinical 
medical records in the current literature mainly reflect 
their interpretability through traditional ML methods 
and structured features, whereas the interpretability of 
the decision-making process of diagnostic algorithms 
has been poorly explored. Yu et al. [58] have reported a 
diagnostic method based on information extracted from 
chief complaints, medical histories and physical exami-
nation findings in clinical medical records. Furthermore, 
they have structured key information extracted from 
clinical medical records through a rule-based approach 
and used ML techniques to identify the structured data, 
thus not only improving the accuracy of identifying 
asthma in pediatric inpatient setting but also increas-
ing interpretability. Spathis et al. [59] have developed 
a random forest classifier based diagnostic system for 
COPD and asthma in 132 representative samples. The 

model has indicated that the most prominent factors 
in COPD cases are smoking, forced expiratory volume, 
age and forced vital capacity, and the most prominent 
factor in asthma is MEF25–75. Topalovic et al. [60] have 

developed a decision tree based on pulmonary data to 
enable automatic interpretation of pulmonary function 
tests and COPD detection in 968 participants. They have 
modeled the relationships among indicators (e.g., dif-
fusing capacity for carbon monoxide, forced expiratory 
volume and forced vital capacity), thus enabling trans-
parency in the decision-making process. In deep learn-
ing-based medical image diagnosis, CAM and its variants 
have been widely used for visual interpretation through 
generating pixel-level diagnostic models for overall 
interpretability, thus greatly improving the diagnostic 
accuracy of AI models [61-65]. Rajaraman et al. [66] have 
visualized and explained CAM-based deep learning pre-
dictions for pneumonia detection in pediatric chest radi-
ographs. Gotkowski et al. [67] have proposed the M3D-
CAM method to specifically highlight spatial regions in 
volumetric medical images.

Recently, multi-modal models that integrate clinical 
medical records data and medical images have become 
a focus in clinical diagnosis [68-70]. Through extracting 
clinical diagnostic information from medical images and 

Table 1 | Summary of interpretable AI methods

Categorization of interpretable 
AI methods

 Description  References describing 
applications

Model-based interpretable 
methods

 Linear models and Bayesian-based models are typical model-based 
interpretable models.

 [16, 20]

Model-agnostic interpretable 
methods

 Model-agnostic models can generally be divided into three types: visual 
interpretation, agent interpretation and importance ranking interpretation.

 [32-37, 42-49]

Visual interpretation  Visual interpretation explains how the model works by plotting the effects 
of the prediction results of the model with the numerical changes in 
features in a certain range. Typical methods include the following.

 [32-34, 42-49]

 Partial dependence plots characterize the marginal effects of features on 
the model’s predicted outcomes.

 [32]

 Individual conditional expectation plots visualize dependencies between 
features and predictions for each instance in the form of lines.

 [33]

 Accumulated local effects plots indicate how feature values affect the 
prediction, on average.

 [34]

 Category activation mapping (CAM) and its variants, including Grad-
CAM++, XGrad-CAM, AblationCAM and HiResCAM, have become an 
active area of visualization-based interpretable research.

 [42-49]

Agent interpretation  Agent interpretation interprets the target model based on a relatively more 
interpretable agent model, such as linear models, which are trained to 
approximate the output of the target model on the same inputs.
The local interpretable model-agnostic explanation method is an agent 
model trained on a set of sampled instances.

 [35]

Importance ranking 
interpretation

 The importance ranking interpretation determines the features that 
dominate the output of the model by calculating their contributions and 
ranking them. Typical methods include the Shapley Additive Explanations 
and Model Reliance.

 [36, 37]
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using visual attention to search for disease descriptions 
associated with these images. Zhang et al. [71] have 
constructed an MDNet model based on an image mod-
ule and a language module. Their study has established 
multi- modal associations between medical images and 
clinical medical records, and illustrated the model’s iter-
ative diagnostic process through an attention mecha-
nism. Yao et al. [72] have applied a logistic regression 
model for feature selection to clinical data and used a 
CNN to extract image features from CT images, then 
established a model by integrating the above two types 
of features for pulmonary venous obstruction predic-
tion. Yu et al. [73] have proposed a two-stage diagnostic 
system based on deep learning features extracted from 
medical records and fine-grained image recognition 
techniques to identify pediatric respiratory diseases, 
and achieved excellent results. Furthermore, they have 
explored a symptom-level interpretability approach to 
medical record analysis to demonstrate correlations 
between input and final diagnoses. Yang et al. [74] 
have explored focal-level interpretability of images 
and texts by establishing connections between objects 

and relationships relative to given ground reference 
representations, and have further used graph convolu-
tion to achieve a consistent correspondence in the rep-
resentation of lesions and text information in images.

3.3 Future development directions in relevant 
research fields
The demand for readability and reliability are increas-
ing, particularly in the medical field, in which current 
AI-associated technologies have unsatisfactory inter-
pretability. Therefore, an urgent need exists to explore 
interpretable implementations for the diagnosis of 
pediatric wheeze to meet clinical requirements. Several 
research directions are worthy of exploration in the 
future.

3.3.1 Improve existing AI algorithms and construct 
interpretable AI models based on text data. Existing AI 
diagnosis algorithms based on medical records gener-
ally rely on unstructured data, semi-structured data and 
structured data to capture information and make a dis-
ease diagnosis. However, the corresponding algorithms 

Figure 1 | Visualization of Grad-CAM in a chest radiograph.
The class-discriminative region, i.e., red highlighted area, is concentrated in the lungs, in agreement with clinical experience.
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do not explain the cause-and-effect correlations 
between inputs and outputs, because the interpretabil-
ity of the AI models has been neglected. Moreover, phy-
sicians experience difficulties in understanding the algo-
rithmic diagnostic process from numerous inputs, thus 
compromising the credibility of AI algorithms. Future 
studies must improve existing diagnostic algorithms and 
use gradient-based input and output correlations in the 
development of interpretable AI models to create a map 
outlining the relationship between symptoms and diag-
nostic outcomes.

3.3.2 Investigate an interpretable AI algorithm for dia
gnosing wheeze in children on the basis of images and 
correlations between images and text. Medical imag-
ing is a common technical tool with important roles in 
intuitively understanding disease conditions. The advan-
tage of CNNs in performing image analysis is their use of 
weighted convolutional kernels to achieve local feature 
learning and high-level feature extraction by increasing 
the depth. This process tends to perform analysis from a 
global perspective, because it hides the joint weighting 
of local features for diagnostic outcomes. Nonetheless, 
difficulties arise in explaining the causal relationship 
between lesions and diagnostic outcomes with image-
based complementary diagnostic techniques, and 
establishing the correlation between image details 
and diagnostic outcomes. Consequently, low-ranking 
and primary pediatricians cannot easily directly use the 
conclusions provided by AI diagnostics. Furthermore, to 
fully use image information and deeply understand the 
correlation between changes in the state of an organ 
for any given location and diagnostic result, AI models 
interpretable at the level of image pixels are needed to 
build the mapping relationship between feature maps 
and images, and to achieve interpretable analysis of 
overall information.

Therefore, interpretable AI algorithms based on 
image and text correlations are needed to reveal the 
reasoning process linking image blocks and diagnostic 
conclusions, and to provide output understandable to 
physicians. Visualization methods of feature maps must 
also be explored to support the interpretability studies 
and make the data analysis more easier.

3.3.3 Develop personalized wheezingassociated 
 disease predictive or diagnostic models for children 
by using AI methods from multidomain candidate 
 predictors. Selecting and evaluating clinical and imag-
ing candidate predictors of wheezing-associated dis-
ease in children 3 years of age or younger can facilitate 
early intervention and management in clinical practice. 
Future research on wheezing symptoms must develop 
AI-based predictive or diagnostic models using inter-
pretable methods in sufficiently large cohorts of both 
general and clinically associated populations, and vali-
date them externally with the measurement of predic-
tion sensitivity, specificity, accuracy and generalizability.

3.3.4 Establish a benchmark database of wheezing 
related diseases in children. Rapid development of AI 
techniques, particularly deep learning-based methods, 
has benefited from the large amount of available data 
[75-77]. According to Vapnik-Chervonenkis theory [78], 
the relationship between the required sample size and 
the Vapnik-Chervonenkis dimension of the model is 
defined as a log-like function. However, collecting and 
labeling large amounts of medical data is very expen-
sive and challenging; consequently, most studies have 
focused on small sample datasets. More importantly, 
practical application in clinical practice, in addition to 
requiring large amounts of data for model training, 
requires thorough validation in a sufficiently large gen-
eral and clinically relevant population to ensure the 
high performance of the AI model in terms of sensitiv-
ity, specificity, accuracy and generalizability. Therefore, 
we believe that the establishment of a publicly available 
benchmark database of wheezing-associated diseases in 
children will be an important future direction to pro-
mote research on AI for diagnosis of wheezing, which 
will require collaborations between multiple medical 
institutions and health administrations, as well as the 
participation of physicians, software developers, data 
scientists and policy makers.

4. SUMMARY AND CONCLUSIONS

Wheezing is a very common symptom in children, and 
its association with multiple diseases and risk factors 
makes differential diagnosis challenging. AI algorithms 
are a novel technique in the field of childhood wheez-
ing diagnosis. AI models, compared with conventional 
methods, can make better use of large complex data-
sets to develop diagnostic and predictive models for 
causational analysis of pediatric wheezing symptoms. 
However, few studies have used AI to diagnose wheeze 
in children. Moreover, most existing AI research has pro-
posed a “black box” diagnostic process that is difficult 
to control and interpret. Therefore, interpretable AI 
technologies must be explored for the assisted diagno-
sis of wheezing symptoms in children, which reveal the 
diagnostic decision-making process from the perspective 
of causality and explain the diagnostic rationale, to bal-
ance high-level assisted diagnosis with the risk of misdi-
agnosis. Interpretable AI technologies can guide deci-
sions to refer high-risk and low-trust cases to high-level 
pediatric specialists, and ensure primary pediatricians’ 
diagnostic accuracy for common wheeze  symptoms in 
young children.

Improving the reliability and credibility of current AI 
auxiliary diagnosis models would have high value and 
clinical significance in decreasing the risk of potential 
misdiagnosis caused by the limitations of AI algorithms. 
Moreover, such improvements would help establish a 
credible interpretable framework enabling mutual mon-
itoring between AI and physicians, to provide a diagnos-
tic basis for individualized, specific, precise interventions 
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to treat wheezing symptoms in children. These improve-
ments will be crucial for the development, application 
and promotion of AI-assisted diagnostic technologies.
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