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Abstract
Astrocytes have not been a major therapeutic target for the treatment of stroke, with most research
emphasis on the neuron. Given the essential role that astrocytes play in maintaining physiological
function of the central nervous system and the very rapid and sensitive reaction astrocytes have in
response to cerebral injury or ischemic insult, we propose to replace the neurocentric view for
treatment with a more nuanced astrocytic centered approach. In addition, after decades of effort in
attempting to develop neuroprotective therapies, which target reduction of the ischemic lesion,
there are no effective clinical treatments for stroke, aside from thrombolysis with tissue
plasminogen activator, which is used in a small minority of patients. A more promising
therapeutic approach, which may affect nearly all stroke patients, may be in promoting
endogenous restorative mechanisms, which enhance neurological recovery. A focus of efforts in
stimulating recovery post stroke is the use of exogenously administered cells. The present review
focuses on the role of the astrocyte in mediating the brain network, brain plasticity, and
neurological recovery post stroke. As a model to describe the interaction of a restorative cell-based
therapy with astrocytes, which drives recovery from stroke, we specifically highlight the subacute
treatment of stroke with multipotent mesenchymal stromal cell therapy.
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Introduction
Stroke is a devastating neurological disease with limited functional recovery and is one of
the leading causes of death and disability worldwide. Currently, the only approved stroke
therapy is thrombolysis induced by intravenous administration of recombinant tissue
plasminogen activator (tPA; Alberts and Naidech, 2013; Marler, 1995). However, because
of a short therapeutic time window (<4.5 h), only a small fraction of patients benefit from
this treatment (Fang et al., 2010). In the past two decades, many therapeutic targets have
been pursued and improved neurological sequelae in experimental animal models of stroke;
whereas, clinical trials have failed to demonstrate a corresponding benefit (Balami et al.,
2013; Sutherland et al., 2012). Reasons for this failure and inconsistency between laboratory
studies and human clinical trials are many, and include, inappropriate clinical translation of
laboratory studies, particularly with regard to therapeutic window and dosing, and the
historical primary focus on neuroprotection. In the acute phase of stroke, neuroprotective
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treatments aim to reduce rapidly progressing cell damage and to reduce the volume of
cerebral infarction and secondary cell death, whether by necrosis or apoptosis. In addition,
most clinical trials were often performed using a single drug with single purported
mechanism of action specifically targeting, the neuron. To treat stroke, we have to
reconceptualize and redefine our therapeutic targets. Acute neuroprotective treatments for
stroke fight a temporal battle of salvaging cerebral tissue before the onset of death, as well
as a physiological impediment of delivery of therapy to tissue which has inadequate blood
flow. Thus, a more promising therapeutic approach would be to promote remodeling of the
central nervous system (CNS) via neurovascular plasticity, and thereby to foster
neurological recovery. To accomplish this and to broaden treatment targets, we must
consider therapeutic approaches that benefit multiple cell types, and in our view,
particularly, astrocytes (Bang et al., 2005; Bhasin et al., 2011; Chopp and Li, 2002; Clarke
and Barres, 2013; Dharmasaroja, 2009; Hermann and Chopp, 2012; Lee et al., 2010; Li and
Chopp, 2009; Suarez-Monteagudo et al., 2009; Zhou, 2011). Stroke affects all cellular
elements of the brain, that is, vascular cells, neurons, astrocytes, oligodendrocytes,
microglia, and ependymocytes. Astrocytes are likely to be essential targets for manipulation,
because they are the most abundant cells in the adult CNS and greatly outnumber neurons
(Bignami, 1991), and are in contact with and interact and affect all parenchymal cells.
Nevertheless, among all brain cells, astrocytes are probably the least understood in terms of
cell biology and function, and their role in neurological recovery.

In the delayed subacute and chronic phases of stroke, restorative treatments designed to
enhance neuroplasticity and to remodel the intact CNS through selective cellular or
molecular modifications, which stimulate intrinsic restorative pathways and thereby promote
neurological recovery should be the primary focus of therapeutic efforts. These new
restorative therapies, which will impact intact parenchymal cells, and primarily, astrocytes,
can then be applied days, weeks and even later after stroke; thus, all stroke patients, will be
treated, without tight time constraints. Among potential restorative therapies, exogenous
cell-based therapies have been proposed to ameliorate post-stroke deficits. Multipotent
mesenchymal stromal cells (MSCs) have emerged as a strong candidate (Bang et al., 2005;
Bhasin et al., 2011; Chen et al., 2003a, b, 2001b; Chopp and Li, 2002; Dharmasaroja, 2009;
Hermann and Chopp, 2012; Lee et al., 2010; Li and Chopp, 2009; Li et al., 2008b, 2002b,
2001b, 2005b, 2006; Shen et al., 2007a,b; Suarez-Monteagudo et al., 2009; Zhou, 2011). We
hypothesize that MSCs stimulate the neural repair process, especially via activating the
major endogenous repair mediators, astrocytes, in the CNS. This approach contrasts with the
predominant neurocentric view of stroke therapy. In this manuscript, we focus on the
astrocyte as a mediator of neurological recovery post stroke and describe the means by
which astrocytes impact neural remodeling. We describe how the astrocyte, outside the core
lesion, reacts to an ischemic insult, how the astrocyte interacts with parenchymal cells as
well as some important aspects of astrocyte physiology which may impact neurological
recovery after stroke. In addition, as a means to describe how a restorative therapy affects
astrocytes and astrocytes thereby contribute to brain plasticity and neurite remodeling, we
discuss in detail how MSCs promote neurological recovery post-stroke via their interaction
with astrocytes.

Astrocytes Post-Stroke
Astrocytes have diverse and important functions in many aspects of ischemic brain damage
(Rossi et al., 2007). Astrocytes are coupled to one another into a cellular network
(homocellular and heterocellular junctions) via gap junction intercellular communication
(GJIC; Rouach et al., 2000), through which they can pass various metabolites. The role of
astrocyte junctions in stroke remains controversial, with evidence that both beneficial and
harmful substances may pass through them and influence stroke in opposite ways (Nakase et
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al., 2004). Astrocytic end-feet cover almost the entire surface of capillaries of the adult brain
(Kerr, 2000) and are integral to the formation and integrity of the blood brain barrier (BBB).
Astrocytic finely branching processes envelop all cellular components throughout the CNS,
and contact all parts of neurons, for example, soma, dendrites, axons, and synaptic terminals.
The close association between astrocytes and pre-synaptic and postsynaptic terminals as
well as their ability to integrate synaptic activity and release neuromodulators has been
termed the “tripartite synapse” (Araque et al., 1999). Synaptic modulation by astrocytes
takes place because of this three-part association (Halassa et al., 2007a,b; Parpura et al.,
2012; Stevens, 2008; Verkhratsky and Parpura, 2010). Neurons rely on astrocytes to instruct
the formation of their synapses (Clarke and Barres, 2013). Astrocytes, thus, function as a
syncytium of interconnected cells in the CNS (Li et al., 1998; Nagy and Rash, 2000; Naus et
al., 2001; Pekny and Nilsson, 2005; Scemes et al., 2000; Siushansian et al., 2001) and
discrete microdomains within the astrocytic syncytium may interact autonomously with one
another and with neurons (Giaume and Liu, 2012; Verkhratsky, 2010). Perisynaptic and
perivascular processes are the major characteristics of astrocytes, in which astrocytes wire
the brain (Simon and Nicolelis, 2012). Theoretically, vascular cells belong to the circulatory
system, instead of the nervous system (Kerr, 2000); therefore, in this mini-review, we focus
on the astrocyte-neuron network. A key concept that we highlight here is that astrocytes are
morphologically highly elaborated cells, establishing associations through their fine
processes with practically tripartite synapses in the CNS. Individual astrocytes in the
hippocampus of the grey matter of rodents touch up to 100,000 synapses (Bushong et al.,
2002; Halassa et al., 2007b) and they extend to considerable volumes of up to 80,000 μm3,
which correspond to a 40-fold volume of their soma (Bushong et al., 2002; Halassa et al.,
2007b; Pfrieger and Slezak, 2012). Human protoplasmic astrocytes are even larger and more
complex. This astrocytic complexity has permitted the increased functional competence of
the adult human brain (Oberheim et al., 2009). Thus, close morphological associations,
together with the fact that astrocytes express a multitude of ion channels, transporters, and
membrane receptors, endow these cells with the unique capability to sense and influence
diverse CNS functions (Berry et al., 2002; Giaume and McCarthy, 1996; Jourdain et al.,
2007; Lynn et al., 2001; Mazzanti et al., 2001; Pekny and Nilsson, 2005; Pellerin and
Magistretti, 2004; Rouach et al., 2004; Trendelenburg and Dirnagl, 2005; Ullian et al.,
2001). Several forms of astrocytes exist in the CNS, classically including fibrous (in white
matter), protoplasmic (in gray matter), and radial (Marin-Padilla, 1995; Shannon et al.,
2007). We, in this review, have only used an umbrella term, astrocyte, neglecting the
complexity, variety and distribution of assorted astrocytes, likely with different responses to
restorative cell-base therapies. Further investigation is, therefore, called-for to more deeply
determine the response of the wonderful diversity of astrocytes to restorative therapy. This
may provide a richer opportunity to develop more effective therapies for stroke and other
neurological diseases.

Complete cerebral blood flow cessation after stroke causes irreversible injury to all cell
types in the ischemic core, because the supply of glucose and oxygen ceases. In contrast, in
the ischemic boundary zone (IBZ), where oxygen and glucose delivery is partly maintained,
astrocytes may survive for a prolonged period compared with neurons (Swanson et al., 2004;
Zhao and Rempe, 2010). Compared with neurons, cultured astrocytes are more resistant to
oxygen and glucose deprivation (OGD; Panickar and Norenberg, 2005). In addition, stroke
can alter astrocyte function. Studies have shown that, in the acute phase after ischemic
stroke, astrocytes become “reactive.” In the reactive process, the astrocytes exhibit
hypertrophied, interdigitated processes and inhibit axonal regeneration by participating in
the formation of the glial scar (Sofroniew, 2005), in which contains many different
inhibitory molecules including chondroitin sulfate proteoglycans (CSPGs), a major barrier
against axonal regeneration (Morgenstern et al., 2002). Astrocytes can also produce a variety
of proinflammatory cytokines. Astrocytic gap junctions may remain open following
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ischemia (Cotrina et al., 1998), allowing substances such as proapoptotic factors to spread
through the syncytium, thereby expanding the size of the infarct (Siushansian et al., 2001),
and decreased astrogliosis often correlates with decreased infarct size (Chen et al., 2008;
Fang et al., 2006; Zhao et al., 2011).

However, studies also report that the glial scar, the rapidly expanding astrocytic processes
create both physical and functional walls surrounding the ischemic core, which extend the
time available for marshalling endogenous repair mechanisms, for example, redirection of
blood flow to still salvageable parts of the brain and redirection of neurite sprouting and
synapse formation to build a new circuitry. In addition to their role in glial scar formation,
astrocytes also respond to ischemia with functions important for neuroprotection and
neurorestoration. These include protecting spared tissue from further damage, rebuilding the
BBB, taking up excess glutamate (Mazzanti et al., 2001), and producing neurotrophic
factors (Anderson et al., 2003; Swanson et al., 2004). For example, after ischemic stroke,
neurons have less endogenous antioxidants and neurons are far more susceptible to ischemic
damage than neighboring astrocytes (Garcia et al., 1993). Astrocytes are important in
neuronal antioxidant defense and secrete growth factors and astrocytes upregulate glucose
transporters in order to provide energy to stressed/dying neurons. A growing body of data
demonstrate that astrocytes also play an important role to promote neurorestoration in the
chronic phase after injury (Zhao and Rempe, 2010). Astrocytes effect long-term recovery
after brain injury, through neurite outgrowth, synaptic plasticity, or neuron regeneration
(Larsson et al., 2004; Privat, 2003), which are influenced by astrocyte surface molecule
expression and trophic factor release (Chen and Swanson, 2003). Astrocytes promote brain
plasticity and recovery from stroke (Gao et al., 2005a,b; Li et al., 2008a; Trendelenburg and
Dirnagl, 2005; Xin et al., 2006; Zhang et al., 2006). Profound synaptic plasticity occurs in
the IBZ, which improves functional outcome after stroke (Carmichael, 2003; Chen et al.,
2003c; Nudo, 2007; Shen et al., 2006). Astrocytes have prominent roles in modifying
synaptic plasticity and formation of new synapses (Barker and Ullian, 2010). Astrocytes
make extensive contacts with synaptic sites where they release soluble factors that can
increase synapse number, provide synaptic insulation restricting the spread of neuro-
transmitter to neighboring synapses, and release neuroactive compounds, gliotransmitters,
that can directly influence synaptic transmission (Halassa et al., 2007a). During periods of
synaptogenesis, astrocyte processes are highly mobile and may contribute to the stabilization
of new synapses. As our understanding of the extent of their influence at the synapse
unfolds, it is clear that astrocytes are important in neural repair (Sofroniew, 2005). Emphasis
should therefore be shifted from the neuron to the astrocyte as the mediator of neurovascular
plasticity and neurological recovery. An overview of the most current findings on the
diverse roles played by astrocytes in the CNS function and dysfunction, the connections that
the astrocyte makes with other cells of the brain that are essential for a variety of important
neural functions, is warranted.

Gene-Modified Astrocytes Post Stroke
Understanding astrocyte-neuron interactions in vivo requires dedicated experimental
approaches to independently manipulate the astrocyte. Recently, genetic approaches to study
glial cells in the rodent brain have been reviewed by Pfrieger and Slezak (2012), they
include: (1) astrocyte-specific gene overexpression of a wide range of cellular components;
(2) visualization of astrocytes, where fluorescent protein expression is driven by fragments
of murine and human promoters to underline the importance of regional patterns of promoter
activities; (3) elimination of astrocytes, which eliminates glial fibrillary acidic protein
(GFAP)-positive progenitor cells; and 4) astrocyte-specific gene ablation using the Cre/loxP
system. The majority of transgenic lines generated so far use fragments of the Gfap
promoter to target constitutively active Cre to astrocytes (Pfrieger and Slezak, 2012).
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The use of GFAP antibodies and promoters are valuable in studying astrocytes after stroke.
In response to stroke, major features of reactive astrocytes include upregulation of GFAP
and vimentin and re-expression of nestin (Fuchs and Cleveland, 1998; Li and Chopp, 1999;
Li et al., 2005). GFAP, vimentin and nestin are constituents of intermediate filaments (IFs),
which are part of the cytoskeleton. Investigators generated knock-out (KO) mice for GFAP,
by which astrocytic structure and function are abnormal in adult Gfap−/−mice and Gfap−/
−mice are highly susceptible to cerebral ischemia (Nawashiro et al., 2000). Since the
astrocyte processes contact synapses and modulate synaptic function, Gfap−/−mice show
alteration in long-term potentiation in neurons after transient ischemia, suggesting that
GFAP has an important role in astrocyte-neural interactions (Tanaka et al., 2002). Thus,
GFAP is necessary for the integrity of CNS architecture and its long-term maintenance. To
eliminate IFs in their specific “reactive” state, studies have shown that astrocytes in mice
deficient for double GFAP and vimentin (Gfap−/−vim−/−) cannot form IFs. Inactivation of
the Gfap gene, but not that of vimentin, improves neuronal survival and neurite growth
(Menet et al., 2001). The double KO astrocytes present many features of immaturity and
greatly improve survival and neurite growth by increasing cell-cell contact and secrete
diffusible factors. Glial scar formation appeared normal after brain lesions in Gfap−/− or
vim−/−mice, but was impaired in Gfap−/−vim−/−mice that developed less dense scars
frequently accompanied by bleeding (Pekny et al., 2007). These results indicate that GFAP
and vimentin are required for proper glial scar formation in the injured CNS and that some
degree of functional overlap exists between these IF proteins (Pekny et al., 1999). The role
of reactive astrocytes has been studied in brain ischemia by using the available Gfap−/−vim
−/−mice (Li et al., 2008a). Seven days after middle cerebral artery occlusion (MCAo),
infarct volume was 210–350% higher in Gfap−/−vim−/− than in wild-type (WT-) mice;
Gfap−/−, vim−/−, and WT-mice had the same infarct volume. Gfap−/−vim−/−mice have
larger infarct volume than WT-controls, which suggests that reactive astrocytes are
protective in brain ischemia and limit the extent of the infarct. A recent in vitro study also
showed that Gfap−/− vim−/− astrocytes exposed to OGD and reperfusion exhibited
increased cell death and conferred lower degree of protection to cocultured neurons than WT
astrocytes (de Pablo et al., 2013). This observation stands in sharp contrast to the reported
adverse roles played by the glial scar and associated astrocytic activation in promoting
ischemic cell damage (Askalan et al., 2006; Bush et al., 1999). The absence of IFs affects
vesicle trafficking in astrocytes. Gfap−/−vim−/−astrocytes have a decreased number of
vesicles displaying directional mobility and fewer vesicles that travel for a long distance
compared with WT-astrocytes. This suggests that IFs may act as a structure supporting
highly mobile vesicles in astrocytes. Gfap−/−vim−/−mice have impaired astrocyte
activation, and decreased glutamate uptake abilities after ischemia (Li et al., 2008a). Studies
of Gfap−/−vim−/−mice provide evidence suggesting that reactive astrocytes are beneficial
on all accounts after stroke.

Cell-Therapy Post Stroke
Worldwide, tissue engineering and cell-based therapies are at the forefront of the
regenerative medicine agenda, and researchers are addressing key diseases, including stroke
with these therapies. Cell therapy can be categorized by their embryonic, fetal or adult
origin, and the later two can be further identified by their tissue of origin. Cell
transplantation has shown promise in reducing neurological deficits associated with stroke.
Embryonic neural progenitor cells transplanted in a model of MCAo in rats demonstrated
potent therapeutic effects examined behaviorally, along with neuroradiological assessment
using magnetic resonance imaging (MRI; Takahashi et al., 2008). Fetal cortical cells survive
after stroke in adult rats, and the adult hosts have a regenerative capacity sufficient to
innervate the grafted tissue (Grabowski et al., 1992). Because of ethical dilemmas and
practical concerns, increased attention has been directed to adult derived cells for therapeutic
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application to neural injury. Endogenous neural progenitor cells (NPCs) are activated in
response to ischemia, both in rodents (Arvidsson et al., 2002; Zhang et al., 2002a) and
humans (Jin et al., 2006). MRI analysis of ferromagnetic labeled adult subventricular zone
(SVZ) cells intracisternally into stroked rats 48 h after MCAo (Zhang et al., 2003) showed
that SVZ cells targeted the IBZ, and these cells selectively migrated within the cerebrospinal
fluid (CSF) into parenchyma. Neurological function evaluation showed that the deficit
ameliorating effect of SVZ cell treatment was apparent at 28 days after stroke. Transplanted
neural stem cells also migrated to the lesion, and differentiated into neurons with axons that
projected to appropriate targets and expressed appropriate neurotransmitters and receptors
(Magavi and Macklis, 2002; Patkar et al., 2012). The most appropriate type of cell to be
used in brain ischemic therapies, as well as their sources, remain a matter of intense research
(Bang et al., 2005; Chen et al., 2001b; Chopp and Li, 2002). A good candidate cell should,
in principle, display high plasticity to generate diverse benefits, and low risk to cause
undesired outcomes. One of the more exciting emerging therapies for improving functional
recovery after stroke is the use of bone marrow derived stromal cells (MSCs) (Chopp and
Li, 2002; Joyce et al., 2010; Li and Chopp, 2009). MSCs are a mixed cell population,
including stem and progenitor cells (Bang et al., 2005; Chopp and Li, 2002). MSCs are
currently a strong candidate therapy in stroke, since they are easily isolated and can be
expanded in culture from humans without ethical and technical problems (Chen et al.,
2001b; Chopp and Li, 2002; Joyce et al., 2010). The feasibility and safety of MSCs have
been extensively tested and demonstrated in preclinical studies and in clinical trials of many
diseases (Bang et al., 2005; Horwitz et al., 1999, 2001; Koc et al., 1999, 2000; Le Blanc et
al., 2004; Wakitani et al., 2004; Wollert et al., 2004). Using the MCAo model in rodents,
MSCs transplanted into rodent brain intracerebrally (Li et al., 2000; Zhao et al., 2006),
intraarterially (Li et al., 2001; Zhang et al., 2012), intracisternally (Zhang et al., 2002b,
2012), intravenously (Chen et al., 2001c; Gutierrez-Fernandez et al., 2013; Horita et al.,
2006; Pavlichenko et al., 2008; Ukai et al., 2007), or lumber intrathecally (Zhang et al.,
2012) after stroke, significantly improve neurological outcome. The MSCs escape immune
system surveillance and survive in the rodent ischemic brain, and specifically migrate into
the IBZ after transplantation (Chen et al., 2001a; Irons et al., 2004; Lee et al., 2003; Li et al.,
2002). Although the mechanisms underlying this targeted movement are not fully
understood, studies suggest that chemotactic factors are responsible (Wang et al., 2002a,b).
MSCs are capable of homing to an area of ischemia by sensing stromal cell derived factor-1
(SDF-1), which is highly expressed in ischemic tissue, including astrocytes (Wang et al.,
2012), with their chemokine (C-X-C motif) receptor 4 (CXCR4) receptors (Cui et al., 2007;
Shen et al., 2007b; Tsai et al. 2011). Most of the administered MSCs present in the brain
localize to the IBZ, which is potentially salvageable, and multiple processes of cell repair
are initiated.

Although some MSCs express proteins phenotypic of neural cells (Chen et al., 2001b;
Kopen et al., 1999), it is highly unlikely that benefit is derived by replacement of infarct
tissue with transdifferentiated MSCs (2002 Lancet). The MSCs that are employed in this
therapy are not necessarily stem cells, but progenitor and differentiated cells that escape
immune system surveillance and survive in the CNS, even for transplantation of allogeneic
(Caplan, 2007; Li et al., 2006; Yang et al., 2010) or xenogeneic MSCs (Li et al., 2002; Yang
et al., 2010). After treatment of stroke with MSCs, brain derived neurotrophic factor
(BDNF) and nerve growth factor (NGF) among other trophic factors significantly increased
and apoptotic cells significantly decreased in the IBZ (Li et al., 2002). MSCs secrete other
bioactive factors that amplify endogenous repair mechanisms. MSCs as “small molecular
factories” dynamically facilitate CNS repair, which include decreasing apoptotic cell death
(Chen et al., 2003a; Joyce et al., 2010), and promotion of neurological recovery via
increasing angiogenesis, development of new blood vessels, (Joyce et al., 2010; Zacharek et
al., 2007), neurogenesis, development of new CNS cells, (Aizman et al., 2013; Gutierrez-
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Fernandez et al., 2013; Shen et al., 2010), synaptogenesis, formation of new synapses
between neurons, (Gutierrez-Fernandez et al., 2013; Shen et al., 2007a), and promoting glial
(Li et al., 2005; Yang et al., 2010), neuronal (Dezawa et al., 2005; Li et al., 2005), and blood
vascular (Chen et al., 2003b; Parr et al., 2007) remodeling. It is likely that the functional
improvements as a result of MSC treatment are due to combined action via multiple cellular
and molecular mechanisms to affect the intact CNS responds to stroke (Hermann and
Chopp, 2012). We and others have demonstrated that in rodents following stroke and
treatments, axonal remodeling highly correlates with behavioral outcome (Chen et al.,
2002b; Lee et al., 2004; Liu et al., 2007, 2010; Papadopoulos et al., 2002). MSCs markedly
enhanced inter-hemispheric and intracortical connections (Liu et al., 2010) and increased
axonal sprouting and rewiring into the denervated spinal cord (Liu et al., 2007, 2011),
suggesting MSCs facilitate functional recovery after stroke. Interestingly, we compared the
effect of treatment of stroke with MSCs from stroke rats and normal rats on functional
outcome (Zacharek et al., 2010); the former is superior to the latter for the neurorestorative
treatment of stroke, indicating a major effect of stroke on the entire body. Therefore,
multiple events act in concert to induce neurite remodeling and reestablish new functional
synaptic networks that may be causally related to changes in functional outcome. Persistent
focus on cell-based therapies post stroke as a means to replace or augment the generation of
parenchymal cells undermines their therapeutic potential.

As described above, there are multitudes of affects at both cellular and molecular levels
evoked by the treatment of stroke with a cell-based therapy that promote functional
recovery. Although it has traditionally been appealing to selectively identify those effects
that primarily contribute to the enhanced functional recovery, it is highly likely that the
physiological manifestations of plasticity, for example, angiogenesis, neurogenesis, and
neurite outgrowth are coupled (Carmichael, 2010; Zhang and Chopp, 2009), and therefore
attempts to isolate the particular molecular and physiological indices specifically inducing
recovery may not be possible. Likewise, the molecular pathways driving aspects of plasticity
are interdependent, and it is unlikely that such an interactive environment would permit a
simplified mono-mechanistic or hierarchical approach to discriminate selective events and
molecular mediators of recovery. However, a close astrocytic and vascular coupling may
underlie the neurovascular remodeling that leads to improved neurological outcome after
MSC treatment of stroke. Vascular stimulation and angiogenesis are driven by astrocytic
expression of angiogenic proteins, for example, vascular endothelial growth factor (VEGF)
and Angiopoietin 1 (Ang1), that may orchestrate recovery (Zhang and Chopp, 2002).
Activated and angiogenic blood vessels generate factors, for example, BDNF, glial-derived
neurotrophic factor (GDNF), and VEGF that stimulate neurogenesis within the SVZ and
promote the vasculature-mediated migration of neuronal precursors toward the ischemic
areas (Grade et al., 2013). The newly generated cells within the SVZ then migrate to the
vasculature. This migration is fostered by vascular expression of SDF-1, which signals to its
receptor CXCR4 on the migrating neuroblasts (Liu et al., 2008). Reactive astrocytes, which
are widespread throughout the damaged area, ensheath blood vessels, and express TrkB, a
high-affinity receptor for BDNF, suggesting that these glial cells trap extracellular
neurotrophic factors. Importantly, this pattern of expression is reminiscent of the adult
rostral migratory stream, where TrkB-expressing astrocytes bind and sequester vasculature-
derived BDNF, leading to the entry of migrating cells into the stationary phase (Grade et al.,
2013). Consequently, the migrating neuroblasts localize to activated vasculature and are
driven to differentiation by VEGF-B expressed in the vasculature (Madri, 2009; Teng et al.,
2008). The rewiring, that is, neurite outgrowth may also be mediated by astrocytic driven
vascular stimulation, Ang 1, expressed in astrocytes (Koyama et al., 2012) and activated
endothelial cells (Cui et al., 2013), although an angiogenic agent, also promotes neurite
outgrowth (Yan et al., 2012). In addition, astrocytic and vascular expression of tPA from
astrocytes (Xin et al., 2010) and endothelial cells (Correa et al., 2011) contributes to neurite
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outgrowth/remodeling and fosters neurological recovery post stroke (Shen et al., 2011).
Although there is a complex web of interaction of the CNS structural and molecular
mediators of recovery, our goal here, however, is to illuminate an important, if not primary
role of the astrocytes in promoting neurological recovery after cell-based treatment of
stroke. Many restorative events coalesce around the astrocytes as promoting plasticity and
recovery. However, as a caveat, the temporal sequence of events that constitute the
multifaceted restorative dynamic with the astrocyte at its core is not known. The described
sequential means of interaction, although elegant and scientifically appealing has not been
confirmed in vivo, and whether the described trajectory of events are specific for restoration,
or whether competing or complementary cellular interactions also contribute the
neurovascular remodeling post stroke therapy is not known. A way to obtain insight into the
possibility of concurrent multipathway restorative trajectories that promote recovery is my
introducing microRNAs (Section “MicroRNAs (miRNAs) as a molecule-mediator shuttled
by microvesicles/exosomes after MSC-therapy”). It is our hypothesis that the varied
molecular signals driving restorative events may derive from the communication of
microRNAs via microvesicles between the exogenously administered cells and parenchymal
cells, primarily the astrocytes. It is reasonable to focus on the astrocyte because the astrocyte
is the most abundant and possibly the most interactive of the parenchymal cells, bridging
neurons, and endothelial cells.

Astrocytes as Mediators of MSC-Therapy
Astrocytes in the developing brain direct neurites through their synthesis of cell surface and
extracellular matrix (ECM) molecules (Powell et al., 1997). An account of neuronal
development is beyond the scope of this review; nevertheless, neuronal plasticity in the adult
animal may use mechanisms that are active during development (Levitan and Kaczmarek,
2002). In the adult animal after stroke, axons may also acquire their potential for outgrowth
from neighboring astrocytes and establish contacts with existing circuits in the CNS
(Matsaas and Tsacopoulos, 1999). For example, GDNF, one member of the transforming
growth factor-beta (TGFβ) family, signals via the cognate receptors, for example, GDNF-
receptor alpha-1 (Hase et al., 1999; Sarabi et al., 2003). The latter receptors are expressed on
a variety of neurons. Astrocytic endogenous GDNF production is enhanced in the IBZ by
MSC transplantation after stroke in adult rats (Shen et al., 2010). Some axons were
reoriented parallel to GFAP-positive processes of reactive astrocytes (Li et al., 2006; Shen et
al., 2007b). MSCs can stimulate neurotrophins and growth factors including VEGF (Chen et
al., 2003b; Gutierrez-Fernandez et al., 2013), basic fibroblast growth factor (Chen et al.,
2003a; Wakabayashi et al., 2010), and BDNF (Alder et al., 2012; Kurozumi et al., 2005),
within astrocytes in response to the ischemic brain environment (Chen et al., 2002d; Qu et
al., 2007). Moreover, MSCs also diminish glial scar formation after stroke (Li et al., 2005;
Pavlichenko et al., 2008). MSCs upregulate expression of GJIC protein connexin-43 and
bone morphogenetic proteins 2 and 4 (BMP2/4) after stroke in rats (Zhang et al., 2006).
Bone morphogenetic proteins affect cell proliferation and differentiation. Our understanding
of the molecular triggers and mechanisms underlying the induction of CNS plasticity
mediated by reactive astrocytes has been substantially expanded by strong complementary in
vitro data (Chen et al., 2002c; Gao et al., 2005a,b; Qu et al., 2007; Xin et al., 2006). In vitro
studies demonstrate that MSCs significantly reduce astrocyte apoptosis, and increase
astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase
(PI3K/Akt) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase
pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult (Gao
et al., 2005b), which suggest that MSCs exert protective roles on astrocytes that have
otherwise been irreparably compromised. MSCs enhance connexin 43 GJIC communication
in cultured astrocytes (Gao et al., 2005a). MSCs induce BMP2/4 production in OGD
astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells
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(Xin et al., 2006). In vitro data support the hypothesis that reactive astrocytes promote brain
plasticity and recovery from stroke, and that the beneficial effects of reactive astrocytes are
enhanced in the ischemic brain after MSC transplantation (Aizman et al., 2009; Barzilay et
al., 2013; Croft and Przyborski, 2009; Gao et al., 2005b).

PAs are extracellular serine proteases that catalyze the conversion of the proteolytically
inactive zymogen, plasminogen, into the serine protease, plasmin (Collen, 1980). In the
CNS, tPA is the major PA (Davies et al., 1998; Sappino et al., 1993; Teesalu et al., 2003)
and inhibition of the tPA activity occurs through PA inhibitor -1 (PAI-1). Pekny and his
colleagues demonstrate that PAI-1 was significantly down-regulated in the Gfap−/−Vim−/
−double knockout mice compared with WT-mice (Li et al., 2008a). In addition to trophic-
growth factors induced by MSCs, white matter changes in response to MSC treatment are
mediated by astrocytes via increased tPA activity (Shen et al., 2011; Xin et al., 2010, 2011).
Exogenous MSCs may therefore provide therapeutic benefit via astrocytes to affect the tPA
level (Fig. 1), and thereby, promote neurite remodeling (Fig. 2) in the CNS, which fosters
improvement in neurological function. Using genetically modified tPA−/−mice compared
with WT-mice, MSCs were found to diminish PAI-1 in astrocytes, which increases tPA
activity in the IBZ after MCAo (Shen et al., 2011; Xin et al., 2010). In vitro data suggest that
the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth
after ischemia (Xin et al., 2010); and MSCs significantly increase tPA expression and
concomitantly decrease PAI-1 expression in astrocytes (Xin et al., 2011). Another and
complementary approach that may elucidate the ability of the brain to activate many
restorative and associated processes, is the role of transcription factors stimulated in
astrocytes by cell therapy. We and others have also shown that MSCs and other stem/
progenitor cells affect transcription factors (Chang et al., 2011; Guo et al., 2012; Xin et al.,
2011). Thus, our observation that MSCs upregulate the sonic hedgehog (Shh) pathway, a
major morphogen playing a vital role in brain development (Kasai et al., 2004), within
astrocytes similarly provides a means to affect multiple processes and molecular pathways
(Ding et al., 2013; Xin et al., 2011). Increasing Shh, permits the expression of Gli
transcription factors, which leads to the activation of tPA and likely the generation of other
proteins (Cayuso and Marti, 2005; Machold et al., 2003; Stecca and Ruiz i Altaba, 2005; Xin
et al., 2011). tPA, as noted, promotes brain plasticity, via its proteolytic and nonproteolytic
pathways (Lee et al., 2007; Wind et al., 2002). The proteolytic plasminogen/plasmin
function of tPA cleaves the precursor forms of neurotrophins, for example, pro-BDNF and
pro-NGF, respectively, to the active forms of BDNF and NGF. These trophic factors
promote neurite remodeling (Bernd, 2008; Crutcher, 1986; Edgar, 1985; Fahnestock et al.,
2004; Wozniak, 1993). tPA also activates the nonproteolytic pathways, for example, N-
methyl-D-Aspartate receptor (NMDAR). The NMDAR can subsequently enhance neurite
remodeling (Aoki et al., 1998). Thus, our approach is not to tease out which molecules are
vital to stimulating recovery and turning on multiple interactive restorative events but rather
to enhance appreciation of the role of the astrocyte in mediating these events. Astrocytes
likely play a key role possibly also via tPA, in mediating neurite remodeling and functional
recovery after treatment of stroke with MSCs. It would be interesting to determine whether
activation of astrocytes is a necessary condition for mediating MSC stimulation of tPA and
the Shh-Gli transcription factors.

Neurocan is one of the main components of CSPGs expressed in the glial scar (McKeon et
al., 1999). As CSPGs inhibit axonal outgrowth (Cafferty et al., 2007), implying that reactive
astrocytes impact local axonal outgrowth and repair processes in the damaged CNS
(Morgenstern et al., 2002; Snow et al., 2001). Down-regulation of neurocan expression in
reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects
of MSCs in the ischemic rat brain (Shen et al., 2008). Although cell-based therapy impacting
astrocytes may indirectly facilitate neurite outgrowth by reducing CSPGs, and thereby create
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a permissive environment for neurite outgrowth (Shen et al., 2008), the signals that
astrocytes receive from the exogenous cells that downregulate astrocytic CSPGs are not
known. In addition, there are a paucity of studies on how the exogenous cell therapy and the
activated astrocyte interact with the ECM, and thereby, directly or indirectly, facilitate
neurite remodeling. We, however, provide some insight into the potential interactions of the
MSC, astrocyte, and ECM triad mediating neurite remodeling, by investigating the effects of
the MSC stimulation of tPA within the astrocyte (Xin et al., 2010, 2011). Among ways tPA
may interact with the ECM is to cleave inactive pro-trophic factors, for example, pro-BDNF,
pro-NGF, residing within the ECM into active trophic factors. Thus, the ECM may play a
direct and active role in stimulation neurite remodeling via tPA (Tsirka, 2002; Yoshida et
al., 1992).

MicroRNAs (miRNAs) as a Molecule-Mediator Shuttled by Microvesicles/
Exosomes after MSC-Therapy

We propose that the varied molecular signals driving restorative events may derive from the
communication of miRNAs via microvesicles between the exogenously administered cells
and parenchymal cells, primarily the astrocytes (Fig. 3). MiRNAs are short ribonucleic acid
(usually 18 to 25 nucleotides) molecules found in eukaryotic cells. They are non-protein
coding transcripts that post-transcriptionally control gene expression via binding to
complementary sequences on target messenger RNA (mRNA) transcripts and result in
mRNA degradation or translational repression and gene silencing (Bartel 2004, 2009). By
affecting gene regulation, miRNAs are likely involved in most biological processes
(Brennecke et al., 2003; Chen et al., 2004; Cuellar and McManus, 2005; Harfe et al., 2005;
Kim et al., 2005). MiR-NAs act as master switches regulating the translation of many genes
and they play significant roles in many regulatory mechanisms (Agnati et al., 2010; Cai et
al., 2009). The human genome may encode over 1,000 miRNAs (Bartel, 2004), which target
about 60% of mammalian genes (Friedman et al., 2009; Lewis et al., 2005) and are abundant
in many human cell types (Lim et al., 2003).

Microvesicles/Exosomes may provide the vehicles by which MSCs communicate with
neural cells and modify miRNAs? Microvesicles are fragments of plasma membrane ranging
from 50 to 1000 nm shed from almost all cell types (Breakefield et al., 2011). Microvesicles
play a role in intercellular communication and can transport mRNA, miRNA, and proteins
between cells. Exosomes are formed by inward budding of late endosomes, producing
multivesicular bodies, and are released into the environment by fusion of the multivesicular
bodies with the plasma membrane. Cells can communicate intercellularly by the secretion of
exosomes from multivesicular bodies into the extracellular space. Increasing evidence
indicates that exosomes transporting miRNAs play an important role in cell-to-cell
communication (Lotvall and Valadi, 2007; Mathivanan et al., 2010; Record et al., 2011;
Smalheiser, 2007; Valadi et al., 2007). Exosomes are membrane vesicles sized 40–100 nm
in diameter and are secreted by a wide range of cell types (Leung and Brown, 2010;
Mathivanan et al., 2010; Simpson et al., 2009; Stoorvogel et al., 2002; van Niel et al., 2006).
They contain RNA molecules including mRNAs and miRNAs, which can be transferred
between cells and thus affect the protein production of recipient cells (Katakowski et al.,
2010; Pegtel et al., 2010; Zomer et al., 2010). Our data demonstrate that miR-133b levels
were increased in MSCs and in their released exosomes after MSCs were exposed to brain
extracts from rats subjected to MCAo, and the miR-133b was transferred to primary cultured
astrocytes and neurons via exosomes (Xin et al., 2012). Exosomal miR-133b from MSCs
significantly increased the neurite branch number and total neurite length (Xin et al., 2012).
Compared with administration of normal MSCs, administration of MSCs with increased or
decreased miR-133b (MSCs modified using lentivirus with miR-133b knocked in or
knocked down) resulted in promotion or inhibition of neurite outgrowth, respectively (Xin et
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al., 2012). MiR-133b is active in several regulatory processes (Dreyer, 2010; Kim et al.,
2007; Sanchez-Simon et al., 2010). Connective tissue growth factor (CTGF), a major
inhibitor of axonal growth at injury sites in the CNS in mammals, is regulated by miR-133
(Duisters et al., 2009; White and Jakeman, 2008). The transfer of miR-133b from MSCs to
astrocytes via exosomes may downregulate CTGF expression, thin the glial scar, and benefit
neurite outgrowth. MiR-133 also downregulates ras homolog gene family member A
(RhoA) protein expression (Care et al., 2007; Chiba et al., 2009), and since the inhibition of
RhoA enhances regrowth of the corticospinal tract after spinal cord injury (Dergham et al.,
2002; Ellezam et al., 2002), miR-133b appears essential for neurite outgrowth and functional
recovery after spinal cord injury in adult zebrafish (Yu et al., 2011). Increasing miR-133b
transfer from MSC exosomes may regulate target genes like RhoA in neurons that stimulate
neurite outgrowth and thereby improve functional recovery after stroke. Further in vivo
studies on how miR133-b affects neurite outgrowth after stroke are needed. Based on these
data, MSC treatment promotes neurite outgrowth and benefits functional recovery at least
partly by transferring miRNAs (here represented with miR-133b) to parenchymal cells via
exosomes. Thus, a way to gain insight into the simultaneous appearance post cell-based
treatment of multiple molecular cascades stimulating interactive restorative events may be
by the transfer of miRNAs between exogenously administered cells and astrocytes. MiRNAs
are master molecular switches, concurrently affecting translation of, possibly, hundreds of
mRNAs (Agnati et al., 2010; Cai et al., 2009). In initial studies, we have demonstrated that
MSCs transfer miR-133b to parenchymal cells (Xin et al., 2012). We emphatically note,
however, that this transfer of miR-133b is not to the exclusion of the affect of MSCs or other
cell-based therapies on other miRNAs and clusters of miRNAs. However, this observation
provides the conceptual basis of simultaneously altering many processes.

Studies of how MSCs communicate with the parenchyma via microvesicles/exosomes are in
their infancy. There are many possible ways the exogenously administered cell can transfer
information to the parenchymal cell. The “packaging” of these bits of regulatory molecules
and information, such as miRNAs, may not necessarily be mediated by microvesicle-
exosome; miRNAs may be transferred between cells and are found in body fluids simply
bound to high-density lipoprotein (HDL) and Argonaute (Chen et al., 2012). Thus, the work
on miRNA and exosomes, while provocative, should primarily stimulate the concept that
exogenously administered cells and parenchymal cells communicate by transferring
information and regulatory genes, via multiple, possibly, overlapping pathways. Thus, how
the astrocyte alters the environment in response to a restorative therapy, like a cell-based
therapy, how it passes information to parenchymal cells and impacts tissue function by
means of microvessicles/exosome/HDL packets of genetic information, remain largely
unexplored.

Summary and Conclusions
In the setting of ischemia, astrocytes perform multiple functions, making them excellent
candidates as therapeutic targets to improve outcome following stroke and in other CNS
injuries. The older neurocentric view of the CNS has changed radically with the growing
understanding of the many essential functions of astrocytes. Continued elucidation of the
complex interactions involved in modulating the astrocytic responses may enable novel
therapeutic approaches that translate successfully into clinical efficacy. Although few
studies have specifically targeted astrocytes for repair after stroke, there is some evidence
that this can be a successful strategy. For example, recent results indicate that enhancing
astrocyte resistance to ischemic stress by overexpressing protective proteins or antioxidant
enzyme results improved survival of hippocampal CA1 neurons following forebrain
ischemia (Xu et al., 2010). Thus, specific attention should be paid to how these treatments
may alter astrocyte response or viability. A detailed understanding of the astrocytic
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response, as well as the timing and location of the changes, is necessary to develop effective
drug treatment strategies for stroke patients.

Cultured autologous MSCs are safe when injected intravenously in stroke patients (Bang et
al., 2005; Bhasin et al., 2011; Dharmasaroja, 2009; Lee et al. 2010; Li et al., 2008b; Suarez-
Monteagudo et al., 2009; Zhou, 2011), and the grafted groups showed higher frequencies of
functional recovery. Clinical studies are currently ongoing or planned (http://
www.clinicaltrials.gov), making it increasingly important to use preclinical animal studies to
understand the biological mechanisms underlying cell-mediated tissue restoration. From the
perspective of cell-based therapies, the interaction of MSCs, as a model of a general cell
therapy, with parenchymal cells, is important, because benefit appears to derive from the
stimulation of parenchymal cells by the exogenous cells, with the MSCs acting almost as
catalysts for parenchymal cell response. Our data demonstrate that MSCs secrete and induce
within parenchymal cells biomaterial factors that create a favorable environment to reduce
apoptosis, and promote angiogenesis, synaptogenesis, and neurogenesis. MSC
transplantation facilitates and amplifies endogenous neuroprotective and neurorestorative
mechanisms that act in concert to form a CNS repair/remodeling compendium. Astrocytes
likely play active roles in mediating CNS plasticity and neurological recovery post stroke.
MSCs and neural cells communicate, and that intercellular communication between MSCs
and neurons and astrocytes may occur via MSC-exosomes mediated miRNAs, e.g.,
miR-133b. MSC transfer of miR-133b to astrocytes via exosomes may downregulate the
CTGF expression and thin the glial scar. MSC mediated down regulation of RhoA level in
neurons may directly benefit neurite outgrowth and thereby improve functional recovery
after stroke. We also provide the molecular bases for concurrently activating mediators of
the multifaceted aspects of plasticity, whether via miRs packaged within lipid nanoparticles
like exosomes, or stimulating morphogens, like Shh, which release multiple Gli transcription
factors thereby altering important proteins, such as the neurite inducing tPA.

The CNS response to stroke is a multicellular process that changes continually over time and
is regulated by a multitude of extracellular and intracellular molecular signaling events.
There is controversy on the roles of reactive astrocytes after stroke, promoting or inhibiting
axonal regeneration. Restorative cell-based treatment for stroke, such as MSC-treatment,
appears effective and its efficacy is likely mediated by stimulation of and interaction with
astrocytes. This MSC-via-astrocyte approach, if successful, because of the absence of an
acute time-window requirement, will permit us to treat all patients with stroke. Further
elucidation of the vital roles of astrocytes in facilitating neurological recovery will not only
promote the clinical application of MSCs for the treatment of stroke, but also lead us to a
new therapeutic target for CNS diseases.

This discussion and review of the literature on the role of the astrocyte in mediating
neurological recovery post stroke have neglected some vital clinically relevant information.
Stroke is a disease of aging, with most patients having comorbidities, such as diabetes,
hypertension, and underlying vascular disease and cancer. How the astrocyte responds to
stroke under these conditions of aging or comorbidities has not been investigated.
Preclinically, we have found that early (i.e., 1 day) treatment of stroke with MSCs in
diabetic rats provides no therapeutic benefit, and there is evidence of adverse effects, such as
the induction of atherosclerotic-like lesions (Chen et al., 2011). How the astrocyte responds
to a restorative cell therapy under conditions of diabetes, represents just a single clinically
compelling issue. We tend to idealize the laboratory studies and investigate genetically
identical young, male animals to obtain proof-of-principle information on important
biological responses to stroke. Using this oversimplified idealized approach, we have
demonstrated that the CNS is capable of restorative responses which can be amplified by a
variety of cell-based and pharmacological therapies, largely mediated by the powerful
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astrocyte. But, it is imperative to investigate therapeutic responses under clinically relevant
conditions of aging and comorbidities, before we can truly assert an understanding of the
role of the astrocyte in mediating neurological recovery post stroke.
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FIGURE 1.
Schematic of proposed mechanisms underlying MSC-enhanced tPA. Our previous studies
show that administration of MSCs significantly increased tPA in astrocytes in the ipsilateral
IBZ and coculture of MCS with neural parenchymal cells upregulated mRNA and protein
levels of Shh and tPA, which were abolished by the small interfering RNA (siRNA) that
reduces the expression of the Shh gene (siRNA-Shh), and cyclopamine that specifically
blocks Shh signaling (Chen et al., 2002a; Cooper et al., 1998). These data suggest that MSC
stimulation of the Shh pathway mediates this increase of tPA. Our in vivo data support the
observation that administration of MSCs not only increases tPA but also significantly
reduces PAI-1 expression in astrocytes. The TGF-β pathway regulates PAI-1 expression
(Docagne et al., 2002; Milei et al., 2004). Our in vitro data show that MSCs repress the
TGF-β pathway in astrocytes, which may lead to reduced PAI-1 expression. Blockage of the
TGF-β pathway in astrocytes by a TGF-β neutralizing antibody abolished PAI-1 induced by
coculture of MSCs and astrocytes. These data suggest that MSCs interact with astrocytes to
enhance tPA and concurrently reduce PAI-1 via the TGF-β pathway. The spatiotemporal
pattern in the adult IBZ of how the Shh pathway upregulates tPA expression in parenchymal
cells and the TGF-β pathway regulates PAI-1 expression in activated astrocytes, have not
been fully investigated.
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FIGURE 2.
Schematic of proposed mechanisms underlying tPA-enhanced neurite outgrowth. tPA
secreted by astrocytes after stroke with MSC treatment activates neurite outgrowth, possibly,
via both proteolytic and non proteolytic pathways. Plg−/− mice may be employed
(unpublished data) to investigate the non proteolytic effects of tPA on neurite outgrowth
after stroke and MSC treatment.
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FIGURE 3.
Exosomes shuttle miRNAs: The fusion of multivesicular bodies with the plasma membrane
of MSCs and the release of their intraluminal vesicles as exosomes. Exosomes shuttle miR-
NAs, mRNAs, and proteins from MSCs to astrocytes and neurons, modulating gene
translation in these cellular targets. Whether the exosome targeted astrocytes and neurons
subsequently release exosomes in response to the MSC generated absorbed exosome, is not
known.
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