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Abstract 

We call “asymptotic mean” (at +∞) of a real-valued function [ )∈ ∞locf L T1 ,+  the number, supposed 

to exist, ( )∫
x

f x T
M x f t t1

+:= lim d−
→ ∞ , and highlight its role in the geometric theory of asymptotic 

expansions in the real domain of type (*) ( ) ( ) ( ) ( )( ) , ,→ ∞n n nf x a x a x o x x1 1= + + + +φ φ φ  where 

the comparison functions ( ) ( )nx x1 , ,φ φ , forming an asymptotic scale at +∞, belong to one of the 
three classes having a definite “type of variation” at +∞, slow, regular or rapid. For regularly- 
varying comparison functions we can characterize the existence of an asymptotic expansion (*) by 
the nice property that a certain quantity ( )F t  has an asymptotic mean at +∞. This quantity is de-
fined via a linear differential operator in f and admits of a remarkable geometric interpretation as 
it measures the ordinate of the point wherein that special curve ( ) ( ) ( ) ( )n ny a t x a t x1 1= + +φ φ , 
which has a contact of order n − 1 with the graph of f at the generic point t, intersects a fixed ver-
tical line, say x = T. Sufficient or necessary conditions hold true for the other two classes. In this 
article we give results for two types of expansions already studied in our current development of a 
general theory of asymptotic expansions in the real domain, namely polynomial and two-term ex-
pansions. 
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1. Introduction 
In our current endeavor to establish a general analytic theory of asymptotic expansions in the real domain [1]-[6], 
we highlighted that what we called the geometric approach leads in a natural way to a linear differential operator, 
say  , depending solely on the comparison functions appearing in a possible expansion; certain asymptotic or 
integral conditions involving the quantity ( )f x    then characterize an expansion of a given function f either 
in itself or matched to other expansions obtained by formal differentiation in suitable senses. The theory we are 
referring to is based on the following ideas. Suppose one wishes to find conditions (sufficient and/or necessary) 
for the validity of an asymptotic expansion 

( ) ( ) ( ) ( )( )1 1 , ,n n nf x a x a x o x xφ φ φ= + + + → +∞                      (1.1) 

where the ordered n-tuple of comparison functions ( ) ( )( )1 , , nx xφ φ  forms an asymptotic scale at +∞, that is 
to say: ( ) ( )1i ix xφ φ +  i.e. ( ) ( )( )1 , ; 1, , 1i ix o x x i nφ φ+ = → +∞ = − . In this paper we intentionally choose 
x →+∞  as this is the situation wherein the classical concept of asymptotic mean plays a role. The simplest 
elementary case is that of an “asymptotic straight line”— ( ) ( )1 ,f x ax b o x= + + → +∞ ,—and it goes back to 
Newton the “natural” idea of looking at this contingency as the “limit position of the tangent line at the graph of 
f” as the point of tangency goes to infinity. The German geometer Haupt [7], in 1922, extended this idea to study 
“nth-order asymptotic parabolas” i.e. “polynomial asymptotic expansions” 

( ) ( ) ( ) ( )1 0 1 1 , ,n
n nf x a x a x a o P x o x= + + + + ≡ + → +∞                  (1.2) 

looking at them as “limit positions of nth-order osculating parabolas”. In [1] we collected various scattered re-
sults on such expansions completing them with some missing links and adding a new theory called “factoriza-
tional theory”. A rich bibliography with historical references is also to be found in [1]. For a general expansion 
(1.1) a rough idea consists in looking at the “generalized polynomial” ( )1

n
i ii a xφ

=∑  as the limit position of a 
suitable family of “generalized polynomial curves” 

( ) ( ) ( ) ( )1 1 ,n ny a t x a t xφ φ= + +                             (1.3) 

as the parameter t →+∞ . Of course a curve (1.3) must have some meaningful link with the graph of f and, 
from a technical point of view, the simplest choice consists in (1.3) admitting of a contact of order ( )1n −  with 

( )y f x=  at the generic point ( )( ),t f t , i.e. 

( ) ( ) ( ) ( ) ( )
1

, 0 1.
n

k k
i i

i
a t t f t k nφ

=

= ≤ ≤ −∑                           (1.4) 

This requires suitable assumptions: the regularity of the iφ ’s and f and a special structure of the n-tuple 
( ) ( )( )1 , , nx xφ φ . Then the theory consists in characterizing the contingency 

( )lim ,i it
a t γ

→+∞
≡ ∈                                   (1.5) 

via a certain set of asymptotic relations for f. At least this is what has been done for the two cases already syste-
matized in the literature: that of polynomial asymptotic expansions in [1] and that of two-term expansions in [4]. 
In this paper we point out that, whenever the comparison functions admit of an “index of variation at +∞”, one 
can obtain new types of asymptotic results revolving around a classical concept which we label “asymptotic 
mean”. In §2 we first present an overview of the class of functions with an asymptotic mean; then, after intro-
ducing classes of slowly-varying, regularly-varying or rapidly-varying functions in a restricted sense, we give 
new results correlating these last classes, asymptotic means and weighted asymptotic means. In §3 we give cha-
racterizations of certain sets of polynomial asymptotic expansions via asymptotic means of the coefficients of 
nth-order osculating parabolas; in particular we shall study the following 

Conjecture. An asymptotic expansion (1.2) holds true iff the constant coefficient of the nth-order osculating 
parabola at the generic point ( )( ),t f t  has an asymptotic mean at +∞. 

This nice statement will be proved true for a class of functions f satisfying a certain differential inequality. In 
§4 we establish either characterizations or sufficient conditions or necessary conditions for an asymptotic ex-
pansion 

( ) ( ) ( ) ( )( )1 1 2 2 2 , ,f x a x a x o x xφ φ φ= + + → +∞                       (1.6) 
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according to the three “types of variation at +∞” of the comparison functions iφ  so giving the exact results va-
guely mentioned in ([4]; pp. 261-263). 

Extension of the results to a general asymptotic expansion (1.1), n ≥ 3, is based on information about the 
asymptotic behavior of Wronskians of regularly- or rapidly-varying functions and this requires a separate non- 
short treatment. 

Almost all proofs are collected in §5. A recurrent notation is: 
• ( ) ( )0f AC I AC I f∈ ≡ ⇔  is absolutely continuous on each compact interval of I; 
• ( ) ( ) ( )kkf AC I f AC I∈ ⇔ ∈ . 

2. Functions with an Asymptotic Mean 
2.1. General Properties 
The following concept is meaningful in itself and often encountered both in classical Analysis (see references 
throughout this section) and in modern applied mathematics, Sanders and Verhulst [8]. 

Definition 2.1. If [ )1 ,locf L T∈ +∞  then its asymptotic mean at +∞ is defined as the number 

( )1: lim d
x

f Tx
M f t t

x→+∞
= ∫                                 (2.1) 

provided that the limit exists and is finite. (Obviously neither the existence nor the value of fM  depend on the 
particular choice of T.) 

We shall use the symbol ∞  to denote the class of all functions defined on an interval of the form [ ),T +∞  
and having an asymptotic mean at +∞ ; ∞  is obviously a vector space over  . In order to help the reader 
grasp the meaning of the quantity fM  we shall list various classes of functions contained in ∞ ; at the same 
time we shall have at our disposal some practical rules for testing the existence and the possible value of fM . 

1) If ( )f +∞  exists in the extended real line (for instance if f is monotonic) then f ∞∈  iff ( )f +∞ ∈ : 
in such a case ( )fM f= +∞ . Just apply L’Hospital’s rule to the quotient ( )dx

T
f t t x∫ . 

2) If f is periodic on [ ),T +∞  with period 0p ≠  then 

( ) [ ]1 d the arithmetic mean of on , .
T p

f T
M f t t f T T p

p
+

= ≡ +∫                 (2.2) 

A direct elementary proof may be found in Corduneanu ([9]; Remark, p. 24). 
3) If f is almost periodic on   then f ∞∈ , see ([9]; pp. 23-24). This property is essential to develop a 

theory of Fourier series for almost-periodic functions. 

4) If f has a bounded antiderivative (i.e. [ ),sup
x

x T T
f∈ +∞ < +∞∫ ) then 0fM = . This is the condition appearing  

in the classical Dirichlet test for convergence of improper integrals of type fφ
+∞

∫ . If, in particular, the impro-
per integral f

+∞

∫  converges then 0fM = . 

5) If pf
+∞

< +∞∫  for some p, 1 p≤ < +∞ , then 0fM = . This follows from the previous case when p = 1  

and from Hölder’s inequality, when 1p > : 

( ) ( )( ) ( ) ( )( )1 1 1 1d .
p p p px x xp p p p

T T T T
f f t f x T

− +∞ −≤ ⋅ ≤ ⋅ −∫ ∫ ∫ ∫                   (2.3) 

6) If the improper integral ( )dt f t tα+∞ −∫  converges for some α , 0 1α< ≤ , then 0fM = . The proof is 
an immediate consequence of the relation 

( ) ( ) ( )d d , ,
x x

T T
f t t t t f t t o x xα α α− ≡ = → +∞ ∫ ∫                       (2.4) 

which follows from the hypothesis and the next 
Proposition 2.1. If f

+∞

∫  converges then for any 0α > : 

( ) ( )d , .
x

T
t f t t o x xα α= → +∞∫                               (2.5) 

In fact integrating by parts we have 
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( ) ( ) ( ) ( )1d d d ,
x x x

T T t x T t
t f t t t f c x f t f tα α α αα

+∞ +∞ +∞−= − = − +∫ ∫ ∫ ∫ ∫ ∫                   (2.6) 

where ( )T
c T fα +∞
= ∫ . That the last term on the right is ( )o xα  follows dividing by xα  and applying l’Hos- 

pital’s rule.                                                                                 
Proposition 2.1 is widely used in asymptotic theory of ordinary differential equations: in a different but equiv- 

alent formulation it goes back to Faedo ([10]; lemma, p. 118) and also appears in a paper by Hallam ([11]; lem-
ma 1.1, p. 136). However the nontrivial proofs given by these authors are only valid for one-signed f. The ele-
mentary proof given above applies to any f: it essentially goes back to Hukuhara ([12]; Lemma 1, p. 72) and ap-
pears again in Ostrowski ([13]; Lemma II). 

7) If for some fixed 0λ >  there exists a finite limit 

( )lim d ,
x

xx
f t t

λ
α

+

→+∞
≡∫                                  (2.7) 

then f ∞∈  and fM α λ= . For a proof see Agnew ([14]; Th. 6.2, p. 17). 
8) If there exists a finite limit 

( )lim e e d ,x t
xx

f t t L
+∞ −

→+∞
≡∫                                (2.8) 

then f ∞∈  and fM L= . This has been proved by Agnew ([14]; Th. 4.2, p. 13) using a non-elementary in-
direct argument based on the foregoing result and another theorem of his. 

9) If [ ),f AC T∈ +∞  it is a trivial fact that relation 

( ) ( ) , ,f x ax o x x= + → +∞                              (2.9) 

does not necessarily imply ( )f a′ +∞ = , the converse inference being true; but relation (2.9) is equivalent to 
f ∞′∈  and, if this is the case, then fa M ′= . In fact 

( ) ( ) ( ) ( )1 1 , .
x

T

f x f T f x
f o x

x x x
−

′ = = + → +∞∫                     (2.10) 

The last relation also implies the following version of L’Hospital’s rule for functions in ∞ : 
Proposition 2.2. If [ ) ( ), , , 0 ,f g AC T g x x f ′∈ +∞ ≠ ∀  and g ∞′∈  and 0gM ′ ≠  then the  

( ) ( )limx f x g x→+∞  exists in   and equals f gM M′ ′ . 

For the proof just write 
( )
( )

( )
( )

f x f x x
g x x g x

= , and apply (2.10).                                    

10) The space ∞  has a link with the classical concept of Cesàro-summability. A function [ )1 ,locf L T∈ +∞  
is said to be Cesàro-summable of order one, or summable ( ),1C , on [ ),T +∞  if the following limit 

( )1lim d .
t

T Tx
f exists as a finite number

t
τ

τ
→+∞ ∫ ∫                      (2.11) 

This concept is an extension to improper integrals of the concept of arithmetical mean for a sequence, see 
Hardy ([15]; pp. 430-434) and ([16]; Ch. V and p. 110). It follows from our definition that “f is summable (C, 1) 
on [ ),T +∞  iff ( ) t

T
F t f ∞≡ ∈∫  ”. 

11) Two negative properties concerning functions in ∞ . 
a) Not any bounded function belongs to ∞ . Counterexample: 

( ) ( ) ( ) ( )
1

: sin log cos log ; sin log ,
x

f x x x f x x= + =∫                  (2.12) 

even if f is uniformly continuous on [ )1,+∞ . In Blinov [17] there is a more elaborate counterexample of a 
bounded uniformly-continuous function constructed with the implicit use of almost-periodic functions. 

For f bounded, the contingency “ f ∞∈ ” can be characterized via the behavior at the origin of the Lap-
lace-transform of f: see either Ditkine and Proudnikov ([18]; Th. 4, p. 196) or Baumgärtel and Wollenberg ([19]; 
Ch. 6, pp. 97-98) where the problem is treated in a functional-analytic context. 

b) In general no information on the order of growth of a function in ∞  can be drawn. For the function 

( ) ( ) ( )1 21 2 cos , 2 0,f x x xα αα α+ += + + + >                       (2.13) 
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we have 

( ) ( ) ( )2
0

sin 1 , hence 1 ,
x

ff x x x O x Mα += + = + → +∞ =∫                 (2.14) 

but ( )limx f x xα→+∞ = +∞ ; ( )limx f x xα→+∞ = −∞ . 
All the above properties, from 1 to 9, practically are sufficient conditions for f ∞∈ , none of them being 

characteristic. A counterexample for the converse of property in 6 is provided by: 

( ) ( )
( )

2
1

: 1 log ; 1 log d log , hence 0 ;

log d diverges for each , 0 1.

x
f

x

f x x t t x x x M

t t tα α α
−+∞

 = → +∞ =

 ≤ ≤

∫

∫



             (2.15) 

12) However in Ostrowski ([20]; IV, pp. 65-68) the following characterization is reported: 
The number fM  in Definition 2.1 exists iff 

( )2lim d ,fxx
x t f t t L

+∞ −

→+∞
∃ ≡ ∈∫                             (2.16) 

and, if this is the case, f fM L= . 
This result, used by Ostrowski, e.g., in the study of Frullani’s integral, may also yield the nice geometric cha-

racterization of a rectilinear asymptote, see (3.15) below. But in other asymptotic investigations a more general 
form of condition (2.16) is encountered, namely 

( ) ( )( ) ( ) ,lim 1 d ,fxx
x t f t t L φφ φ

+∞

→+∞

′∃ ≡ ∈∫                        (2.17) 

where φ  stands for some suitable function such that ( )φ +∞ = +∞ . The number ,fL φ  is a kind of “weighted 
asymptotic mean” of f and can be considered, the sign apart, as a “generalized limit of ( )f x  as x → +∞ ” for 
the simple reason that a trivial application of L’Hospital’s rule yields 

( )( ) ( )
( )( ) ( )

1 d
lim lim ,

1
x

x x

t f t t
f x

x

φ

φ

+∞

→+∞ →+∞

′
= −∫  

under obvious hypotheses on ,f φ . 
The notion of regular variation gives the key to finding out a large meaningful class of test-functions φ , in-

cluding powers, such that (2.17), valid for one fixed φ , is equivalent to f ∞∈ . 

2.2. Preliminaries on Regularly- or Rapidly-Varying Functions  
We use the notion of variation, either regular or rapid, in a restricted sense; for the general theory the reader is 
referred to the monograph by Bingham, Goldie and Teugels [21]. We get three different results for the three 
classes defined in 

Definition 2.2. Let [ ) ( ), , 0AC T xφ φ∈ +∞ >  for each x large enough. 
(I) φ  is termed “regularly varying at +∞ (in the strong sense)” if 

( ) ( ) ( )1 1 , ,x x x o x xφ φ α − −′ = + → +∞                          (2.18) 

for some constant α ∈  which is called the index of regular variation of φ  at +∞. The family of all such 
functions for a fixed α  is denoted by ( )α +∞ . In the case 0α =  the function φ  is also termed “slowly 
varying at +∞ (in the strong sense)”. 

(II) φ  is termed “rapidly varying at +∞ (in the strong sense)” if 

( ) ( )lim .
x

x x xφ φ
→+∞

′ = ±∞                                (2.19) 

Accordingly, the index of rapid variation at +∞ is defined to be either +∞ or −∞ and the corresponding fami-
lies of functions are denoted by ( )+∞ +∞  and ( )−∞ +∞ . 

(III) φ  is said to have an “index of variation at +∞ in the strong sense” if the following limit exists in the ex-
tended real line: 
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( ) ( )lim , .
x

x x xφ φ α α
→+∞

′ ≡ −∞ ≤ ≤ +∞                          (2.20) 

Remarks 1) Condition “φ  ultimately of one strict sign” is essential both in the general and in our restricted 
definition. The choice 0φ >  is merely conventional. Writing ( )αφ ∈ +∞  tacitly implies “ [ ),AC Tφ ∈ +∞  
for some T and ( ) 0xφ ≠  for x large enough”. 

2) Typical functions in ( ) ,α α+∞ ∈ , are: ( )( )1 ,kn
kkx x

βα
=

⋅∏   where k  denotes the k-time iterated 
logarithm, 1 log≡ , and α , kβ ’s are any real numbers. 

Typical functions in ( )±∞ +∞  are: ( )( ) ( ) ( )1 exp , ; 0, 0 .kn
k kkx x cx c

βα γ α β γ
=

 ⋅ ⋅ ∈ ≠ >  ∏    Here the  

index of variation is: ( )sign c ⋅∞ . 
3) For 0,α φ′≠  too has ultimately one strict sign and there are two contingencies for the limit 

( )
0 if 0,

lim
if 0 ,x

x
α

φ
α→+∞

−∞ ≤ <
= +∞ < ≤ +∞

                           (2.21) 

as inferrred from the identity ( ) ( ) ( )log d .
x

T
x c t t tφ φ φ′= +   ∫  

For 0α =  all the possible contingencies may occur for this limit as shown by the functions: 1; ( )log x α ,  
with 0α ≠ ; ( )2 sin log x α +   , 0 1α< < . 

4) If [ ) ( )1 ,AC T αφ ∈ +∞ +∞  with α−∞ ≤ ≤ +∞ , it may happen that φ′  has no index of variation at 
+∞ as shown by the counterexamples: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

2 2

sin , 1 2, oscillatory and unbounded for 2 ;

2 sin log , 0 1, oscillatory ;

2e sin e , oscillatory and unbounded ;

e e sin e , oscillatory and unbounded .

x x

x x x

x x x

x

x

x

α
α

α

α φ φ α

α φ

φ φ

φ φ

+∞

− −
−∞

 ′′ ′+ ∈ +∞ < ≤ <


  ′+ ∈ +∞ < <  


′′ ′+ ∈ +∞


′′ ′+ ∈ +∞









     (2.22) 

But if φ′  has an index of variation then there are precise links between the two indexes. 
Lemma 2.3. If [ )1 ,AC Tφ ∈ +∞  and if both φ  and φ′  have indexes of variation at +∞, respectively α  

and α′ , then: 

{ } ( )1 \ 0 0 lim 0 ;

.
x

if or if and x either or

if

α α α α φ

α α α
→+∞

′ = − ∈ = = +∞


′ = = ±∞


            (2.23) 

In the case 0α =  and without the stated additional condition on ( )limx xφ→+∞ , it may happen that  
( )αφ ′′ ∈ +∞  with 1α′−∞ ≤ ≤ −  as shown by the simple examples: 

( ) ( ) ( )1 e ; 1 0 ; 1 log 0 ;x x x δδ δ δ−− −+ + > + >                       (2.24) 

but it cannot be 1α′ > − . 

2.3. Relationships between Asymptotic Mean and Weighted Asymptotic Means 
We can now give and understand generalizations of the mentioned results by Ostrowski and Agnew. 

Theorem 2.4. Let [ )1 ,AC Tφ ∈ +∞  and ( )φ +∞ = +∞ . 
(I) (Regularly-varying functions: extension of a result by Ostrowski, 1976). If 

( ) ( )10, ,for some real numberα αφ α φ −′∈ +∞ > ∈ +∞                  (2.25) 

then for any fixed [ )1 ,locf L T∈ +∞  conditions (2.1) and (2.17) are equivalent to each other. If this is the case 
then ,f fM L φ= − , hence ,fL φ  does not depend on φ . An equivalent statement is: 

Under conditions (2.25) the following two asymptotic relations are equivalent to each other: 

( )( ) ( ) ( ) ( )( ) ( ) ( )1 d 1 , d , ,
x

x T

at f t t o x f t t ax o x x
x

φ φ
φ

+∞ ′ = + = − + → +∞∫ ∫           (2.26) 
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for a constant a which turns out to depend only on f. In one direction we have that the first relation in (2.26), 
which is trivially true whenever ( )f a+∞ = − , holds true under the weaker condition f ∞∈ . 

(II) (Slowly-varying functions). If 

( ) ( )0 1, ,φ φ −′∈ +∞ ∈ +∞                              (2.27) 

then for any fixed [ )1 ,locf L T∈ +∞  condition (2.1) implies (2.17) with ,f fM L φ= − . 
(III) (Rapidly-varying functions: extension of a result by Agnew, 1942). If 

( ) 0 ,x for x large enoughφ′ ≠                            (2.28)1 

( ) ( ) ( ) , ,x x o x xφ φ′ = → +∞                            (2.28)2 

( ) ( )( ) ( )1 , ,x x o xφ φ ′′ = → +∞                           (2.28)3 

(which imply that both ,φ φ′  are rapidly-varying at +∞) then for any fixed [ )1 ,locf L T∈ +∞  condition (2.17) 
implies (2.1) with ,f fM L φ= − . 

Corollary 2.5. Special cases reformulated: 

( ) ( ) ( ) ( )1 1d , 1 , 1 ;fx
t f t t Lx o x x M Lα α α α α

+∞ − − −= + → +∞ ⇔ = − >∫             (2.29) 

( ) ( ) ( ) ( )( ) ( )1 11log d log log , , 1 ;
1

f

x

M
f t t f t t x o x xβ β β β

β
+∞ − − −−

∞∈ ⇒ = + → +∞ >
−∫       (2.30) 

( ) ( ) ( ) ( )( ) ( )1 exp d exp exp , , , 0

and .

x

f

Lt ct f t t ct o cx x c
c

f M L

γ γ γ γ γ
γ

+∞ −

∞

 − = − + − → +∞ >

⇒ ∈ =

∫


        (2.31) 

For 2α =  the equivalence in (2.29) is Ostrowski’s result, see (2.16), and for 1c γ= =  the inference in 
(2.31) is Agnew’s result, see (2.9). 

A counterexample for the converse inference in part (II) is provided by: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )

1
1

0 1 1

11

: log 1 , : sin log cos log ;

, ( ); as sin log ;

log d log , ;

x

x

x x f x x x

f f x x

t t f t t o x x

α

α α

φ α

φ φ

−

− ∞

+∞ − −−

 = > = +
 ′∈ +∞ ∈ +∞ ∉ =

 = → +∞


∫

∫

                  (2.32) 

where the last relation can be easily proved by suitably integrating by parts. 
And a counterexample for the converse inference in part (III) is trivially provided by: 

( ) ( )

( )

2 : e , : sin ; 0;

1e e sin d sin cos admits of no limit as .
2

x
f

x t
x

x f x x M

t t x x x

φ
+∞ −

 = = =



= + → +∞
 ∫

             (2.33) 

Notice that ,φ φ′  may be rapidly varying without satisfying (2.28)3 as shown by the function  
( ) ( )3 : exp 2 sinx x xφ = + . We do not know if part (III) remains true when replacing the three conditions (2.28) 

by the weaker conditions: ( ),φ φ ±∞′ ∈ +∞ . 
We add the following isolated result, needed in the sequel, without placing it in a general context. 
Proposition 2.6. If f ∞∈  then: 

( ) ( ): and 0 0.gg x x f x Mα α−
∞= ∈ = ∀ >                      (2.34) 

We end this section by mentioning that the concept of asymptotic mean plays a role also in “Tauberian theo-
rems”, Hardy ([16]; Ch. 12), in non-oscillation properties of second-order differential equations, Hartman [22] 
and ([23]; pp. 365-367), and in the theory of Cauchy-Frullani integrals, Ostrowski [20]. In this last paper our 
Theorem 2.4-(I) appears for the first time in the literature though for the special case ( )x xφ =  and the proof is 
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somewhat involved. In a previous paper Ostrowski ([13]; Lemma II) had given a quick proof of a lemma corre-
lated to our present context, a proof based on integration by parts; curiously enough he does not apply the same 
elementary device in proving the result under consideration, which is just the device used by us to prove the 
general case. Also the original proof by Agnew [14] is indirect; the author is interested in studying the limit 

( )lim d for each fixed
x

fxx
f t t M

λ
λ λ

+

→+∞
≡ ∈∫                        (2.35) 

where fM  is a real number independent from λ . He first proves the equivalence between (2.8) and (2.35) 
and then that (2.35) implies f ∞∈ . 

3. Polynomial Asymptotic Expansions and Asymptotic Means  
If [ )1 , , 1nf AC T n−∈ +∞ ≥ , then ( ) ( )nf t  is defined almost everywhere and for each such t let us consider the 
“nth-order osculating parabola” to the graph of f at the point ( )( ),t f t : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

,
2! !

n
nx t x t

y f t x t f t f t f t
n

− −
′ ′′= + − + + +

                (3.1) 

which may be rewritten in the form 

( ) ( ),
0

; ,
n

k
n k n

k
y F t x P x t

=

= ≡∑                               (3.2) 

where ( );nP x t  is a polynomial in x of degree n≤ , whose coefficients ( ),n kF t  depend on the parameter t. If 
all the limits 

( ) ( )( ), ,lim 0,1, , and running through the set where is definedn
n k n kt

F t k n t fγ
→+∞

≡ =        (3.3) 

exist as finite numbers, we say that the parabola 

( ), ,1 ,0 ,n
n n n n ny x x xγ γ γ= + + + ≡ Π                           (3.4) 

or equivalently the polynomial ( )n xΠ , is the “nth-order limit parabola” to [the graph of] f at +∞. A limit pa-
rabola of order zero denotes a mere relation ( ) ( )0 1 , .f x a o x= + → +∞  

We shall call the function ( ),n oF t  the “nth-order contact indicatrix” of the curve ( )y f x=  with respect to 
the y-axis as it represents the ordinate of the point of intersection in the x, y-plane between the y-axis and the 
curve (3.1). 

We report here simplified versions of two of the main results in [1]. 
Proposition 3.1. For [ )1 , , 1nf AC T n−∈ +∞ ≥ , the following are equivalent properties: 
1) The graph of f has a limit parabola at +∞  of order n i.e., by definition, all the limits 

( ) ( ), , , 0,1, , , .n k n kF k n exist as numbersγ+∞ ≡ =                        (3.5) 

2) The single limit 

( ),0 ,0  .n nF exists as a finite numberγ+∞ ≡                            (3.6) 

3) There exists a polynomial ( ) ,0: n h
n n hhx xγ

=
Π =∑  such that 

( ) ( ) ( ) ( ) ( ) ( )0, ; 0,1, , ; .k k k
n n nf x x o x x k n−= Π + → +∞ = Π ≡ Π                (3.7) 

If this is the case then the following integral representation holds true 

( ) ( ) ( )
2 1

1
1 1 ,0 ,0! d d d , 0,

n n

n
n n n nx t t

f x x n x t t t F t t x Tγ
− −

+∞ +∞ +∞ − −
−  = Π + − ≥ > ∫ ∫ ∫            (3.8) 

for a suitable polynomial nΠ , the same as above, and a suitable number ,0nγ , the same as in (3.6). 
We expressed relations in (3.7) by saying that the asymptotic expansion 

( ) ( ) ( )1 , ,nf x x o x= Π + → +∞                              (3.9) 

is formally differentiable n times in the “strong sense” because in the same paper we characterized another 
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weaker set of differentiated expansions, ([1]; Th. 3.1, p. 173), which we shall not presently use. 
Proposition 3.2. If [ )1 ,nf AC T−∈ +∞  and is convex of order 1n ≥  on [ ),T +∞ —which is equivalent to 

the property that ( ) ,01 n
nF−  is increasing thereon—then: f has a “polynomial asymptotic expansion at +∞”, i.e. 

it satisfies a relation of type 

( ) ( ) ( ) ( )1 0 1 1 , ,n
n nf x a x a x a o P x o x= + + + + ≡ + → +∞                  (3.10) 

iff its nth-order contact indicatrix ,0nF  is bounded (hence, by monotonicity, condition (3.6) holds true). If this 
is the case then we also have the properties in Proposition 3.1, hence the expansion (3.10) automatically implies 
its formal differentiability n times in the strong sense. 

Now we give analogues of the two foregoing propositions with condition (3.6) replaced by the weaker 
condition ,0nF ∞∈ ; strong differentiability will be granted ( )1n −  times and the validity of an expansion 
(3.10) will be characterized for a class of functions larger than nth-order convexity. 

Theorem 3.3. For [ )1 , , 1nf AC T n−∈ +∞ ≥ , the following are equivalent properties: 
1) All the functions 

, , ,; : ; 0 .n k n k n kF M the asymptotic mean at of F k n∞∈ = +∞ ≤ ≤              (3.11) 

2) The single function 

,0 .nF ∞∈                                    (3.12) 

3) There exists a polynomial ( ) 0: n k
n kkP x a x

=
= ∑  such that 

( ) ( ) ( ) ( ) ( ) , ; 0,1, , 1.k k k
nf x P x o x x k n−= + → +∞ = −                   (3.13) 

If this is the case then , ,k n ka M k= ∀  and the following integral representation holds true: 

( ) ( )
2 1

1
, ,1 1 1 ,0! d d d , 0.

n n

n n
n n n n n

x t t

f x M x M x n x t t t F t t x T
− −

+∞ +∞ +∞
− −

−= + + + ≥ >∫ ∫ ∫ 
          (3.14) 

In the elementary case n = 1 the result is: 

( ) ( ) ( ) ( )1,0

1,0

1 , ;
: , .f

f x ax b o x F xf x f x
and in this case a M b M

∞

′

′ = + + → +∞ ⇔ ≡ − + ∈


= =


             (3.15) 

Notice that the representation of ( )nf  inferred from (3.14) contains the quantity ( ),0
n

nx F x−  hence, by the 
example in (2.13), no information on the growth-order of ( )nf  may be obtained in the context of Theorem 3.3, 
generally speaking. 

For 2n ≥  a characterization similar to that in (3.15) holds true under a restriction on the sign of ,0nF  and 
we have the following analogue of Proposition 3.2. 

Theorem 3.4. Let [ )1 , , 2,nf AC T n−∈ +∞ ≥  and let ,0nF  satisfy a one-sided boundedness condition: 

( ) ( ),0 ,0 .n neither F x c x T or c F x x T≤ ∀ ≥ ≤ ∀ ≥                  (3.16) 

Then an expansion (3.10) holds true iff ,0nF ∞∈ . If this is the case then, according to Theorem 3.3, the ex-
pansion (3.10) is formally differentiable ( )1n −  times in the strong sense. 

We exhibit an example for the case 1n =  and a counterexample for the case 2n = ; they seem to be just the 
same because in both expansions the remainder is exactly the same quantity but a striking difference appears in 
the behaviors of 1,0F  and 2,0F . 

Example for the case 1n = : 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1

1 1 1
1 1

1
1 1,0

: d sin d , 0 sin 0 ;

1 ; sin d sin ;

2; sin 1 .

t

x T

x

T

k

f x ax b t T and such that T

f x ax b o f x a t t t a x x a O x

f x O x k F x b x o

τ τ τ
+∞ −

− − −

−

 ′= + − > =
 ′′= + + = + = + = +


= ∀ ≥ ≡ − +


∫ ∫

∫          (3.17) 
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Here 1,0F  is bounded and admits of asymptotic mean ( )b=  but has no limit at +∞; accordingly the expan-
sion ( ) ( )1 1f x ax b o= + +  is not formally differentiable in the strong sense though the differentiated expansions 
of any order satisfy the remarkable asymptotic estimates in (3.17). 

Counterexample for the case 2n = : 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1
2

2 1 1
2 2

2 1 1 1
2 2

2

2,0 2 2 2

: d sin d , 0 sin 0 ;

1 ; 2 sin 2 ;

2 sin cos 2 ; 3;

3 1sin cos d
2 2 2

t

x T

k

t

x T

f x ax bx c t T and such that T

f x ax bx c o f x ax b x x ax b O x

f x a x x x x a O x f x O x k

xF x f x xf x f x c x x x t

τ τ τ

τ

+∞ −

− −

− − − −

+∞

′= + + − > =

′= + + + = + + = + +

′′ = − + = + = ∀ ≥

′′ ′≡ − + = − + −

∫ ∫

∫ ∫ ( ) ( )1 1sin d cos 1 .
2

x x Oτ τ−









′ = +


 (3.18) 

Here 2,0F  is unbounded both from below and from above and admits of no asymptotic mean; notwithstand-
ing, an asymptotic expansion ( ) ( )2

2 1f x ax bx c o= + + +  holds true. Hence the equivalence stated in Theorem 
3.4 may fail without the restriction in (3.16). According to Theorem 3.3 the expansion of f2 is not formally dif-
ferentiable once in the strong sense. 

In the elementary case in (3.15) condition ( )1,0 1 , ,F O x= → +∞  is explicitly defined in Giblin ([24]; p. 279) 
as the “bounded distance condition” and it is easily checked that it is equivalent to a pair of relations 

( ) ( ) ( ) ( )11 , , ;f x ax O f x a O x x−′= + = + → +∞                      (3.19) 

it is the further condition of existence of asymptotic mean that changes the first relation in (3.19) into an asymp-
totic straight line. 

4. Two-Term Asymptotic Expansions and Asymptotic Means  
In this section we give an exhaustive list of results concerning the role of asymptotic mean in the theory of 
two-term asymptotic expansions involving comparison functions admitting of indexes of variation at +∞. We 
first report a result from [4]. 

Preliminary notations and formulas ([4]; p. 255). As usual we say that two functions f, g (as well as their 
graphs) have a first-order contact at a point t0 if ( ) ( )0 0f t g t=  and ( ) ( )0 0f t g t′ ′=  provided that f, g are de-
fined on a neighborhood of t0 and the involved derivatives exist as finite numbers. 

Let now 1φ , 2φ  be two real-valued functions differentiable on an interval I such that their Wronskian 
( ) ( ) ( )( )1 2: ,W x W x xφ φ=  never vanishes on I and let f be differentiable on I. Then for each 0t I∈  there exists 

a unique function in the family ( )1 2: span ,φ φ=  having a first-order contact with f at t0. Denoting this func-
tion by ( )0;F x t∗  we have 

( ) ( ) ( ) ( ) ( )* * *
0 1 0 1 2 0 2; , ,F x t f t x f t x x Iφ φ= + ∈                       (4.1) 

where 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

*
1 0 0 2 0 0 2 1 2 0

*
2 0 0 1 0 0 1 2 1 0

: , ,

: , .

f t W f t t W t f t t t t evaluated at t t

f t W f t t W t f t t t t evaluated at t t

φ φ φ φ

φ φ φ φ

 ′ ′= ≡ =


′ ′ = − ≡ =

     (4.2) 

If f ∈  then ( ) ( )*
0;F x t f x≡  on I for any chosen t0. The function 

( ) ( ) ( ) ( ) ( ) ( )* * * *
1 1 2 2: ; ,F t F T t T f t T f t t Iφ φ= ≡ + ∈                     (4.3) 

will be called the contact indicatrix of order one of the function f at the point t with respect to the family   
and the straight line x T= . 

( )F t∗  represents the ordinate of the point of intersection between the vertical line x T=  and the curve 
( ) ( ) ( ) ( )1 1 2 2y f t x f t xφ φ∗ ∗= +  where t is thought of as fixed. The assumption on ( )W x  implies that 1φ  and 

2φ  do not vanish simultaneously hence F ∗  is a nontrivial linear combination of 1f
∗ , 2f

∗ . It may happen that, 
for some choices of T, F ∗  coincides with 1f

∗  or 2f
∗ , a constant factor apart, according as ( )2 0Tφ =  or 

( )1 0Tφ = . 
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Using (4.2) F ∗  may be represented as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

*
1 2 2 1

1 2 2 1

1 , ,

1 ,

, ,

F x T W f x x T W f x x
W x

W f x T x T x
W x

W x f x W x

φ φ φ φ

φ φ φ φ

 = − 

= ⋅ −

≡ Φ

               (4.4) 

where we have put 

( ) ( ) ( ) ( ) ( )2 1 1 2: .x T x T xφ φ φ φΦ = −                            (4.5) 

Proposition 4.1. (Characterization of a two-term asymptotic expansion: [4], Th. 4.4, p. 258). Assumptions: 

[ [ ( ) ( )( )1
1 2 0 2 1 0, , , ; , ;C T x T x o x x xφ φ φ φ −∈ ∈ = →                    (4.6) 

( ) ( ) ( ) ( ) ( )( ) [ [1 2 1 2 0, , : , 0 , .x x W x W x x x T xφ φ φ φ= ≠ ∀ ∈                  (4.7) 

For a function [ )1
0,locf L T x∈  the following are equivalent properties: 

1) It holds true an asymptotic expansion 

( ) ( ) ( ) ( )( )1 1 2 2 2 0, .f x a x a x o x x xφ φ φ −= + + →                       (4.8) 

2) There exists a finite limit 

( )
( )

( )
( ) ( )0

0

1 2 *
2

2 1

lim d .
x

xx x

x t
f t t m

x t
φ φ
φ φ−→

′ 
⋅ ≡ −  

 
∫                          (4.9) 

3) There exists a finite limit 

( )
( )

( ) ( )0

0

2 *

2

lim d .
( )

x

xx x

x t
F t t

x t
φ

φ−→

′Φ  
⋅ ≡ − 

Φ 
∫                          (4.10) 

If this is the case we have the following two representations: 

( ) ( ) ( ) ( ) ( )
( ) ( ) [ [0 2 *

1 1 2 2 1 2 0
1

d , , ;
x

x

t
f x a x a x x f t m t x T x

t
φ

φ φ φ
φ

′ 
 = + − ⋅ − ∈    

 
∫           (4.11) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ] [0 2 *

1 1 2 2 0d , , .
x

x

t
f x a x a x x F t t x T x

t
φ

φ φ
′ 
 = + −Φ ⋅ − ∈    Φ 

∫             (4.12) 

The validity of (4.8) may be expressed by the geometric locution: “the graph of f admits of the curve  
( ) ( )1 1 2 2y a x a xφ φ= +  as an asymptotic curve in the family ( )1 2span ,φ φ≡ , as 0x x−→ .” 

Notice that in the cited reference condition (4.10) is written in the form 

( )
( ) ( ) ( )( ) ( ) ( )

0

0

2 *

2 2

lim d ;
x

xx x

x
W t t F t t

x Tφ φ−

−

→

Φ
⋅ Φ ≡ −∫

                     (4.13) 

however (4.5) implies 

( ) ( ) ( ) ( )2 2
2 2 2 1 2, , ,W T Wφ φ φ φ φ− −′Φ ≡ Φ ⋅Φ = ⋅ ⋅Φ                    (4.14) 

and (4.10) follows. 
The two limits in (4.9), (4.10) are of the type studied in §2 and a direct application of Theorem 2.4 gives the 

following results. 
Theorem 4.2. In assumptions (4.6)-(4.7) let it be: 0x = +∞ ; [ ) [ )1 1

1 2 , ; ,locAC T f L Tφ φ ∈ +∞ ∈ +∞ . 
(I) (Regularly-varying comparison functions). If 



A. Granata 
 

 
111 

( ) ( ) ( )1 2 1 2 10, ,for some real numberα αφ φ α φ φ −
′∈ +∞ > ∈ +∞             (4.15) 

then the following three properties are equivalent: 

( ) ( ) ( ) ( )( ) ( )1 1 2 2 2 , ;if x a x a x o x x with suitable constants aφ φ φ= + + → +∞         (4.16) 

*
2 ;f ∞∈                                   (4.17) 
* .F ∞∈                                   (4.18) 

(II) (Slowly-varying comparison functions). If 

( ) ( ) ( )1 2 0 1 2 1, ,φ φ φ φ −
′∈ +∞ ∈ +∞                        (4.19) 

then each condition (4.17) or (4.18) implies an expansion (4.16). 
(III) (Rapidly-varying comparison functions). Put 1 2:φ φ φ=  and suppose that: 

( ) ( ) ( )

( ) ( )( ) ( )

, ,

1 , ;

x x o x x

x x o x

φ φ

φ φ

 ′ = → +∞
 ′′ = → +∞

 

 

                         (4.20) 

then an expansion (4.16) implies both conditions (4.17)-(4.18). 
Under the stated assumptions for the validity of part (I) the equivalence “(4.16) ⇔ (4.18)” admits of the fol-

lowing geometric reformulation: 
“The graph of f admits of an asymptotic curve in the family ( )1 2span ,φ φ≡ , as x →+∞ , iff the contact in-

dicatrix of order one of the function f with respect to   has an asymptotic mean at +∞”. 
Notice that this result for two-term expansions requires no restrictions on the signs of 2f

∗ , F ∗ . 

5. Proofs 
Proof of Lemma 2.3. By hypothesis the following two limits exist in  : 

( ) ( )
( ) ( )

lim ,

lim .
x

x

x x x

x x x

φ φ α

φ φ α
→+∞

→+∞

′ ≡

′′ ′ ′≡
                              (5.1) 

We now evaluate α  by L’Hospital’s rule first noticing that: 0 α< ≤ +∞  implies ( )φ +∞ = +∞ , whereas 
for 0α−∞ < <  it is ( ) 0φ +∞ =  and the first limit in (5.1) implies ( )lim 0x x xφ→+∞ ′ = . In both cases the rule 
may be applied and 

( ) ( )
( )

lim 1 .
x

x x x
x

φ φ
α α

φ→+∞

′ ′′+
′= = +

′
                          (5.2) 

It remains the case α = −∞  which implies ( ) 0φ +∞ =  and this condition leads to excluding the following 
contingencies for the indicated reasons: 

1) ( ) ( ) ( )being 0 .α φ φ φ′ ′= +∞⇒ +∞ = +∞⇒ +∞ = +∞ >  

2) ( ) ( ) ( )11 lim
x

x x x xαα φ φ′+ →+∞
′ ′ ′− < < +∞⇒ ∈ +∞ ⇒ = +∞⇒ (by L’Hospital’s rule) 

( ) ( ) ( )
( ) ( )

( )
( )

lim lim lim 1 1 1 1 ,
x

Tx x x

x x x
x x

xx x x
φ φ

φ φ α
φφ φ→+∞ →+∞ →+∞

′ ′′
′ ′ ′⇒ = = + = +

′′ ′′+∫  

which is a positive real number; hence 
T

φ
+∞

′ = +∞∫  which would imply ( )φ +∞ = +∞ . 
3) ( ) ( ) ( )11 lim 0,xx x x xαα φ φ′+ →+∞′ ′ ′−∞ < < − ⇒ ∈ +∞ ⇒ =  and this would imply, by L’Hospital’s rule  

as in (5.2): ( ) ( )lim 1x x x xφ φ α→+∞ ′ ′−∞ = = + . 
4) The case 1α′ = −  must be treated in a different way. A basic property of our class of functions, directly 

inferred from the limits in (5.1), claims the validity of the following asymptotic estimates: 
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( ) ( )
( ) ( )
( ) ( )

, , , 0;

, , 0;

, , 0.

x x x x

x x x

x x x

α α
α

α

α

φ α φ

φ φ α

φ φ α

− +

−
−∞

+∞

 ∈ +∞ ∈ ⇒ →+∞ ∀ >
 ∈ +∞ ⇒ →+∞ ∀ >


∈ +∞ ⇒ →+∞ ∀ >

 





  







                (5.3) 

Now in our present proof we have α = −∞  and 1α′ = − , hence 

( )1 1 , , 0,x x x xφ− − − +′ → +∞ ∀ >     

and there are two a-priori contingencies about the integral φ
+∞

′∫ . Its divergence would imply ( )φ +∞ = +∞  
which cannot be; in the other case we would have 

( ) ( ) ( ) 1d d d , ,
x x x

xx t t t t t t xφ φ φ φ
−

+∞ +∞ +∞ +∞ − −′ ′ ′< +∞⇒ = − = = → +∞∫ ∫ ∫ ∫





           (5.4) 

which contradicts the second relation in (5.3). Notice that the procedure used to prove this last case works for 
any α′∈  as well. 

The last assertion in the statement of Lemma 2.3, namely “it cannot be 1α′ > − ”, follows from the calcula-
tions in 2): 1α′ > −  implies ( )φ +∞ = +∞ , but in this case (5.2) shows 1α′ = − , a contradiction.           

Proof of Theorem 2.4. (I) We make explicit the assumptions writing: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, 1 , , 0 ,x x x o x x x x o x xφ φ α φ φ α α− − − −′ ′′ ′= + = − + → +∞ >         (5.5) 

which in turn imply the following relations to be used in the sequel: 

( ) ( ) ( )( ) ( ) ( )2 1 1 1 , ;x x x o xφ φ φ α α
− −′′ ′ = − + → +∞                     (5.6) 

( ) ( ) ( ) ( )2 21 , ;x x x o x xφ φ α α − −′′ = − + → +∞                       (5.7) 

( )( ) ( )1 , .x x x xφ α φ′ − → +∞                            (5.8) 

First part: (2.17) ⇒ (2.1). If we put 

( ) ( )( ) [ ): 1 , ,A x x AC Tφ ′= ∈ +∞                            (5.9) 

then, by (2.17), we may write 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1d d

1 1constant d d .

x x x

T T T t

x

x T t

f A t f t t A f
A t A t

A t f t t A f t
A x A t

+∞

+∞ +∞

= = − ⋅  

′ 
= − + ⋅  

 

∫ ∫ ∫ ∫

∫ ∫ ∫
              (5.10) 

From (5.9) and (2.17): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
, ,1 1d , ;f f

x

L L xx
A t f t t o o x x

A x x x x
φ φφ

φ φ φ α
+∞   ⋅ 

− = + = + → +∞   ′    
∫          (5.11) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
( )

( ) ( )

2 ,2

5.62 1
, ,

1 12

2 1 1 1 , ;

f

x

f f

L
A f x x x x o

A x x x

x x x L o L o x

φ

φ φ

φ φ φ φ
φ φ

φ φ φ α α

+∞ −

− −

′      ′′ ′⋅ = − ⋅ +               

 ′′ ′  = − + = − + + → +∞   

∫
         (5.12) 

( ) ( ) ( ) ( )1
,

1 d 1 , .
x

fT t
A f t L x o x x

A t φα α
+∞ − 

⋅ = − + + → +∞  
 

∫ ∫                  (5.13) 

Using (5.11) and (5.13) in the left side of (5.10) we get ( ), ,
x

fT
f L x o x xφ= − + → +∞∫ , i.e. (2.1). 
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Second part: (2.1) ⇒ (2.17). First step: convergence of .A f
+∞

⋅∫  Consider the identity 

( ) ( ) ( )
( )

( )( )
( )1 2

d d ,
x x t x x t

T T T T T T
I x I x

A f A t f A x f A t f t′⋅ = = −∫ ∫ ∫ ∫ ∫ ∫




                   (5.14) 

and estimate the behavior of ( ) ( )1 2,I x I x  as x → +∞ . From (2.1) and 5.8) we get: 

( ) ( )
( ) ( )

1
; 1 , ;

x
fT

o
A x f x M o x

x x
α
φ

− +
 = = + → +∞ ∫                     (5.15) 

( ) ( )
( ) ( )1

1
1 , .fM o

I x o x
x

α
φ

− +
= = → +∞                          (5.16) 

As concerns 2I  we have: 

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

22 2 3

5.5
1 1

; 2 ;

2 1 , ,

A x A

A x A x x o x x

φ φ φ φ φ φ

φ φ φ φ α

− − −

− −

 ′ ′ ′′ ′= − = − +

 ′ ′′ ′ ′= − = − + + → +∞

             (5.17) 

from whence and (2.1) we get: 

( ) ( ) ( ) ( )1 1 , .
x

fT
A x f A x M o xα′  = − + + → +∞ ∫                       (5.18) 

As ( )1
T

A Tφ
+∞

= −∫ , we obtain the convergence of ( )2I x  hence, by (5.14), of A f
+∞

⋅∫ . 
Second step: asymptotic behavior of 

x
A f

+∞
⋅∫ . By (5.16) and (5.18) we may integrate by parts as follows: 

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )

( )
( )

( ) ( )
( )

( )
( )

d

1
1 1

1 1 1 1
,

t x t

x x T T x T

f
fx

f f f

A f A t d f A x f A t f t

M o
A M o

x

M o M o M o
x x x

α
α

φ

α α
φ φ φ

+∞ +∞ +∞

+∞

′⋅ = = − −

+
 = + + + 

+ + + − +
= − =

∫ ∫ ∫ ∫ ∫ ∫

∫                   (5.19) 

which is (2.17) with ,f fL Mφ = − . 
(II) From the first assumption in (2.27) we infer: 

( ) ( ) ( )( )01 . . 1 , ;i e A x o x x xφ φ∈ +∞ = → +∞                      (5.20) 

and from (5.17): 

( ) ( ) ( )1 1 , .A x A x x o x x− −′ = − + → +∞                          (5.21) 

Now we retrace all steps in the second part of the proof of part (I) checking the validity of the corresponding 
formulas for 0α = . Instead of the first relation in (5.16) we have: 

( ) ( )( )1 1 , ,I x o x xφ= → +∞                              (5.22) 

and, instead of (5.18): 

( ) ( ) ( )1 , .
x

fT
A x f A x M o x′  = − + → +∞ ∫                        (5.23) 

The convergence of A f
+∞

⋅∫  follows as above. And using the same integration by parts as in (5.19) we get 
the same final relation. 

(III) Let us first show that the three conditions in (2.28) imply that both ,φ φ′  are rapidly-varying at +∞. 
Conditions in (2.28)1,2 are equivalent to ( ) ( )limx x x xφ φ→+∞ ′ = ±∞ , and (2.28)3 is equivalent to 

( ) ( ) ( )( )2
lim 1,

x
x x xφ φ φ

→+∞
′′ ′ =                             (5.24) 

which implies, by (2.28)1, ( ) 0xφ′′ ≠  ultimately; so we have: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )5.24 , .x x x x x x x x x x xφ φ φ φ φ φ φ φ′′ ′ ′ ′′ ′ ′⇔ ⇔ → ±∞ → +∞ “ ”  

Now we retrace all steps in the first part of the proof of part (I) and again use decomposition (5.10); instead of 
(5.11) we get: 

( )
( )
( ) ( ) ( ),

1 1 , ,fx

x
A f L o o x x

A x x φ

φ
φ

+∞
 − ⋅ = + = → +∞ ′∫                   (5.25) 

and instead of (5.12) we get, using (5.24): 

( ) ( ),
1 1 , ,fx

A f L o x
A x φ

+∞
′ 
⋅ ⋅ = − + → +∞  

 
∫                        (5.26) 

whence 

( ) ( ) ( ),
1 d , .

x
fT t

A f t L x o x x
A t φ

+∞
′ 
⋅ ⋅ = − + → +∞  

 
∫ ∫                     (5.27) 

From (5.25), (5.26), (5.27) we get (2.1) with ,f fM L φ= − .                                        
Proof of Proposition 2.6. Integration by parts gives: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

1
1

1 1
1

1 1
2

3

d d d

by 2.1 d d

if 1,
1

log log if 1,

x x t x x t

T T T T T T

x x
f f T T

f

f

t f t t t f c x f t f t

c M x o x M t t o t t

M
c x o x

c M x o x

α α α α

α α α α

α α

α

α

α
α

α

− − − − −

− − − −

− −

= = + +

= = + + + +


+ + ≠= −

 + + =

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫          (5.28) 

whence our claim follows dividing both sides by x.                                                 
Proof of Theorem 3.3. Let us assume (3.12) and start from the integral representation ([1]; formula (6.3), p. 

185): 

( ) ( ) ( )2 1 1
1 1 ,0

1
1 ! d d d , 0,n n

n x t tnk n
k n nT T T

k
n

f x c x n x t t t F t t x T− − − −
−

=

= + − ≥ >∑ ∫ ∫ ∫



           (5.29) 

which for 1n =  reads: 

( ) ( )2
1,0 d .

x

T
f x cx x t F t t−= − ∫                              (5.30) 

From (5.30) the elementary equivalence in (3.14) easily follows, hence we suppose 2n ≥ . If (3.12) holds 
true and we apply the asymptotic relation in (2.29) to ,0nF  we get: 

( ) ( )

( ) ( ) ( )

,01
,0

,01 1
,0 ,0

d ;

d d ;

nn n n
nx

x nn n n n
n nT x

M
t F t t x o x

n
M

t F t t c t F t t c x o x
n

+∞ − − − −

+∞− − − − − −


= +


 = − = − +

∫

∫ ∫
              (5.31) 

and the last relation, when replaced into (5.29), yields: 

( ) ( ) ( )

( ) ( )

2

1

2

1

1
1 ,0 1

1

1 1
1 1 ,0

1

1 ! d d d

1 ! d d d .

n

n

n

n

n x tnk n
k n nT T t

k
n x tnk n

k n nT T t
k

f x c x n x t c t F t t t

c x n x t t t F t t

−

−

−

−

+∞ − −
−

=

+∞+ − −
−

=

 = + − −  

= + −

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫





              (5.32) 

But the first relation in (5.31) implies that the iterated improper integral ( )
1

1
,0 d

n

n
nT t

t F t t
−

+∞ +∞ − −∫ ∫  converges 
and we get a representation of type: 
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( ) ( )
1

1
1 ,0

1
! d d , ,

n

n
k n

k nx t
k

n

f x a x n x t t F t t x T
−

+∞ +∞ − −

=

= + ≥∑ ∫ ∫


                  (5.33) 

together with the expansion: 

( ) ( ) ( )
2

,0
1 0 ,0

1 0

1

! d d 1 , ,
n

n n
nk n n k

k k n
k kx t

n

M
f x a x n x t t o t t a x o a M

n
−

+∞ +∞
− −

= =

−

 
= + + = + = 

 
∑ ∑∫ ∫



       (5.34) 

having used one of the following elementary identities (to be used again): 

( )( ) ( )1
1d d , 0;1 1.

1 2k

k n
n

x t

k

xt t t x T k n
n n n k−

−
+∞ +∞ − = ≥ > ≤ ≤ −

− − −∫ ∫




            (5.35) 

To prove the formal differentiabilty we put: 

( )
( )

( )

1
,0

1

d for 0;
:

d for 1 1;

n
nx

k

kx

t F t t k
I x

I t t k n

+∞ − −

+∞

−

 == 
 ≤ ≤ −

∫

∫
                     (5.36) 

and from (5.31) we infer relations: 

( )
( )

( )( ) ( ) ( )

,0

,0

for 0;

for 1 1.
1 2

n n n

n kk
n n k

M
x o x k

n
I x

M x
o x k n

n n n k

− −

− +
− +


+ =

= 
 + ≤ ≤ −
 − − − 

              (5.37) 

Calling ( )nP x  the last sum on the right in (5.34), which differ by a constant from the sum on the right in 
(5.33), and applying Leibniz's rule to (5.33) we get: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

( )
( )( ) ( ) ( )

( ) ( ) ( )

1
1

1
,0 ,0

1 ! 1 !

1 ! 1 !
1 2 1 1 2 1

for 1 1.

k kk k
n n k n k

k kk k
k n n k

n

k k
n

f x P x n xI x n kI x

n M x n kM x
P x o x

n n k n n k k

P x o x k n

−
− − −

−− −
−

−

= + − + −

− −
= + + +

− − + − − +

= + ≤ ≤ −

 

         (5.38) 

The expressions of ( )1nf −  and ( )nf  involve ( )0I x  and its derivative: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1
0 1

1 1
0 ,0 0

1
0 ,0

1 ! 1 ! 1 ;

! 1 ! 1 ! 1 ! 1

! 1 ! 1 ! .

n nn n
n

n n nn n
n n

n n n
n n

f x P x n xI x n n I x

f x n a n I x n x F x n n I x

n a n nI x n x F x

−− −

− −−

− −

 = + − + − −
 = + − + − + − −


= + − + −

        (5.39) 

So far we have proved that (3.12) implies relations in (3.13) for ( ) , 1 1kf k n≤ ≤ − , without any information 
on ( )nf , and, for the time being, nP  is a non-better specified polynomial of degree n≤ . To prove (3.11) we 
estimate the behavior, as x → +∞ , of ( ),n kF x  for 1 k n≤ ≤  using its known expression in terms of f, ([1]; 
formula (2.6), p. 168): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

,
0

1

0 0

1 by 5.38 , 5.39
! !

1 1
! ! ! ! ! !

in k
k i

n k
i

i i n kn k n k
k i k i n n

n n
i i

x
F x f x

k i

x x x
P x f x f x P x

k i k i k n k

−
+

=

−− − −
+ +

= =

−
= =

− − −  = + + − = −

∑

∑ ∑

 



    (5.40) 

as the first sum is nothing but the expression of the coefficient of the power kx  in the polynomial nP , i.e. ka , 
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( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

11
1

1
0

1

0 ,0

1

,0
0

,0

1 ! 1 !1
! ! !

1 ! 1 !
by 5.37

! ! ! !

1 !
! !

1 !
1 .

! !

k kn k
i i

k n k i n k i
i

k k
n k k

n

kn k
k k k

k n
i

k
k

k n

n n k
a x I x x I x

k i i

n n n
x I x x F x

k n k k n k

n
a O x O x x F x

k n k

n
a x F x o

k n k

−− −
+

− − − − −
=

+
− −

− −
− − −

=

−

 − −
= + + 

  

− −
+ + =

− −

−
= + + +

−

−
= + +

−

∑

∑



 

 

By (2.34) the function ( ),0
k

nx F x−  has asymptotic mean “zero” and the same is true for a term ( )1o ; so the 
sum of the last three terms above represents a function with asymptotic mean equalling ka . We have proved 
that “2) ⇒ 1) ∧ 3)”. It remains to show “3) ⇒ 2)”. First step. Let us first evaluate ( )nf  from representation 
(5.29); putting 

( )
( )

( )

1
,0

1

d for 0;
:

d for 1 1;

x n
nT

k x
kT

t F t t k
J x

J t t k n

− −

−

 == 
 ≤ ≤ −

∫

∫
                      (5.41) 

we get: 

( ) ( ) ( ) ( ) ( )0 ,0! 1 ! .nn n
n nf x n c n nJ x x F x− = + − +                      (5.42) 

Now we start as in (5.40) from the expression of ,0nF : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,0
0

1

0

1

0 ,0
0

by 3.13
!

by 5.42
! !

1 ,
!

kn
k

n
k

k nn
k nk

n
k

kn nk n
n n n

k

x
F x f x

k

x x
P x o x f x

k n

x
P x o x c nx J x F x

k

=

−
−

=

−

=

−
= =

− − = + + = 

−
= + + − + +

∑

∑

∑

 

 
          (5.43) 

whence we get 

( ) ( ) ( ) ( ) ( ) ( )
1

0
0

1
1 ,

!

kn
kk n nn n

n
k

c c
J x x P x o x o

k n n n

−
− −

=

−
= + + = +∑                    (5.44) 

which implies the convergence of the improper integral ( )1
,0 dn

nT
t F t t

+∞ − −∫ ; and we can rewrite representation 
(5.29) in the form: 

( ) ( ) ( )

( )

2

1

1 1
1 1 ,0

1

1

1 ! d d d , 0,

.

n

n

txn nk n
k n n

k T T t

n
k n

k
k

f x c x n x t t t F t t x T

c x o x

−

−

+∞
+ − −

−
=

=

= + − ≥ >

= +

∑ ∫ ∫ ∫

∑



             (5.45) 

Comparing (5.45) and the assumed relation ( ) ( ) ( )1nf x P x o= +  we infer that the two polynomials nP  and 
the sum appearing in (5.45) have the same leading coefficient: n na c= . Now we do calculations just like those 
from (5.41) to (5.43) but starting from representation (5.45) and paying attention to the signs, so getting: 

( ) ( ) ( ) ( ) ( ) ( )1 1
,0 ,0! 1 ! d 1 ! ;n nn n n

n n nx
f x n a n n t F t t n x F x

+∞+ − − −= + − + −∫               (5.46) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
,0 ,0 ,0

0

1
0 ,0 ,0

1 ! d 1 !
!

d 1 ,

kn n nk n n
n n n nx

k

n n
n nx

x
F x P x n n t F t t n x F x

k

a nx t F t t F x o

+∞+ − − −

=

+∞ − −

−
= + − + −

= − + +

∑ ∫

∫
          (5.47) 

having used the identity ( ) ( ) ( ) 00 !

k
n k

nk

x
P x a

k=

−
≡∑ , ([1]; Lemma 2.2, p. 169). From (5.47) we infer 

( ) ( )1 0
,0 d ,n n n

nx

a
t F t t x o x

n
+∞ − − − −= +∫                            (5.48) 

which, by (2.29), implies ,0nF ∞∈  and 0 ,0na M= .                                              
Proof of Theorem 3.4. The only thing to be proved is that an expansion (3.10) plus condition (3.16) imply 
,0nF ∞∈ . We first show that it is enough to prove our claim with (3.16) replaced by the condition of one-sig- 

nedness: 

( ) ( ),0 ,0either 0 or 0 .n nF x x T F x x T≤ ∀ ≥ ≤ ∀ ≥                   (5.49) 

In fact it is known, ([1]; Lemma 2.2, p. 169), that: ,0 constantnF c= =  iff f is a polynomial of type 

( ) 1 .n
np x a x a x c= + + +                               (5.50) 

Let now g be any function, [ )1 ,ng AC T−∈ +∞ , let p be a polynomial of type (5.50) and define:  
( ) ( ) ( ):f x g x p x= − . With an obvious meaning of the symbol ,0nG  we have: ,0 ,0n nF G c= − ; hence: 

,0 ,00 .n nF G c⇔                                  (5.51) 

It follows that any result on formal differentiability of a polynomial asymptotic expansion involving g admits 
of a literal transposition to a polynomial asymptotic expansion involving f. Our assumption are now: expansion 
(3.10) and one-signedness of ,0nF , and the proof (which we make explicit here) is a word-for-word repetition of 
that in ([1]; Proof of Th. 4.2, pp. 193-195) with a slight modification at the conclusive passage. From represen-
tation (5.29) we infer 

( ) ( ) ( ) ( )2 11 1
1 1 ,01 1 ! d d d ,n nx t tnn n n

n n nT T T
x f x c o n x t t t F t t− −− − − −

−= + + − ∫ ∫ ∫              (5.52) 

and, by (3.10), the following limit: 

( )( )2 1 1 1
1 1 ,0lim d d d exists as a finite number.n nx t t n n

n nT T Tx
t t t F t t x− − − − −

−→+∞ ∫ ∫ ∫             (5.53) 

For 1n =  (3.10) reduces to ( ) ( )1 0 1f x a x a o= + +  and (5.53) is “ 2
1,0dT

t F t
+∞ −∫  convergent”. Hence repre-

sentation (5.29) can be rewritten in the form 

( ) 2
1 0 1,0d ,

T
f x a x a x t F t

+∞ −= + + ∫  

and (3.10) implies that “ 2
1,0lim dx T

x t F t
+∞ −

→+∞ ∫  exists in  ” which is equivalent to 1,0F ∞∈ . 

For 2n ≥  we apply L’Hospital’s rule ( )1n −  times to the limit in (5.53) so getting the limit: 

( ) ( )1
,0lim d 1 !.

x n
nTx

t F t t n− −

→+∞
−∫                             (5.54) 

By the one-signedness of ,0nF  this last limit exists in the extended real line, hence it must be a finite number. 
This means the convergence of ( )1

,0 dn
nT

t F t t
+∞ − −∫  and representation (5.29) can be rewritten as: 

( ) ( ) ( ) ( )
2

1

1 1
1 1 ,0

1 1
1 ! d d d .

n

n

txn nnk n k n
k n n k

k kT T t

f x c x n x t t t F t t c x o x
−

−

+∞
+ − −

−
= =

= + − = +∑ ∑∫ ∫ ∫          (5.55) 

The last relation implies that nc  coincides with the na  in (3.10) and we get: 
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( )( ) ( ) ( ) ( )
2

1

11 2 1
1 1 1 ,01 1 ! d d d .

n

n

tx
nn n n n

n n n n
T T t

x f x a x c o n x t t t F t t
−

−

+∞
+− − − −

− −− = + + − ∫ ∫ ∫         (5.56) 

By the above argument involving L’Hospital’s rule we arrive at the convergence of the iterated integral  

( )1
,0d dn

n
T

t F t t
τ

τ
+∞ +∞

− −∫ ∫ . An iteration of the procedure yields condition 

( )
2 1

1
1 1 ,0d d d convergent,

n n

n
n nT t t

t t t F t t
− −

+∞ +∞ +∞ − −
−∫ ∫ ∫                     (5.57) 

which implies representation 

( ) ( )
2 1

1
1 1 1 ,0! d d d ,

n n

n n
n n nx t t

f x a x a x n x t t t F t t
− −

+∞ +∞ +∞ − −
−= + + + ∫ ∫ ∫                (5.58) 

where the coefficients ka  are those in (3.10). From (5.58) we infer that 

( )( )
2 1

1 1
1 1 ,0 0lim d d d ,

n n

n
n nx t tx

t t t F t t x a
− −

+∞ +∞ +∞ − − −
−→+∞

=∫ ∫ ∫
                   (5.59) 

and applications of L’Hospital’s rule ( )1n −  times yields the limit 

( )( ) ( )1
,0 0lim d 1 ! ,n n

nxx
t F t t n x a

+∞ − − −

→+∞
− =∫                        (5.60) 

which, by (2.29), is equivalent to ,0nF ∞∈ .                                                     
In passing notice that the last calculations and (5.34) prove that: 
For a given function [ )1 ,locg L T∈ +∞  and g one-signed the following equivalence holds true: 

{ } ( )
2 1

1
1 1

1and d d d , .
!

n n

n
g n

x t t

g M t t t g t t o x
n x x

− −

+∞ +∞ +∞
− −

∞ −
 ∈ = ⇔ = + → +∞ 
 ∫ ∫ ∫



          (5.61) 
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