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Abstract: Pyroptosis is a programmed cell death caused by inflammasomes, which can detect cell
cytosolic contamination or disturbance. In pyroptosis, caspase-1 or caspase-11/4/5 is activated,
cleaving gasdermin D to separate its N-terminal pore-forming domain (PFD). The oligomerization of
PFD forms macropores in the membrane, resulting in swelling and membrane rupture. According to
the different mechanisms, pyroptosis can be divided into three types: canonical pathway-mediated
pyroptosis, non-canonical pathway-mediated pyroptosis, and caspase-3-induced pyroptosis. Py-
roptosis has been reported to play an important role in many tissues and organs, including the
liver. Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important
role in cell survival and maintenance by degrading organelles, proteins and macromolecules in
the cytoplasm. Therefore, the dysfunction of this process is involved in a variety of pathological
processes. In recent years, autophagy and pyroptosis and their interactions have been proven to play
an important role in various physiological and pathological processes, and have gradually attracted
more and more attention to become a research hotspot. Therefore, this review summarized the role of
autophagy and pyroptosis in liver disorders, and analyzed the related mechanism to provide a basis
for future research.

Keywords: autophagy; pyroptosis; non-alcoholic fatty liver disease; hepatocellular carci-
noma; hepatotoxicity

1. Introduction

In the 1990s, a caspase-1-dependent and bacteria-induced cell death appeared in
macrophages infected with Salmonella typhimurium, named pyroptosis in 2000 [1–3]. Pyrop-
tosis is a kind of gasdermin(GSDM)-mediated programmed cell death, characterized by the
formation of holes in the cell membrane, cytolysis, and the release of the pro-inflammatory
cytokines. Pyroptosis is an important innate immune mechanism and contributes to
the inflammation through releasing interleukin 1β(IL-1β), IL-18 and other inflammatory
substances [4,5]. More and more evidence indicates that pyroptosis contributes to many dis-
eases, including liver diseases [6,7]. However, the relevant mechanisms have not been fully
clarified. Autophagy is an important, closely coordinated and conserved cellular pathway.
This process separates proteins and damaged or aged organelles into double-membrane
vesicles named autophagosomes and finally fuses with lysosomes, resulting in the degra-
dation of isolated components [8]. Autophagy plays an important role in maintaining the
balance of cell component synthesis, decomposition and reuse, and participates in various
physiological processes [9]. It has been reported that autophagy is involved in many dis-
eases, such as cancer, neurodegenerative diseases and infection/immune diseases [10–13].
Evidence shows autophagy inhibition upregulates galangin-induced pyroptosis in human
glioblastoma multiforme cells [14] and promotes pneumococcus-induced pyroptosis [15],
indicating that autophagy and pyroptosis are closely related and play a vital role in a variety
of physiological and pathological processes. Furthermore, in recent years, autophagy and
pyroptosis and their interactions have been reported to play an important role in a variety
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of physiological and pathological processes, and have attracted increasing attention to
become a research hotspot. However, the relevant mechanism is not completely clear [16].
Therefore, in this review, we reviewed the recent progress regarding the role and the mech-
anism of autophagy, pyroptosis and the relationship between them in liver disorders to
provide theoretical reference for future related research.

2. Overview of Pyroptosis
2.1. Characteristics and Mechanism of Pyroptosis

In 1992, when A. Zychlinsky treated macrophages with Shigella flexneri, pyroptosis
was first found [2]. However, this was regarded as a kind of apoptosis, and it was named
pyroptosis until 2000 [17,18]. Pyroptosis is a programmed cell death, significantly different
from apoptosis and autophagy in cell morphology and function. It is characterized by mem-
brane perforation mediated by gasdermin(GSDM) protein family, inflammatory factors
(including IL-1β and IL-18) release and cytolysis [19]. GSDM proteins include GSDMA,
GSDMB, GSDMC, GSDMD, GSDME and DFNB59. Except for DFNB59, the other GSDM
family proteins all have similar N-terminal parts, which is related to the formation of the
pyrolytic pores in the cell membrane. It has been reported that GSDMB, GSDMC, GSDMD
and GSDME are related to pyroptosis; whether other GSDM family proteins contribute
to pyroptosis remains to be studied [20,21]. Many pathological factors play an important
role in pyroptosis, including cholesterol, oxidative stress and inflammatory cytokines [4].
Cholesterol is one of the important structural components of the mammalian cell membrane.
It can destroy the stability of the lysosomal membrane structure and lead to lysosomal
damage and cause the outflow of lysosomal contents, resulting in NLRP3 inflammasome
activation and pyroptosis [22]. Reactive oxygen species(ROS) produced by oxidative stress
can activate NLRP3 inflammasome, then activate caspase-1 to initiate pyroptosis [23]. Py-
roptosis is a highly inflammatory cell death pattern induced by inflammatory microsomes,
which depends on the activation of caspase-1 [24]. Caspase-1 cleaves IL-1β precursors into
active IL-1β which recruits and activates other immune cells, promotes the synthesis of
chemokines (such as IL-18), inflammatory factors (such as IL-6) and adhesion factors, and
finally leads to a “cascade effect”, thus amplifying the inflammatory response [25,26].

2.2. Classification of Pyroptosis

So far, there are three pathways leading to pyroptosis. One is the canonical path-
way [27], the second is the non-canonical pathway [28], and the third is the recently
discovered caspase-3-induced pyroptosis. After cells receive different stimuli, pyroptosis
is initiated by different pathways but finally completed by GSDM protein [29]. Canonical
pyroptosis is mediated by caspase-1 activated by the NLRP3 inflammasome. The active
caspase-1 can be automatically cleaved into its CARD domain and P20/P10 dimers at
the specific location. After that, the two P20/P10 dimers oligomerize to form a tetramer
to cleave the specific site of GSDMD and accurately bind to the GSDMD-C domain [30].
GSDMD is cut into N-terminal fragments that can attach to the cell membrane and oligomer-
ize to form the pyroptotic pore. Moreover, P20/P10 tetramers can cleave pro-IL-1β and
pro-IL-18 induced by NF-κB signalling into their active forms. Furthermore, due to the
water inflow caused by osmotic pressure, the pyrolysis pore can lead the cell to swell,
and IL-1β and IL-18 can escape through GSDMD pores, thus inducing inflammation [28].
Unlike the canonical pathway, non-canonical pyroptosis depends on the activation of
caspase-4/5/11 [31]. Human caspase 4/5 and mouse caspase 11 can bind to bacterial
LPS and induce inflammation of cell necrosis. Like caspase-1, activated caspase-11 can
also cleave GSDMD and release IL-1β and IL-18, then induce the formation of cell mem-
brane pores. In addition, the activated caspase-11 can also promote K+ outflow, activate
NLRP3/ASC/caspase-1 and induce cellular inflammatory response [30,32,33]. Recently,
it has been found that there is also a caspase-3-dependent pyroptosis pathway. Unlike
caspase-1/11/4/5, caspase-3 induces cell pore formation through cleaving GSDME and
promoting the re-entry of the GSDME-N domain into the cell membrane, resulting in



Int. J. Mol. Sci. 2022, 23, 6208 3 of 12

pyroptosis (Figure 1) [4]. The distribution and expression level of GSDME determine the
cell death pattern through caspase-3 activation. When cells overexpress GSDME, activated
caspase-3 will induce pyroptosis. For cells expressing a low level of GSDME, the active
caspase-3 will induce apoptosis [29,34,35]. In recent years, pyroptosis has been reported to
play a vital role in many diseases, including liver diseases [36,37]. However, the related
mechanism is not completely clear.
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3. Overview of Autophagy

Autophagy is a self-degradation and self-sustaining process in eukaryotic cells, which
plays a significant role in clearing damaged organelles, proteins or cell fragments from
cells [38]. In this process, the abnormal proteins, organelles, and pathogens are wrapped in
bilayers to form autophagosomes that are transferred to lysosomes for degradation [39]. At
present, there are three kinds of autophagy based on the transmission pathway of proteins
and organelles to lysosomes: macroautophagy, microautophagy, and chaperone-mediated
autophagy [40]. Macroautophagy is responsible for the degradation of microorganisms and
organelles and is the most studied autophagy. In this process, the substance to be degraded
is wrapped by a double membrane vesicle to form an autophagosome then fused with the
lysosome for degradation. Microautophagy does not form autophagosomes and mainly
degrades cell components by invaginating and/or dividing the cytoplasm on the lysosomal
membrane. Chaperone-mediated autophagy is a selective autophagy in which intracellular
proteins are transported to the lysosomal chamber after binding with chaperones and then
digested by lysosomal enzymes(Figure 2) [41]. As we all know, autophagy is caused by
various environmental stresses, such as nutrient deficiency, hypoxia and growth factor
deficiency, to eliminate the stress-induced damage and help cells to return to normal after
stress relief [42]. Autophagy under physiological conditions is usually maintained at a basic
level. Stress stimulation can significantly enhance autophagy, thereby eliminating abnormal
proteins in cells to promote cell survival [43]. However, if autophagy is at a high level for
a long time, cell death will be induced. Thus, the role of autophagy is a “double-edged
sword” [44,45]. Increasing evidence indicates that dysfunctional autophagy is involved in
many diseases, including liver diseases [46,47], although the relevant mechanism has not
been fully studied.
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4. The Role of Autophagy and Pyroptosis in Liver Disorders
4.1. The Role of Autophagy and Pyroptosis in Nonalcoholic Fatty Liver Disease

Non-alcoholic fatty liver (NAFLD) includes fatty liver, non-alcoholic steatohepati-
tis (NASH) and liver cirrhosis, excluding excessive drinking and viral infection. It is
a clinicopathological syndrome characterized by liver fat accumulation. Because of its
high incidence rate (about 20–30%) and the lack of effective clinical treatment, NAFLD
has become a serious chronic disease globally [48–50]. NAFLD is associated with many
factors, including type 2 diabetes mellitus (T2DM), insulin resistance, dyslipidaemia and
hypertension, although the exact mechanism is not fully understood [51,52]. Ghrelin is a
polypeptide containing 28 amino acids. It is synthesized from gastric mucosa and secreted
into the blood. There are two main forms: acylated ghrelin and deacylated ghrelin [53,54].
The increasing evidence indicates that ghrelin plays an important role in NAFLD [55,56].
Silvia Ezquerro et al. showed that the circulating acylation/deacetylation ghrelin ratio and
TNF-α in obese patients with NAFLD were upregulated, while the level of deacetylated
ghrelin decreased. Six months after bariatric surgery, the liver function was significantly im-
proved, and the circulating acylated/deacylated ghrelin ratio decreased. In obese patients
with type 2 diabetes, ghrelin, and its acylase ghrelin O-acyltransferase(GOAT) increased,
and pyroptosis, apoptosis, and compromised autophagy of liver cells increased [57]. It has
been reported that TNF-α-induced hepatocyte cell death contributes to NAFLD develop-
ment [58]. Thus, reducing TNF-α-induced hepatocyte cell death may become a new strategy
to improve NAFLD. In HepG2 hepatocytes, the acylated and deacylated ghrelin decreased
TNF-α- induced cleavage of caspase-3 and caspase-8, TUNEL positive cells, caspase-1
activation, and high-mobility group box 1(HMGB1) expression, indicating that ghrelin
inhibited apoptosis and pyroptosis induced by TNF-α. In addition, the acylated ghrelin
inhibited the basal and TNF-α-induced hepatocyte autophagy, which can be demonstrated
by the downregulated LC3II/I ratio and upregulated p62 accumulation via AMPK/mTOR.
Collectively, ghrelin reduces TNF-α-induced human hepatocyte apoptosis, autophagy, and
HMGB1-mediated pyroptosis to play a protective role against hepatocyte cell death, thus
preventing NAFLD progression to NASH [57]. In the above study, the impaired autophagy
mediated the protective role of ghrelin in the human hepatocyte, which contradicted the
previous report that ghrelin upregulated autophagy in rat hepatocytes to improve liver
injury [59,60]. The reason may be related to the different stages of liver injury and remains
to be clarified. It has been reported that TNF-α increases cytoplasmic HMGB1 expression
to induce pyroptosis during liver failure [61]. Therefore, it can be deduced that ghrelin
suppressed HMGB1-mediated pyroptosis by reducing TNF-α. In the ghrelin improvement
of NAFLD, whether autophagy can regulate pyroptosis remains to be studied.

Taurine (Tau) is a sulfur-containing compound β-amino acids, which exists in many
human and animal tissues, and it plays an important role in the prevention of NASH [62].
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Tianming Qiu and colleagues found that arsenic trioxide(As2O3) could cause NASH, upreg-
ulated autophagy, activate NLRP3 inflammasome, increase lipid accumulation, and lead to
the dysregulation of lipid-related genes. Tau dampened the inflammation, pyroptosis and
autophagy induced by As2O3. In HepG2 cells, NLRP3 inflammasome activation, which
was cathepsin B(CTSB)-dependent, mediated As2O3-induced pyroptosis. Moreover, the
inhibition of autophagy by inhibitor suppressed As2O3-induced upregulated expression of
cytosolic CTSB and subsequent LDH release, NLRP3 inflammasome activation and pyrop-
tosis, suggesting that the increase of intracellular autophagy was related to the increase of
cytoplasmic CTSB, the activation of NLRP3 inflammasome and its mediated pyroptosis
induced by As2O3. In addition, Tau inhibited As2O3-induced autophagy, CTSB expres-
sion, NLRP3 inflammasome activation, and pyroptosis, and reduced LDH release. From
the above, it could be deduced that Tau attenuated As2O3-induced pyroptosis through
inhibiting CTSB-dependent NLRP3 inflammasome activation induced by As2O3 via sup-
pressing As2O3-induced autophagy. Furthermore, the inhibition of NLRP3 inflammasome,
autophagy, and CTSB, and Tau treatment did not reduce lipid accumulation induced by
As2O3, indicating that Tau dampened As2O3-induced liver inflammation and pyroptosis by
inhibiting the autophagic-CTSB-NLRP3 inflammasome pathway rather than reducing lipid
accumulation [63]. Autophagic death often contributes to many liver disorders [64,65]. Sim-
ilarly, in the above study, As2O3-induced autophagy leads to hepatocyte pyroptosis, which
is involved in the development of NASH. In the above role of Tau in improving NASH,
autophagy promotes pyroptosis through NLRP3 inflammasome. Many previous pieces of
evidence have shown that autophagy is closely related to lipid metabolism [66–68]. Pyrop-
tosis is also involved in lipid metabolism [69,70]; therefore, whether autophagy/pyroptosis
is related to As2O3-induced liver lipid accumulation needs further study. Similar to Tau,
liraglutide can also improve NASH. Liraglutide is an analogue of glucagon-like peptide-1
(GLP-1) and can improve NASH [71,72]. Xinyang Yu and colleagues used palmitic acid
and lipopolysaccharide to stimulate HepG2 cells to establish a NASH model to assess
the role of liraglutide, NLRP3 inflammasome and mitophagy in NASH. Liraglutide de-
creased lipid accumulation, suppressed NLRP3 inflammasome and pyroptosis activation,
improved mitochondrial dysfunction, reduced reactive oxygen species (ROS) production,
and enhanced hepatocyte mitophagy. The inhibition of mitophagy by 3-methyladenine
(3-MA)/PINK1-directed siRNA dampened liraglutide suppression of NLRP3 inflamma-
some and pyroptosis activation, suggesting that liraglutide improved NASH by suppress-
ing NLRP3 inflammasome and pyroptosis activation through promoting mitophagy [73].
In the above study, it can be deduced that enhancing mitophagy can alleviate NLRP3
inflammasome-mediated infammatory injury and pyroptosis of NASH. In liraglutide im-
provement of NASH, mitophagy inhibits pyroptosis by inhibiting NLRP3 inflammasome
activation. Mitophagy can inhibit the activation of NLRP3 inflammasome by scavenging
damaged mitochondria and reducing the ROS production, and then inhibit the activation
of the canonical pathway of pyroptosis. Evidence indicates that LPS induces pyroptosis
through a non-canonical process by activating caspase-11 [69,74]. Then, in the above study,
whether mitophagy inhibits pyroptosis through caspase-11 remains to be clarified. Another
study also confirmed that autophagy/pyroptosis is involved in NASH. Blueberries have
been reported to improve NASH [75]; however, it is unclear which active ingredient in
blueberries plays this role. Juanjuan Zhu et al. found that tectorigenin (TEC, one active
ingredient in blueberries) could distinctly suppress lipid droplet formation, inflammatory
mediators release, and promote cell proliferation in steatosis hepatocytes. Similarly, TEC
also inhibited lipid damage and lipid accumulation induced by high-fat diets in vivo. In
the NASH model of mice and cell, TEC promoted autophagy and suppressed pyroptosis
and the release of inflammatory mediators. Moreover, 3-MA abolished TEC-mediated
inhibition of the lipid deposition, NLRP3, and GSDEM (a marker of pyroptosis), indicating
that TEC suppressed pyroptosis, NLRP3 inflammasome, and lipid deposition through
promoting autophagy in the NASH model of cells. In addition, the expression of tRF-47 (a
kind of tsRNAs) was upregulated by TEC. tRF-47 knockdown dampened TEC improve-
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ment of NASH in vitro through the inhibition of autophagy, activation of pyroptosis and
promotion of infammatory factors release. Similarly, tRF-47 inhibition worsened the lipid
deposition of NASH in vivo. Collectively, TEC ameliorated NASH by inhibiting pyroptosis
through promoting autophagy via upregulating tRF-47 [76]. In the above study, enhancing
autophagy suppressed pyroptosis by inhibiting NLRP3 inflammasome/GSDME in TEC
improvement of NASH, which needed to be further confirmed.

In conclusion, autophagy and pyroptosis play a protective role against NAFLD
(Figure 3), which will provide a new strategy for the treatment of NAFLD.
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4.2. The Role of Autophagy and Pyroptosis in Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is one of the most frequent primary liver cancers and
the third leading cause of cancer death [77,78]. The evidence indicates that 17β-estradiol
(E2) plays a protective role against HCC by activating the NLRP3 inflammasome [79];
however, the mechanism is unclear. The results of Qing Wei and colleagues showed that E2
induced NLRP3 inflammasome activation, evidenced by increased expression levels of cas-
pase 1 and IL-1β in HCC cells. E2 also reduced the viability and increased the mortality rate
of HepG2 cells. At the same time, caspase 1-specific inhibitor YVAD-cmk significantly re-
versed the E2 cytotoxic effect, indicating that E2 induced HCC cell death through activating
the NLRP3 inflammasome. Further experiments showed that E2 notably downregulated
autophagy in HCC cells, which was reversed by YVAD-cmk, indicating that E2 inhibition
of autophagy was mediated by NLRP3 inflammasome. Additionally, the inhibition of
autophagy by 3-MA significantly promoted E2-induced pyroptosis, which was reversed
by YVAD-cmk, suggesting that autophagy negatively regulated caspase-1-dependent py-
roptosis. Summarily, E2 induced NLRP3 inflammasome-caspase 1-dependent pyroptosis
through inhibiting autophagy. Autophagy negatively regulates pyroptosis through NLRP3
inflammasome [80]. In the above study, autophagy inhibition promotes the pyroptosis of
HCC cells, thus providing a new idea for HCC treatment by regulating autophagy.

4.3. The Role of Autophagy and Pyroptosis in Hepatotoxicity

Patulin is a mycotoxin produced by many common fungi in fruit and vegetable prod-
ucts. It has been reported that patulin induces hepatotoxicity [81–83]. Qian Chu et al.
found that patulin promoted pyroptosis and NLRP3 inflammasome-mediated inflamma-
tion, evidenced by the upregulated expression levels of NLRP3, IL-1β, IL-18, pro-caspase-1,
cleaved caspase-1 GSDMD, and cleaved GSDMD in mouse livers. Similarly, in HepG2 cells,
patulin also induced pyroptosis and NLRP3 inflammasome activation, while treatment
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with NLRP3 inhibitor MCC950 or cathepsin B inhibitor downregulated the levels of NLRP3,
caspase-1 and IL-1β, indicating that NLRP3 inflammasome/cathepsin B mediated patulin-
induced pyroptosis. Caspase-1 inhibitor Ac-YVAD-cmk reduced the levels of GSDMD and
IL-1β in HepG2 cells, which confirmed that patulin-induced pyroptosis was dependent
on NLRP3 inflammasome. Furthermore, autophagy inhibitor 3-MA dampened patulin-
induced induction of cytoplasmic cathepsin B expression, NLRP3 inflammasome activation,
pyroptosis and inflammation. Collectively, patulin promoted pyroptosis perhaps through
upregulating autophagy/NLRP3 inflammasome/cathepsin B in the liver. The above study
showed that patulin could induce autophagy, reduce the stability of the lysosomal mem-
brane, activate cathepsin B and then activate NLRP3 inflammasome, thus finally causing
pyroptosis. That is to say, autophagy positively regulates pyroptosis through the NLRP3
inflammasome [84].

Benzo[a]pyrene (BaP) is a common polycyclic aromatic compound which is easy to be
produced in the processing of petroleum and fatty food. It is a strong carcinogen and has
strong immunotoxicity and reproductive toxicity [85–87]. As the main metabolic organ of
BaP intake, the ability of the liver to metabolize BAP is much stronger than that of other or-
gans, so the hepatotoxicity caused by BAP is also stronger than that of other organs [88–90].
Li Yuan and colleagues showed that BaP promoted HL-7702 cell death, upregulated the
intracellular levels of ROS and inhibited HL-7702 cell growth by blocking the cell cycle in
the S phase. BaP induced pyroptosis is evidenced by the increase of LDH and NO release,
and the electrical conductivity of HL-7702 cells. Meanwhile, BaP also upregulated the
protein expression levels of procaspase-1, caspase-1, IL-1β and IL-18. Since caspase-1 and
inflammatory factors are important markers of pyroptosis activation, it could be deduced
that BaP induced cell death by promoting pyroptosis. Moreover, in HL-7702 cell, BaP
enhanced autophagy, and the inhibition of autophagy by 3-MA notably suppressed the
release of NO and LDH, the upregulation of electrical conductivity, and the expression
levels of pyroptotic marker proteins (caspase-1, IL-1β, IL-18), indicating that BaP induced
pyroptosis by promoting autophagy. Futhermore, the pyroptosis inhibitor Ac-YVAD-CM
also significantly abolished BaP-promoted autophagic cell death, evidenced by the increase
of autophagic vacuoles and the upregulated expression of LC3-II and Beclin-1. Summarily,
BaP induced HL-7702 cell death by promoting autophagy and pyroptosis simultaneously.
In addition, Autophagy and pyroptosis promote each other in HL-7702 cells [91]. ROS has
been involved in autophagy and pyroptosis [92]. In the above study, BaP increased ROS
level and induced autophagic cell death and pyroptosis in HL-7702 cells, ROS may mediate
the positive relationship between autophagy and pyroptosis.

5. Conclusions

In this review, we summarized the role of autophagy and pyroptosis in liver disorders as
follows: (1) ghrelin plays a protective role against NAFLD by decreasing TNF-α-induced hu-
man hepatocyte autophagy and HMGB1-mediated pyroptosis; (2) Tau inhibits As2O3-induced
pyroptosis through inhibiting CTSB-dependent NLRP3 inflammasome activation via sup-
pressing autophagy in NASH; (3) liraglutide ameliorates NASH through inhibition of NLRP3
inflammasome and pyroptosis activation via promoting mitophagy; (4) tectorigenin improves
NASH through inhibition of pyroptosis by promoting autophagy via upregulating tRF-47;
(5) 17β-estradiol promotes NLRP3 inflammasome-caspase 1-dependent pyroptosis by in-
hibiting autophagy; (6) patulin induces pyroptosis perhaps through autophagy/NLRP3
inflammasome/cathepsin B in the liver; (7) BaP induces HL-7702 cell death by promoting
autophagy and pyroptosis simultaneously (Table 1). These results indicate that autophagic
death and pyroptosis can lead to hepatocyte death, play an important role in liver disorders,
and may be important targets for treating various liver diseases.
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Table 1. The summary of the role of autophagy and pyroptosis in liver disorders.

The Type of Liver Disorder The Role of Autophagy and Pyroptosis Experimental Model Reference

non-alcoholic fatty liver
disease (NAFLD)

ghrelin plays a protective role against NAFLD by
decreasing TNF-α-induced human hepatocyte
autophagy and HMGB1-mediated pyroptosis

liver biopsies of NAFLD
patients and

human hepG2 hepatocytes
[57]

non-alcoholic
steatohepatitis(NASH)

Tau inhibits As2O3-induced pyroptosis by
inhibiting CTSB-dependent NLRP3

inflammasome activation via
suppressing autophagy

NASH model of mice/human
hepG2 hepatocytes [63]

NASH
liraglutide ameliorates NASH through inhibition

of NLRP3 inflammasome and pyroptosis
activation via promoting mitophagy

NASH model of mice/human
hepG2 cells [73]

NASH
tectorigenin improves NASH through inhibition

of pyroptosis by promoting autophagy via
upregulating tRF-47

NASH model of mice/human
hepG2 cells [76]

hepatocellular
carcinoma(HCC)

17β-estradiol promotes NLRP3
inflammasome-caspase 1-dependent pyroptosis

by inhibiting autophagyd
HCC cells [80]

hepatotoxicity
patulin induces pyroptosis perhaps through

autophagy/NLRP3 inflammasome/cathepsin B
in liver

mice/human HepG2 cells and
L02 cells [84]

liver injury BaP induces HL-7702 cell death by promoting
autophagy and pyroptosis simultaneously HL-7702 cells [91]

It has been reported that autophagy negatively regulates pyroptosis, and the mecha-
nisms can be summarized as follows. One is that autophagy inhibits pyroptosis by eliminat-
ing damage-associated molecular patterns (DAMPs) and pathogen-associated molecular
patterns (PAMPs). Another is that autophagy inhibits pyroptosis by inhibiting the basic
components in pyroptosis [16]. In this review, autophagy regulates caspase-1-mediated
canonical pyroptosis through NLRP3 inflammasome and ROS in the liver, which belongs
to the second mechanism mentioned above. Whether autophagy can regulate pyroptosis
through other mechanisms needs to be further studied.

It can be seen from this review that in the liver, autophagy negatively regulates
pyroptosis in some cases, and autophagy and pyroptosis exist in a mutually exclusive
manner. In other cases, they promote each other. This may be due to different types of
cell stimulation or stimulation time because different stimuli or stimuli exposure time may
lead to different autophagy and pyroptosis. The above reasons need to be further studied.
At present, most existing studies on the role of autophagy and pyroptosis in the liver are
in vitro. Still, there is a lack of corresponding in vivo research, which makes the basis of the
research results vulnerable. Therefore, many in vivo experiments are required in the future
to further verify the existing results. In addition, the role of autophagy and pyroptosis in
the liver and the relationship between them have not been clearly studied and need to be
further clarified in the future. Moreover, autophagy, apoptosis, NLRP3 inflammasome, and
pyroptosis are closely related, so the role and relationship of the above four in liver diseases
is a topic worthy of study in the future.

It is believed that with the in-depth development of relevant research, autophagy/pyroptosis
will provide a new strategy for the treatment of various liver diseases.
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