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Abstract

We call “asymptotic mean” (at +0) of a real-valued function felL;, [T,+oo) the number, supposed
to exist, M, := lim_,, x™ TX f (t)dt, and highlight its role in the geometric theory of asymptotic
expansions in the real domain of type (*) f(x)=a,4(x)+---+a,é (x)+ o(¢§1 (x)) X — +0, where

the comparison functions ¢ (x),---,¢, (x), forming an asymptotic scale at +c, belong to one of the
three classes having a definite “type of variation” at +c, slow, regular or rapid. For regularly-
varying comparison functions we can characterize the existence of an asymptotic expansion (*) by
the nice property that a certain quantity F (t) has an asymptotic mean at +00. This quantity is de-

fined via a linear differential operator in fand admits of a remarkable geometric interpretation as
it measures the ordinate of the point wherein that special curve y=a, (t)4 (x)+-+a,(t)d, (x),

which has a contact of order n - 1 with the graph of f at the generic point ¢, intersects a fixed ver-
tical line, say x = T. Sufficient or necessary conditions hold true for the other two classes. In this
article we give results for two types of expansions already studied in our current development of a
general theory of asymptotic expansions in the real domain, namely polynomial and two-term ex-
pansions.
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A. Granata

1. Introduction

In our current endeavor to establish a general analytic theory of asymptotic expansions in the real domain [1]-[6],
we highlighted that what we called the geometric approach leads in a natural way to a linear differential operator,
say F , depending solely on the comparison functions appearing in a possible expansion; certain asymptotic or
integral conditions involving the quantity ]—'[f (x)} then characterize an expansion of a given function f either
in itself or matched to other expansions obtained by formal differentiation in suitable senses. The theory we are
referring to is based on the following ideas. Suppose one wishes to find conditions (sufficient and/or necessary)
for the validity of an asymptotic expansion

f(X)=ay (X)+-+a (x)+0(d, (X)), x >+, (1.1)

where the ordered n-tuple of comparison functions (¢1(x),-~-,¢n (x)) forms an asymptotic scale at +oo, that is
to say: 4 (x)>d.,(x) ie. ¢, (x)=0(4(x)), x> +o0;i=1--,n=1. In this paper we intentionally choose
X — 400 as this is the situation wherein the classical concept of asymptotic mean plays a role. The simplest
elementary case is that of an “asymptotic straight line"— f (x)=ax+b+0(1), x >+ ,—and it goes back to
Newton the “natural” idea of looking at this contingency as the “limit position of the tangent line at the graph of
7 as the point of tangency goes to infinity. The German geometer Haupt [7], in 1922, extended this idea to study
“nth-order asymptotic parabolas” i.e. “polynomial asymptotic expansions”

f(x)=a,x"+--+ax+a,+0(1)=P,(x)+0(1), X >+, (1.2)

looking at them as “limit positions of nth-order osculating parabolas”. In [1] we collected various scattered re-
sults on such expansions completing them with some missing links and adding a new theory called “factoriza-
tional theory”. A rich bibliography with historical references is also to be found in [1]. For a general expansion
(1.1) a rough idea consists in looking at the “generalized polynomial” Zi”:laiqi, (x) as the limit position of a
suitable family of “generalized polynomial curves”

y=a,(t) (x)+--+a, (1), (x), (1.3)

as the parameter t — +oo. Of course a curve (1.3) must have some meaningful link with the graph of f and,
from a technical point of view, the simplest choice consists in (1.3) admitting of a contact of order (n —1) with
y=f(x) atthe generic point (t,f(t)),ie.

Ya (g (t)= 1% (), 0<k<n-1. (1.4)

This requires suitable assumptions: the regularity of the ¢°’s and f and a special structure of the n-tuple
(¢1 (), 4, (x)) . Then the theory consists in characterizing the contingency

Jim &, (t)=7 €eR, (1.5)

via a certain set of asymptotic relations for f. At least this is what has been done for the two cases already syste-
matized in the literature: that of polynomial asymptotic expansions in [1] and that of two-term expansions in [4].
In this paper we point out that, whenever the comparison functions admit of an “index of variation at +w”, one
can obtain new types of asymptotic results revolving around a classical concept which we label “asymptotic
mean”. In §2 we first present an overview of the class of functions with an asymptotic mean; then, after intro-
ducing classes of slowly-varying, regularly-varying or rapidly-varying functions in a restricted sense, we give
new results correlating these last classes, asymptotic means and weighted asymptotic means. In 83 we give cha-
racterizations of certain sets of polynomial asymptotic expansions via asymptotic means of the coefficients of
nth-order osculating parabolas; in particular we shall study the following

Conjecture. An asymptotic expansion (1.2) holds true iff the constant coefficient of the nth-order osculating
parabola at the generic point (t, f (t)) has an asymptotic mean at +co.

This nice statement will be proved true for a class of functions f satisfying a certain differential inequality. In
84 we establish either characterizations or sufficient conditions or necessary conditions for an asymptotic ex-
pansion

f(X):a1¢1(x)+a2¢2(x)+o(¢2(x)),x—>+oo, (1.6)
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according to the three “types of variation at +oo” of the comparison functions ¢ so giving the exact results va-
guely mentioned in ([4]; pp. 261-263).

Extension of the results to a general asymptotic expansion (1.1), n > 3, is based on information about the
asymptotic behavior of Wronskians of regularly- or rapidly-varying functions and this requires a separate non-
short treatment.

Almost all proofs are collected in 85. A recurrent notation is:

e feAC® ( I ) = AC(I ) < f is absolutely continuous on each compact interval of I;

o feAC () fMeac(l).

2. Functions with an Asymptotic Mean
2.1. General Properties

The following concept is meaningful in itself and often encountered both in classical Analysis (see references
throughout this section) and in modern applied mathematics, Sanders and Verhulst [8].
Definition 2.1. If f el} [T,+oo) then its asymptotic mean at +oo is defined as the number

loc

- X
M, = XILTOO%.[T f (t)dt (2.1)
provided that the limit exists and is finite. (Obviously neither the existence nor the value of M, depend on the
particular choice of T.)

We shall use the symbol M, to denote the class of all functions defined on an interval of the form [T,+oo)
and having an asymptotic mean at +o; M, is obviously a vector space over R. In order to help the reader
grasp the meaning of the quantity M, we shall list various classes of functions contained in M, ; at the same
time we shall have at our disposal some practical rules for testing the existence and the possible value of M, .

DIf f (+oo) exists in the extended real line (for instance if f is monotonxic) then feM, iff f (+oo) eR:
insuchacase M, = f(+o0). Justapply L’Hospital’s rule to the quotient L f(t)dt/x.

2) If fis periodic on [T,+oo) with period p=0 then

M, :%Lﬂpf (t)dt = the arithmetic mean of f on [T,T + p]. (2.2)

A direct elementary proof may be found in Corduneanu ([9]; Remark, p. 24).
3) If f is almost periodic on R then f e M, , see ([9]; pp. 23-24). This property is essential to develop a
theory of Fourier series for almost-periodic functions.

4) If f has a bounded antiderivative (i.e. sup

LX f ‘ <+oo)then M, =0. This is the condition appearing

Xe[T ,+0)

in the classical+ Dirichlet test for convergence of improper integrals of type J'+°c f¢ . If, in particular, the impro-
per integral I f convergesthen M, =0.

5) If J'+°°| f |p <+oo for somep, 1< p<+wo,then M, =0. This follows from the previous case when p = 1

and from Holder’s inequality, when p >1:

Bl () < v ey 2.3

6) If the improper integral J'+°°t’“ f (t)dt converges for some «, O<a <1, then M, =0. The proof is
an immediate consequence of the relation

[f(t)dt= [t [tF (1) Jdt =0(x), x >+, (2.4)

which follows from the mo/pothesis and the next
Proposition 2.1. If j f converges then forany « >0:

_[Txt"f(t)dt:o(x"), X —> +o0. (2.5)

In fact integrating by parts we have
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[t @dt=—Lea([7f )= ([ a7 o (2.6)
where c=T“(.[T+°°f). That the last term on the right is o(x“) follows dividing by x“ and applying I’Hos-
pital’s rule. O

Proposition 2.1 is widely used in asymptotic theory of ordinary differential equations: in a different but equiv-
alent formulation it goes back to Faedo ([10]; lemma, p. 118) and also appears in a paper by Hallam ([11]; lem-
ma 1.1, p. 136). However the nontrivial proofs given by these authors are only valid for one-signed f. The ele-
mentary proof given above applies to any f: it essentially goes back to Hukuhara ([12]; Lemma 1, p. 72) and ap-
pears again in Ostrowski ([13]; Lemma I1).

7) If for some fixed A >0 there exists a finite limit

lim ["f (t)dt = a, (2.7)

then f e M, and M, =a/A. For a proof see Agnew ([14]; Th. 6.2, p. 17).
8) If there exists a finite limit

lim erff (t)etdt=L, (2.8)

X—>+00

then feM, and M, =L. This has been proved by Agnew ([14]; Th. 4.2, p. 13) using a non-elementary in-
direct argument based on the foregoing result and another theorem of his.
9)If feAC [T,+oo) it is a trivial fact that relation

f (x)=ax+0(x), x > +ox, (2.9)

does not necessarily imply f’(+oo) =a, the converse inference being true; but relation (2.9) is equivalent to
f'e M, and, if this is the case, then a=M;,.. In fact

X f(x)-f(T f(x
ljf': ()-1(1) _ )+0(1),X—>+oo. (2.10)
X7 X X
The last relation also implies the following version of L’Hospital’s rule for functions in M, :
Proposition 2.2. If f,ge AC[T,+x»), g(x)#0Vx f' and g’e M, and M, =0 thenthe
lim, ... f(x)/g(x) existsin R andequals M /M, .
f(x) f(x
For the proof just write ( ): ( )_x , and apply (2.10). O
g(x)  x 9(x)
10) The space M, has a link with the classical concept of Cesaro-summability. A function f e L, [T,+oo)
is said to be Cesaro-summable of order one, or summable (C,l), on [T , +oo) if the following limit

lim % t(L f )dr exists as a finite number. (2.11)

This concept is an extension to improper integrals of the concept of arithmetical mean for a sequence, see
Hardy ([15]; pp. 430—434)tand ([16]; Ch. V and p. 110). It follows from our definition that “f is summable (C, 1)
on [T,+0) iff F(t)=[ feM,”.

11) Two negative properties concerning functionsin M, .

a) Not any bounded function belongs to M, . Counterexample:

f (x):=sin(log x)+cos(log x); fo = xsin(log x), (2.12)

even if f is uniformly continuous on [1,+oo). In Blinov [17] there is a more elaborate counterexample of a
bounded uniformly-continuous function constructed with the implicit use of almost-periodic functions.

For f bounded, the contingency “ f € M_” can be characterized via the behavior at the origin of the Lap-
lace-transform of f: see either Ditkine and Proudnikov ([18]; Th. 4, p. 196) or Baumgartel and Wollenberg ([19];
Ch. 6, pp. 97-98) where the problem is treated in a functional-analytic context.

b) In general no information on the order of growth of a function in M, can be drawn. For the function

f(x):1+(a+2)x“*1cos(xa+2),a+2>0, (2.13)
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we have
J'Oxf = x+sin(x‘”2): X+0(1), X —> +o0 (hence M, :1), (2.14)

but mx—ww f (X)/Xa = 400 ; Ii_mX~>+oo f (X)/Xa = —00 .

All the above properties, from 1 to 9, practically are sufficient conditions for f e M, , none of them being
characteristic. A counterexample for the converse of property in 6 is provided by:

f (x):=1/logx; ﬁ]/logtdt ~ x/logx, x =+ (hence M =0);

. . (2.15)
[ (t“logt) "dt diverges for each @, 0< & <1.
12) However in Ostrowski ([20]; 1V, pp. 65-68) the following characterization is reported:
The number M in Definition 2.1 exists iff
3 lim x[ T f (t)dt =L, eR, (2.16)

and, if this is the case, M, =L, .

This result, used by Ostrowski, e.g., in the study of Frullani’s integral, may also yield the nice geometric cha-
racterization of a rectilinear asymptote, see (3.15) below. But in other asymptotic investigations a more general
form of condition (2.16) is encountered, namely

3 1im ¢(x)[ " (1/p(t) f()dt=L,, R, (2.17)

X—>+0

where ¢ stands for some suitable function such that ¢(+o0)=+o0. The number L, isakind of “weighted
asymptotic mean” of f and can be considered, the sign apart, as a “generalized limit of f (x) as X— +oo” for
the simple reason that a trivial application of L’Hospital’s rule yields

i L We) fd
S W) o

under obvious hypotheseson f,¢ .
The notion of regular variation gives the key to finding out a large meaningful class of test-functions ¢, in-
cluding powers, such that (2.17), valid for one fixed ¢, isequivalentto f e M, .

2.2. Preliminaries on Regularly- or Rapidly-Varying Functions

We use the notion of variation, either regular or rapid, in a restricted sense; for the general theory the reader is
referred to the monograph by Bingham, Goldie and Teugels [21]. We get three different results for the three
classes defined in

Definition 2.2. Let ¢ e AC[T,+w), #(x)>0 for each x large enough.

() ¢ istermed “regularly varying at +oo (in the strong sense)” if

¢'(X)/¢(X):ax'1+0<x'1),X—>+oo, (2.18)

for some constant « e R which is called the index of regular variation of ¢ at +oo. The family of all such
functions for a fixed « is denoted by R, (+oo). In the case « =0 the function ¢ is also termed “slowly
varying at +oo (in the strong sense)”.

(1) ¢ istermed “rapidly varying at +o (in the strong sense)” if

XILrEOng’(x)/qﬁ(x):J_roo. (2.19)

Accordingly, the index of rapid variation at +oo is defined to be either +o or —co0 and the corresponding fami-
lies of functions are denoted by R, (+x) and R_, (+).
(1) ¢ is said to have an “index of variation at +oo in the strong sense” if the following limit exists in the ex-

tended real line:
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Xlirpwx¢’(x)/¢(x)za, —0 < a < 4o, (2.20)

Remarks 1) Condition “ ¢ ultimately of one strict sign” is essential both in the general and in our restricted
definition. The choice ¢ >0 is merely conventional. Writing |¢| eR, (+oo) tacitly implies “¢ e AC [T,+oo)
for some Tand ¢(x)=0 for x large enough”.

2) Typical functions in R, (+), e R, are: x“ [, (¢, (x))ﬂk , where ¢, denotes the k-time iterated
logarithm, ¢, =log,and «, g, ’sare any real numbers.

Typical functions in R, (+) are: x -[HE:l(Ek (x))ﬂ" ]-exp(cxy) (a. B e R;c =0,y >0). Here the
index of variation is: (sign c)-oo
3)For a#0,¢" too has ultimately one strict sign and there are two contingencies for the limit
0 if-wo< 0,
lim ¢(x)= { wsas

X—>+00

. (2.21)
+oo  if 0 < a < +oo,

as inferrred from the identity Iog¢ = c+j /¢ ]dt
For « =0 all the possible contingencies may occur for this limit as shown by the functions: 1; (Iog x)“,
with o #0; 2+sm[(|ogx) J O<a<l.

4) If ¢ ACH[T,+0)NR, (+) with —o < <+o0, it may happen that |¢'| has no index of variation at
+00 as shown by the counterexamples:

X* +sinxe R, (+), 1<a <2, (x¢"/¢' oscillatory and unbounded for & < 2);

2+sin[(|og X)aJeRO(ﬂo), O<a<l, (¢ oscillatory); 022
2" +sin(e* ) e R, (+0), (x¢"/¢' oscillatory and unbounded);

e +e™sin(e”?)e R, (+0), (x¢"/¢' oscillatory and unbounded).

But if |¢'| has an index of variation then there are precise links between the two indexes.
Lemma 2.3. If ge AC'[T,+) and if both ¢ and |#| have indexes of variation at +oo, respectively o
and «', then:
a'=a-1if aeR\{0} orif a=0and lim ¢(x)=either 0 or +co; 223)
a' =a if a=1w, .

Inthecase «=0 and without the stated additional conditionon lim, ¢(x) , it may happen that
|#'| € R, (+0) with —co<a’<-1 as shown by the simple examples:

1+e™; 1+x7° (6> 0); 1+(Iogx)f (6>0); (2.24)

but it cannot be o' >-1.

2.3. Relationships between Asymptotic Mean and Weighted Asymptotic Means

We can now give and understand generalizations of the mentioned results by Ostrowski and Agnew.
Theorem 2.4. Let ¢ AC'[T,+x0) and ¢(+w)=-+0.
(1) (Regularly-varying functions: extension of a result by Ostrowski, 1976). If

¢ € R, (+») for some real number & >0, |#| e R, , (+0), (2.25)
then for any flxed fell, [T +oo) conditions (2.1) and (2.17) are equivalent to each other. If this is the case
then M, L,,.hence L,  doesnotdependon ¢.An equivalent statement is:

Under condltlons (2.25) the following two asymptotic relations are equivalent to each other:
J.+w(1/¢ ) f t)dt—¢( +0(1/¢(x) J' f (t)dt =—ax+0(x), X — +o, (2.26)



A. Granata

for a constant a which turns out to depend only on f. In one direction we have that the first relation in (2.26),
which is trivially true whenever f (+00)=—a, holds true under the weaker condition f e M, .
(1) (Slowly-varying functions). If

peRy(+), [¢]e R, (+o), (2.27)

then for any fixed f e Lj, [T,+oo) condition (2.1) implies (2.17) with M, =—L,
(1) (Rapidly-varying functions: extension of a result by Agnew, 1942). If

I

¢'(x)=0 for x large enough, (2.28),
X)/#' (x)=0(X), x>+, (2.28),
(p(x)/9'( x))lzo(l), X —> 400, (2.28);

(which imply that both ¢,|¢'| are rapidly-varying at +c) then for any fixed f e L
implies (2.1) with M, =-L, ,
Corollary 2.5. Special cases reformulated:

[T,+0) condition (2.17)

loc

j tf (t)dt=Lx"" + (xl’”‘),x—>+oo<:>Mf =(a-1)L, (a>1); (2.29)

feM, = ["(logt)” t7f (t)dt = M—fl(mg X)™7 +0((log X)), x > 420, (8 >1); (2.30)

+0 1 y - L ’ y
J ¥ exp(-et) £ (t)dt = —exp(-ct”)+o(exp(-oc' )} x> <0, (¢.7 > 0) (231)

=>feM, and M, =L.
For « =2 the equivalence in (2.29) is Ostrowski’s result, see (2.16), and for c=y =1 the inference in

(2.31) is Agnew’s result, see (2.9).
A counterexample for the converse inference in part (1) is provided by:

¢1(x):=(logx)“_l (a>1), f(x):=sin(logx)+cos(logx);
¢€720(+oo),¢’e7?,_1(+oo); feM, as ['f =xsin(logx); (2.32)
f t™ (logt) ™ )dtzo((logx)l_“),x—>+oo;

where the last relation can be easily proved by suitably integrating by parts.
And a counterexample for the converse inference in part (111) is trivially provided by:

¢, (x)=e*, f(x)=sinx; M; =0;

o 1 (2.33)
eXL e'sintdt = E(sin x+cosx) admits of no limitas x — +o.

Notice that ¢, |¢’| may be rapidly varying without satisfying (2.28); as shown by the function
¢, (x):=exp(2x+sinx). We do not know if part (I11) remains true when replacing the three conditions (2.28)
by the weaker conditions: ¢, |4'| € R, (+%).
We add the following isolated result, needed in the sequel, without placing it in a general context.
Proposition 2.6. If f € M, then:

g(x)=x"f(x)eM, and M; =0 ¥ a >0. (2.34)

We end this section by mentioning that the concept of asymptotic mean plays a role also in “Tauberian theo-
rems”, Hardy ([16]; Ch. 12), in non-oscillation properties of second-order differential equations, Hartman [22]
and ([23]; pp. 365-367), and in the theory of Cauchy-Frullani integrals, Ostrowski [20]. In this last paper our
Theorem 2.4-(1) appears for the first time in the literature though for the special case ¢( ) X and the proof is
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somewhat involved. In a previous paper Ostrowski ([13]; Lemma II) had given a quick proof of a lemma corre-
lated to our present context, a proof based on integration by parts; curiously enough he does not apply the same
elementary device in proving the result under consideration, which is just the device used by us to prove the
general case. Also the original proof by Agnew [14] is indirect; the author is interested in studying the limit

lim ["f (t)dt =AM, for each fixed 1 € R (2.35)

where M, is a real number independent from 4. He first proves the equivalence between (2.8) and (2.35)
and then that (2.35) implies f e M, .
3. Polynomial Asymptotic Expansions and Asymptotic Means

If feAC"™* [T,+oo), n>1,then f™ (t) is defined almost everywhere and for each such t let us consider the
“nth-order osculating parabola” to the graph of f at the point (t, f (t)) :

y=f(t)+(x—t)f'(t)+ﬂf"(t)+...+ﬂf(">(t) 3.1)
2! n! ’ '
which may be rewritten in the form
y= ZFn,k (t)xk =h (X;t)’ (3:2)
k=0

where P, (x;t) isa polynomial in x of degree <n, whose coefficients F,, (t) depend on the parameter t. If
all the limits

Jim F, (t)=7nk (k =0,1,---,nand t running through the set where " is defined) (3.3)

exist as finite numbers, we say that the parabola
y:7n,nxn+”'+7/n,lx+7/n,0EHn(X)' (34)

or equivalently the polynomial TT, (x) is the “nth-order limit parabola” to [the graph of] f at +co. A limit pa-
rabola of order zero denotes a mere relation f (x)=a,+0(1), X > +.

We shall call the function F, (t) the “nth-order contact indicatrix” of the curve y = f (x) with respect to
the y-axis as it represents the ordinate of the point of intersection in the x, y-plane between the y-axis and the
curve (3.1).

We report here simplified versions of two of the main results in [1].

Proposition 3.1. For f e AC™* [T,+oo), n>1, the following are equivalent properties:

1) The graph of f has a limit parabola at +oo of order n i.e., by definition, all the limits

Fox (+0) =7, (k=0,1--,n), exist as numbers. (3.5)
2) The single limit
F.o (+0) =7, exists as a finite number. (3.6)
3) There exists a polynomial TI,(x):=>" »,,X" such that
£09(x) =110 (x) +0(x ™), x > 40,k =0,1,,n; TIY) =11, (3.7)
If this is the case then the following integral representation holds true
F(x) =11, (x)+nix] “dt [ dt, [ TR () =70 Jdt x2T >0, (3.8)

for a suitable polynomial TI,, the same as above, and a suitable number y, ,, the same as in (3.6).
We expressed relations in (3.7) by saying that the asymptotic expansion

f(x)=I1,(x)+0(1), x > +x, (3.9)

is formally differentiable n times in the “strong sense” because in the same paper we characterized another
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weaker set of differentiated expansions, ([1]; Th. 3.1, p. 173), which we shall not presently use.
Proposition 3.2. If f e AC™* [T,+oo) and is convex of order n>1 on [T,+oo)—which is equivalent to
the property that (—1)n F.o isincreasing thereon—then: f has a “polynomial asymptotic expansion at +«”, i.e.

it satisfies a relation of type
f(x)=a,x"+--+ax+a,+0(1)=P,(x)+0(1), X > +o, (3.10)

iff its nth-order contact indicatrix F, , is bounded (hence, by monotonicity, condition (3.6) holds true). If this
is the case then we also have the properties in Proposition 3.1, hence the expansion (3.10) automatically implies
its formal differentiability n times in the strong sense.

Now we give analogues of the two foregoing propositions with condition (3.6) replaced by the weaker
condition F, , € M, ; strong differentiability will be granted (n—l) times and the validity of an expansion
(3.10) will be characterized for a class of functions larger than nth-order convexity.

Theorem 3.3. For f € AC™* [T,+oo), n>1, the following are equivalent properties:

1) All the functions

F.« € M,; M =the asymptotic mean at +o of F ,; 0<k<n. (3.11)

2) The single function
FooeM,. (3.12)

3) There exists a polynomial P, (x):=>" " ax* such that
£ (x)=pY (x)+o(x‘k ) X— 40, k=0,1---,n-1. (3.13)
If this is the case then a, =M,V k and the following integral representation holds true:

f(X)=M X"+ + Mn,1x+n!xjdt1-~- Idtnf1 It’”’l Foo(t)dt,x>T >0. (3.14)

th2 tha
In the elementary case n = 1 the result is:
{f(x):ax+b+o(1),x—>+oo & Fo=—xf'(x)+f(X)e M,;

I . (3.19)
and inthiscase: a=M,b=M,.

Notice that the representation of £ inferred from (3.14% contains the quantity x"F, (x) hence, by the
example in (2.13), no information on the growth-order of £ may be obtained in the context of Theorem 3.3,
generally speaking.

For n>2 a characterization similar to that in (3.15) holds true under a restriction on the sign of F , and
we have the following analogue of Proposition 3.2.

Theorem 3.4. Let f e AC"*[T,+x),n>2, andlet F,, satisfy a one-sided boundedness condition:

either F ,(Xx)<c Vx>T or c<F (x) vx=>T. (3.16)

Then an expansion (3.10) holds true iff F, , e M, . If this is the case then, according to Theorem 3.3, the ex-
pansion (3.10) is formally differentiable (n —1) times in the strong sense.

We exhibit an example for the case n=1 and a counterexample for the case n = 2; they seem to be just the
same because in both expansions the remainder is exactly the same quantity but a striking difference appears in
the behaviors of F, and F,,.

Example for the case n=1:

f,(x):= ax+b—.[:wdt.[;(r’lsin z’)' dz, (T >0and suchthatsinT =0);
f,(x)=ax+b+o(1); fl’(x):a+j:(t’lsint)’dt:a+x’1sinx:a+0(x’l); (3.17)
fl(k)(x):o(x’l) Vk=2 F,o(x)=b-sinx+o(1).
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Here F,, is bounded and admits of asymptotic mean (: b) but has no limit at +o0; accordingly the expan-
sion f,(x)=ax+b+0(1) isnot formally differentiable in the strong sense though the differentiated expansions
of any order satisfy the remarkable asymptotic estimates in (3.17).

Counterexample for the case n=2:

f,(x)= ax2+bx+c—J':wdtJ'Tl(r‘lsin r)'dr, (T >0and suchthatsinT =0);
f,(x)=ax* +bx+c+0(1); f,(x)=2ax+b+x"sinx=2ax+b+0(x*);

3.18
fz”(x)=2a—x‘zsinx+x‘1cosx=2a+0(x‘1); fz(k)(x)zo(x‘l) vk>3; (3.18)

2 ’
FZYO(X)E% £(x)—xf; (x)+ f,(x) :c—gsin x+%xcosx—f:wdtj:(r’lsin 7) dr:%xcosx+o(1).

Here F,, is unbounded both from below and from above and admits of no asymptotic mean; notwithstand-
ing, an asymptotic expansion f, (x) = ax? +bx+c+o(l) holds true. Hence the equivalence stated in Theorem
3.4 may fail without the restriction in (3.16). According to Theorem 3.3 the expansion of f, is not formally dif-
ferentiable once in the strong sense.

In the elementary case in (3.15) condition F , = O(l), X — +oo, is explicitly defined in Giblin ([24]; p. 279)
as the “bounded distance condition” and it is easily checked that it is equivalent to a pair of relations

f(x)=ax+0(1), f’(x)=a+0(x‘1),x—>+oo; (3.19)

it is the further condition of existence of asymptotic mean that changes the first relation in (3.19) into an asymp-
totic straight line.

4. Two-Term Asymptotic Expansions and Asymptotic Means

In this section we give an exhaustive list of results concerning the role of asymptotic mean in the theory of
two-term asymptotic expansions involving comparison functions admitting of indexes of variation at +o0. We
first report a result from [4].

Preliminary notations and formulas ([4]; p. 255). As usual we say that two functions f, g (as well as their
graphs) have a first-order contact at a point t, if f(t,)=g(t,) and f'(t;)=g'(t,) provided that f, g are de-
fined on a neighborhood of t; and the involved derivatives exist as finite numbers.

Let now ¢, ¢, be two real-valued functions differentiable on an interval I such that their Wronskian
W (x):=W (¢, (x).4,(x)) never vanishes on | and let f be differentiable on I. Then for each t, 1 there exists
a unique function in the family F = span(¢1,¢2) having a first-order contact with f at t,. Denoting this func-
tionby F"(x;t,) we have

Fr(xt)="f (t)a(x)+f, ()4 (x), xel, (4.1)

where
£7(t) =W ((t).0, (1)) W (t,) =T (1)/4, () /(4(6)/4, (1)) evaluated att=t,,
£, (t)=-W(f(t).(t))/W(t,)=(f (t)/¢51(t))'/(¢2 (t)/4(t)) evaluated att=t,.

If fer then F (xt)=f(x) onlforany chosen t,. The function

4.2)

F'()=F (T:t)=¢(T)f, (1) +4,(T) f, (t) tel, (4.3)
will be called the contact indicatrix of order one of the function f at the point t with respect to the family F
and the straight line x=T .

F*(t) represents the ordinate of the point of intersection between the vertical line x=T and the curve
y=1f"(t)4(x)+f,; (t)¢,(x) where t is thought of as fixed. The assumption on W (x) implies that ¢, and
¢, do not vanish simultaneously hence F* is a nontrivial linear combination of f", f,". It may happen that,
for some choices of T, F* coincides with f" or f,, a constant factor apart, according as ¢,(T)=0 or

4(T)=0.
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Using (4.2) F* may be represented as

F* (0= (g AW (06 ()= (TW ()1 (6)]

g™ (10T 06 () () @)

=W (@(x), £ (x))/W (x),

where we have put
D(x):=¢,(T)A(X) -4 (T ) By (%) (4.5)
Proposition 4.1. (Characterization of a two-term asymptotic expansion: [4], Th. 4.4, p. 258). Assumptions:

¢. 9 eCl[T,XO[,T eR; ¢2(X):O(¢1(X)), X—=Xy; (4.6)
4(X), &, (X), W (X) =W (¢ (x).4,(x)) 20 Vxe[T,x[. 4.7)

For a function f e Lj,, [T, XO) the following are equivalent properties:
1) It holds true an asymptotic expansion

f(X)=ayh (X)+a4, (x)+0(d, (X)), x> x. (4.8)
2) There exists a finite limit
4(x) m(@(t)} 1\t o
| . f, (t)dt=—m. 4.9
anQa¢2(x) L ¢1(t) () m (4.9
3) There exists a finite limit
O(x) ol B o
XerX} ¢2(X).L [(D(t)] F (t)dt: /. (4.10)
If this is the case we have the following two representations:
f(X):%(X)”ﬂ’z(X>—¢1(X)'If°(f;((3j[fz*(t)—m]dt' xe[T.x[; (4.11)
_ o 60 e
F(X) = (x)+ 2,6, (x) - ®(x)- a0 [F(t)-¢]dt, xe T, x[. (4.12)

The validity of (4.8) may be expressed by the geometric locution: “the graph of f admits of the curve

y =a (x)+a,¢,(x) asanasymptotic curve in the family F =span(¢,,¢,),as x— X, .
Notice that in the cited reference condition (4.10) is written in the form

fim 3’8 W ()@ (1) F (t)dt = _ﬁ}); (4.13)
however (4.5) implies
(¢,/D) =W (@, 8,)- D2 = ¢, (T)-W (¢, 8,)- D2, (4.14)

and (4.10) follows.

The two limits in (4.9), (4.10) are of the type studied in 82 and a direct application of Theorem 2.4 gives the
following results.

Theorem 4.2. In assumptions (4.6)-(4.7) letitbe: X, =+o; ¢ /¢, € AC'[T,+o0); f € Lj [T, +).

(1) (Regularly-varying comparison functions). If
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¢/#, € R, (+) for some real number « >0, |(4 /4, )le R, (+0), (4.15)
then the following three properties are equivalent:
f(X)=a, (x)+a.d, (x)+0(d, (X)), x > +oo (with suitable constants a; ); (4.16)
f,eM,; (4.17)
FreM,. (4.18)
(1) (Slowly-varying comparison functions). If
4/d, € Ry (+0), ‘(¢1 18,) e R, (40, (4.19)

then each condition (4.17) or (4.18) implies an expansion (4.16).
(111) (Rapidly-varying comparison functions). Put ¢ :=¢; /¢, and suppose that:

$(x)/# (x)=0(x), x >+,
FO01F09) -o0 0 o

then an expansion (4.16) implies both conditions (4.17)-(4.18).

Under the stated assumptions for the validity of part (1) the equivalence “(4.16) < (4.18)” admits of the fol-
lowing geometric reformulation:

“The graph of f admits of an asymptotic curve in the family F zspan(¢1,¢2), as X — 4w, iff the contact in-
dicatrix of order one of the function f with respectto & has an asymptotic mean at +c0”.

Notice that this result for two-term expansions requires no restrictions on the signs of f,”, F".

(4.20)

5. Proofs
Proof of Lemma 2.3. By hypothesis the following two limits existin R:

lim x¢'(x)/4(x) =,
lim x¢"(x)/¢'(x) =" (5.1)

We now evaluate « by L’Hospital’s rule first noticing that: 0 < a <-+oo implies ¢(+oo) = +o0, Whereas
for —o<a <0 itis ¢(+00)=0 and the first limit in (5.1) implies lim,_ . x¢'(x)=0. In both cases the rule
may be applied and

#'(x) +x4"(x)
X—>+0 ¢,(X)
It remains the case a =-—o0 which implies ¢(+oo) =0 and this condition leads to excluding the following

contingencies for the indicated reasons:
1) a'=+0= |¢’(+oo)| = +00 = ¢(+0) = +o0 (being ¢ > 0).

2) —1<a'<+0=>x|¢'(X)|€ R, 1 (+%)=> lim x|g'(x)| =+ = (by L’Hospital’s rule)
x¢"(x)| ,
Oy,

'+l X—>+00
X #'(x) :
#) /o (x ) i
(IT (x) ¢ (X)+xg"(x)| x>+ )
which is a positive real number; hence T+°C|¢’| =+o0 which would imply ¢(+o0) =+
3) —w<a'<-1=x|¢'(X)| € R, (+0) = lim, ., x|#'(x)| =0, and this would imply, by L’Hospital’s rule

~1+a (5.2)

= lim 1+

X—>+0

= lim

X—>+00

a'+1
asin (5.2): —wo=lim . x¢'(x)/p(x)=1+a’.

4) The case «'=-1 must be treated in a different way. A basic property of our class of functions, directly
inferred from the limits in (5.1), claims the validity of the following asymptotic estimates:

()
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a+te

peR, (+0),a e R= X" < g(X) <X, X > 40, Ve>0;
geR_, (+0)=¢(X) <X X>+0,Va>0; (5.3)

geR,, (+0)=¢(X)>Xx* x> +x,V a>0.

Now in our present proof we have o =-o and «'=-1, hence

—1+e

X< g ()| < X, x> 400,V € >0,

and there are two a-priori contingencies about the integral rw|¢’|. Its divergence would imply ¢ (+o0) =+
which cannot be; in the other case we would have

J'+w|¢’| <+0 = $(X)= —.[:wyﬁ’(t)dt = _[:w

which contradicts the second relation in (5.3). Notice that the procedure used to prove this last case works for
any a'eR aswell
The last assertion in the statement of Lemma 2.3, namely “it cannot be «'>-1", follows from the calcula-

¢'(t)]dt> [t dt = X X e, (5.4)
X €

tionsin2): «'>-1 implies ¢(+oo) =400, but in this case (5.2) shows «'=-1, a contradiction. O
Proof of Theorem 2.4. (I) We make explicit the assumptions writing:
¢ (x)/p(x)=ax™+ o(x‘l), ¢"(x)/4'(x)=(a-1)x +o(x‘1), X =+, (a > 0), (5.5)
which in turn imply the following relations to be used in the sequel:
$()¢"(x)(¢'(x) " = (a-1)+0(1), x > +o0; (5.6)
(/ﬁ"(x)/qﬁ(x):a(a—l)x’z+0(x’2),x—>+oo; (5.7)
(J/(/ﬁ(x)), ~—a/x$(X), X = +o0. (5.8)

First part: (2.17) = (2.1). If we put
A(x):=(1/#(x)) € AC[T,+0), (5.9)

then, by (2.17), we may write

['f :jjﬁ[;\(t) f(t)]dt=— fﬁd(fm# f)

, (5.10)
1 x[ 1 4o
=constant—mfX A(t)f(t)dt+jT mj (jt A-f)dt.
From (5.9) and (2.17):
R :¢2(X) Lis +o| 2 _:Lf‘¢'x+0 X), X = +0;
A AT ¢'<x>{¢<x> [ | vot 10

) I e[ ate o -2 | oo Lo -
(6008 ()(¢(9) " -2][ L, +o(1)](16)_ a ™ (a+1)L, ,+0(1), X -+

IX[ALJ( t“”A. f)dt =—a " (a+1)L; X+0(X), X > +o0. (5.13)

TLA)

Using (5.11) and (5.13) in the left side of (5.10) we get j:f =—L; ,X+0(X), x>+, i.e. (2.1).

()
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Second part: (2.1) = (2.17). First step: convergence of .[M A- f. Consider the identity

i = [Paa(fi) = A( AT -[A (i1 )et, (5.14)
'1( ) 15(x)
and estimate the behavior of 1,(x),1,(x) as x— +o0. From (2.1) and 5.8) we get:

A(x):%&gl); [ =x[M; +0(1)], x> +oo; (5.15)
Il(x)z%;r)o(l)zo(l), X —> oo, (5.16)

As concerns |, we have:
A(X)=~¢'97 K =47 +2(¢') 67
(55)
(X)/A(X)=(8"/8)-2(¢'/9) = —(a+1)x " +0(x ), x >+,

from whence and (2.1) we get:

(5.17)

jf_ X)[~(@+1)M; +0(1) ], x -+, (5.18)

As j A=-1/4(T), we obtain the convergence of 1,(x) hence, by (5.14), of f A-f.
Second step: asymptotlc behavior of J' A-f.By (5 16) and (5.18) we may integrate by parts as follows:

Af=[7A( (ij)=— BIRSIwL (ij)dt

:mé(—;;(l)+(_[:wA)[(a )M, +o(1)] (5.19)
~aM +o(1) (a+1)M,+0(1) -M,+0(1)
G O T OV
which is (2.17) with L, , =-M;
(1) From the first assumptlon |n (2 27) we infer:
1/ e Ry (+0) ie. A(X)=0(1/xp(x)), X > +o0; (5.20)
and from (5.17):
x)/A(x):—x’1+0(x’1>, X —> 400, (5.21)

Now we retrace all steps in the second part of the proof of part (1) checking the validity of the corresponding
formulas for « =0 . Instead of the first relation in (5.16) we have:

=0(1/¢(x)), x = +, (5.22)
and, instead of (5.18):
X)['f = A(X)[-M; +0(1) ], x -+, (5.23)

The convergence of J‘m A-f follows as above. And using the same integration by parts as in (5.19) we get
the same final relation.

(1) Let us first show that the three conditions in (2.28) imply that both ¢,|¢'| are rapidly-varying at +oo.
Conditions in (2.28),, are equivalentto lim,,  x¢'(x)/¢(x) =00, and (2.28); is equivalent to

lim ¢(x)¢"(x)/(¢'(x))° =1, (5.24)

X—>+0

which implies, by (2.28);, ¢"(x)=0 ultimately; so we have:

()
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“(5.24) (x)/¢'(x) ~ ¢'(x)/#(x) = x¢"(X)/$'(X) ~ x¢'(X)/B(X) = £o0, X = +o0.

Now we retrace all steps in the first part of the proof of part (1) and again use decomposition (5.10); instead of
(5.11) we get:

1 +o0 ¢(X)
_A(X)'[X A f =W[Lf_¢+o(1)]=o(x),x—>+oo, (5.25)
and instead of (5.12) we get, using (5.24):
LA =L, +0(1), x > +o, (5.26)
A(x) ) !
whence
X ]_ , +00
L[mj (L A-f)dtz—Lfy¢x+o(x),x—>+oo. (5.27)
From (5.25), (5.26), (5.27) we get (2.1) with M, =-L, ,. O
Proof of Proposition 2.6. Integration by parts gives:
X _q X _q t —a X X g t
Jeefde=eea(fir)=eexcn (6 ) raf ([ o
=-by (2.1)--=¢ +MX"“ +0(x")+aM;, (j:t’“dt)+ o(f:t’“dt) (5.28)
M .
_ cz+ﬁxl’“+o(x1’“) if a#l,
c;+M; logx+o(logx) if a=1,
whence our claim follows dividing both sides by x. O
Proof of Theorem 3.3. Let us assume (3.12) and start from the integral representation ([1]; formula (6.3), p.
185):
f(x)= chx +( nlxj dt, -- .[” “dt, _ 1'[t"1t’” “Fo(t)dt, x>T >0, (5.29)
which for n=1 reads:
f(x)=cx— xJ‘TXt’2 Fo(t)dt. (5.30)

From (5.30) the elementary equivalence in (3.14) easily follows, hence we suppose n>2. If (3.12) holds
true and we apply the asymptotic relationin (2.29) to F,, we get:

- M
TR (t)dt=—"2x" +0(x");
n y (5.31)
[T o (t)dt=c— [ t7F,, (t)dt=c- n”“ X" +o(x");
and the last relation, when replaced into (5.29), yields:
f(x)= zckx +(=1)" nix [t [ 2[ —fjt’”’anvo (t)dt}dtnfl
= quk +(-1)"" nix[dt, - J'Tt”’zdtnfljft‘"‘l F.o(t)dt.

But the first relation in (5.31) implies that the iterated improper integral J' J‘:wt’“’an'O (t)dt converges
n-1

and we get a representation of type:

(5.32)
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f(x)= Zn:akxk +nix [ dt [T O o ()t x> T, (5.33)
k=1 -
together with the expansion:
f(x)= Zakx +nlx J'dtl j { (t”)}dtzzn:akxk +0(1), a,=M,,, (5.34)
th-2 k=0
n-1

having used one of the following elementary identities (to be used again):
k-n

+00 +00 X
dt,---| t"dt= ,X>2T>0;1<k<n-1. 5.35
O U oy s ey T " (.39

k
To prove the formal differentiabilty we put:
[Tt R (t)dt for k=0;

L (x)=1" (5.36)
[ (t)at for 1<k <n-1;

and from (5.31) we infer relations:

Mr:ox’“+o( ) for k =0;
Ik (X) = Mn OX—n+k ok (537)
+o(x ) for 1<k <n-1.

(n-1)(n-2)-(n—K)

Calling P, (x) the last sum on the right in (5.34), which differ by a constant from the sum on the right in
(5.33), and applying Leibniz's rule to (5.33) we get:

O (x) = P® (x) + (=) nixt,y (x)+(=1) ikl (%)
. (-1) nIM,, o x°* N (-1) " ntkm, o x°¢ ro(x*)
(n=1)(n-2)---(k+1) (n-1)(n-2)---(k+1)k

(x’k) for 1<k <n-1.
)

(5.38)

The expressions of "% and " involve 1,(x) and its derivative:

£ (x) = P (x) +(=1)"" nixlg (x) +(=1)" ni(n=1) 1, (x);
£ (x)=nla, +(=1)"" 1, (x)+(=1)" nIx"F, o (x)+(=1)"" n!(n=1)1, () (5.39)
=nla, +(=1)"" ninly (x)+(=1)" nIx"F, , ().

So far we have proved that (3.12) implies relations in (3.13) for f) 1<k <n-1, without any information
on ™ and, for the time being, P, is a non-better specified polynomlal of degree <n. To prove (3.11) we

estimate the behavior, as X — +oo, of F , (x) for 1<k <n using its known expression in terms of f, ([1];
formula (2.6), p. 168):

i 0 (5.40)

=X P (x)+ kizk:( ) (k=) (X)J“k(!z:—)_n;()![f(n)(x)—Pn(n)(X)]="-

as the first sum is nothing but the expression of the coefficient of the power x* in the polynomial P,,i.e. a

()
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1 nok-1 (_1)kn! .
...:ak+E > TX Moo (x)+

= i=0

(1) " nik

+—(I<_!l()n: ::l)? X", (x)+%xk F.o(X)="by (5.37)---

neko1 (-1)nt
4 o’ )
:ak+.—'_x Foo(X)+0(1).

By (2.34) the function x’an,0 (x) has asymptotic mean “zero” and the same is true for a term 0(1) ; SO the
sum of the last three terms above represents a function with asymptotic mean equalling a, . We have proved
that “2) = 1) A 3)”. It remains to show “3) = 2)”. First step. Let us first evaluate f " from representation
(5.29); putting

[T7F, o (t)dt fork =0;

Je ()= } (5.41)
[3i(t)dt  fori<k<n-1,
we get:
£ (x) = nte, +(=1)" nt nd, (x)+ X "F, o (x) ]. (5.42)
Now we start as in (5.40) from the expression of F,_;:
k
n (=X
Y
nfl(_x)k () a1, (%) (n)
:k:0 " [Pn (x)+0(x )J+Tf (x)=---by(5.42)--- (5.43)
k
n-1(_—
- (kx') P (X)+ 0(2)+(~X)" ¢, + X" 3, (X)+ Fy g (X),
k=0 .
whence we get
k
n-1(_—
Jo(x)= (3) xk‘"Pn(k)(x)+C—”+0(x‘”)=C—"+0(1), (5.44)

i k'n n n

which implies the convergence of the improper integral J':wt’"’an,O (t)dt; and we can rewrite representation
(5.29) in the form:

tho

f(x) :Z”:Ekxk +(_1)ﬂ+1 n!xjdg--~ Idtn—l It*”*an,o (t)dt, x>T >0,
k=1 T T tha (5'45)

=T x* +o(x”).
k=1
Comparing (5.45) and the assumed relation f (x)=P,(x)+0(1) we infer that the two polynomials P, and

the sum appearing in (5.45) have the same leading coefficient: a, =C,. Now we do calculations just like those
from (5.41) to (5.43) but starting from representation (5.45) and paying attention to the signs, so getting:

£ (x) =nta, +(=1)"" nin[ “TF, o () dt+(-1)" nIx"F, o (x); (5.46)
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Fo(x) i(_ PY (x)+(-1)"" 'nj TR () dt+ (1) nIXT"F, o (X)

(5.47)
=a, —nx" [ TR, ()dt+ F o (X)+0(1),
having used the identity zkzo( kX) P (x)=a,, ([1]; Lemma 2.2, p. 169). From (5.47) we infer
TR (1) dt =22 +o(x"), (5.48)
X n n
which, by (2.29), implies F ;e M, and a,=M, ;. ]

Proof of Theorem 3.4. The only thing to be proved is that an expansion (3.10) plus condition (3.16) imply
F.o € M, . We first show that it is enough to prove our claim with (3.16) replaced by the condition of one-sig-
nedness:

either F ,(x)<0 Vx=T or 0<F ,(x) Vx=>T. (5.49)

In fact it is known, ([1]; Lemma 2.2, p. 169), that: F, , =c =constant iff f is a polynomial of type

p(x)=a,x"+ - +ax+c. (5.50)

Let now g be any function, g AC"* [T,+oo) , let p be a polynomial of type (5.50) and define:
f (x):=g(x)- p(x). With an obvious meaning of the symbol G, wehave: F =G, ,—c;hence:

F,20< G, ,=c¢ (5.51)

no0 < n0<

It follows that any result on formal differentiability of a polynomial asymptotic expansion involving g admits
of a literal transposition to a polynomial asymptotic expansion involving f. Our assumption are now: expansion
(3.10) and one-signedness of F, ;, and the proof (which we make explicit here) is a word-for-word repetition of
that in ([1]; Proof of Th. 4.2, pp. 193-195) with a slight modification at the conclusive passage. From represen-
tation (5.29) we infer

X" (x) =, +0(1)+(~1)" ntx" [t [t [, (1), (5.52)
and, by (3.10), the following limit:

lim (I dt, -- I” “dt, lj't" TR (t )dt)/x”’l exists as a finite number. (5.53)

X—>+00

For n=1 (3.10) reduces to f(x)=ax+a,+0(1) and (5.53) is “ Lﬂot‘zFlyodt convergent”. Hence repre-
sentation (5.29) can be rewritten in the form

f(x)=ax+a+ x‘[:ot’2 F,odt,

and (3.10) implies that * lim, _, xJ.Tmt‘zFly0 dt existsin R which is equivalentto F,eM, .
For n>2 we apply L’Hospital’s rule (n—l) times to the limit in (5.53) so getting the limit:

lim ["t"F,, (t)dt/(n-1)L. (5.54)

X—>+00

By the one-signedness of F,, this last limit exists in the extended real line, hence it must be a finite number.
This means the convergence of f T 'F 0( )dt and representation (5.29) can be rewritten as:

f(x):zn:ckxk +(-1 n+1nli'dt1 tnjzdtn 4 jt‘” 'Fo(t )dtzzn:ckx" +o(x"). (5.55)

T tha

The last relation implies that ¢, coincides with the a, in (3.10) and we get:

()
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X th-2 +00
X" (£ (%)=a,X")=¢,, +0(1)+(=1)"" nix* " [dt, - [ dt,, [t7IF,(t)dt. (5.56)
T T tha
By the above argument involving L’Hospital’s rule we arrive at the convergence of the iterated integral

+00

[dz '[Vt’”’anyo (t)dt . An iteration of the procedure yields condition
T T

[t ] “z dtnfl.[:t’”’l F.,(t)dt convergent, (5.57)
which implies representation
f(x)=a,X"+--+ax+nlx| dti”'Jtn,zdtﬂfl.[tn,lrnil':”’o (t)dt, (5.58)
where the coefficients a, are those in (3.10). From (5.58) we infer that
N (e ] R (0] 2 59
and applications of L’Hospital’s rule (n—l) times yields the limit
lim (J‘:wt’”’an’o (t)dt)/(n -1)Ix" =ay, (5.60)
which, by (2.29), is equivalentto F , e M, . O

In passing notice that the last calculations and (5.34) prove that:
For a given function g e L, [T,+oo) and g one-signed the following equivalence holds true:

+o0 +0 +o0 . Y, 1
{geM, and M, =¢} = .[dtf--tnjjzdtnfltilt 'g(t)dt :m+o[;j, X — +0, (5.61)
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