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Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019
(COVID-19), has led to a worldwide pandemic with millions of infected patients. Alteration in humans’ microbiota was also
reported in COVID-19 patients. The alteration in human microbiota may contribute to bacterial or viral infections and affect
the immune system. Moreover, human’s microbiota can be altered due to SARS-CoV-2 infection, and these microbiota changes
can indicate the progression of COVID-19. While current studies focus on the gut microbiota, it seems necessary to pay
attention to the lung microbiota in COVID-19. This study is aimed at reviewing respiratory microbiota dysbiosis among
COVID-19 patients to encourage further studies on the field for assessment of SARS-CoV-2 and respiratory microbiota interaction.

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), as a novel coronavirus, is spreading from China and
is known to be the etiologic agent for coronavirus disease
2019 (COVID-19) [1–3]. The SARS-CoV-2 belongs to beta-
coronavirus genera and phylogenetically is relevant to SARS-
CoV [4]. The SARS-CoV-2 can exploit the angiotensin-
converting enzyme 2 (ACE2) for priming Spike (S) protein
[5, 6]. The ACE2 is expressed in the esophagus, lungs, liver,
and intestinal epithelium [7, 8]. SARS-CoV-2 infection can
be asymptomatic or can cause a wide spectrum of signs and
symptoms: fever, dry cough, shortness of breath, pneumonia,
pulmonary edema, acute respiratory distress syndrome

(ARDS), multiple organ failure, and death [9]. In some
patients, common symptoms include headache, nausea, and
vomiting, and diarrhea is also reported [10].

At the infancy age, various bacteria, fungi, and viruses
colonize in the skin, oral cavity, and gut. These microorgan-
isms are known as the human microbiota [11–13]. The pre-
dominant human oral microbiota is summarized in
Table 1. The microbiome plays an essential role in human
physiology, and it is considered an important factor for the
maintenance of human health [14]. Typically, these microbes
are commensal or mutualists, and they help to digest food
and even provide immunity [15]. As mentioned before,
microbial communities are found throughout the human
body; there are specialized bacterial communities in certain
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regions of the respiratory system that are believed to play a
significant role in preserving human health [16].

The essential factor for upper respiratory tract (URT),
lower respiratory tract (LRT), or disseminated respiratory
infections is colonization in the URT [17]. Variations in lung
microbiota could potentially improve immune response
against viral and secondary bacterial infection [18]. Recent
studies have shown the lung’s microbiota contributed to the
immunologic homeostasis and potentially altered viral infec-
tion susceptibility [19]. The ARDS is a severe complication of
COVID-19 [19]. Studies showed that the lung microbiota of
the patients with ARDS is different from those without ARDS
[20]. This fact could be an essential issue in COVID-19
progress.

2. Respiratory Bacterial and Fungal Microbiota

The oral cavity can be considered as the main route of entry
for different pathogens. Various microorganisms, including
bacteria, fungi, viruses, archaea, are colonized in the oral cav-
ity and termed oral microbiota [21, 22]. Temperature (37°C),
saliva pH (6.5-7), and humidity of the oral cavity make an
appropriate environment for microorganism survival and
maintenance [23, 24]. Furthermore, oxygen availability and
consuming different food with acidic or alkaline pH can
influence oral organism’s growth pattern. Bacterial and fun-
gal are primary microbiota communities of the oral cavity.
Six strains of bacteria include Firmicutes, Bacteroidetes, Pro-
teobacteria, Actinobacteria, Spirochaetes, and Fusobacteria,
make up 94% of the oral bacteria community, while the
major fungal population includes Candida species followed
by Cladosporium spp., Aureobasidium spp., and Saccharomy-
cetales in healthy cases [25, 26].

Commensal, symbiotic, and potentially pathogenic bac-
teria and fungi are in equilibrium. Poor oral hygiene such
as periodontitis and dental caries, also pathogens like the
Epstein–Barr virus (EBV), cytomegalovirus (CMV), smok-

ing, drinking, and antibiotic consumption can compromise
this ecological balance [27–30]. Microbial either plankton
or biofilm habitats are found in the oral cavity; for instance,
lingual microbiota contains stable multilayers of biofilms.
Microbiota in the saliva is considered plankton and cannot
be due to saliva being fluid and swallowed continuously
[31]. On the other hand, saliva contains proteins such
as mucins, agglutinin, and proline-rich proteins that help
microbial adhesions to hard tissue like teeth [32]. Using
high-precision sequencing methods introduces the human
oral microbiome as a part of the Human Microbiome
Project. This particular field is divided into two parts:
(i) core: shared in all individuals. Among all the microbi-
ota in the body, four-strains were found more frequently
than others: Actinobacteria, Firmicutes, Proteobacteria,
and Bacteroidetes [33]. (ii) Variable is dependent on life-
style and environmental determinants and is variable
between individuals [23].

Moreover, the diversity of microbiota changes is highly
influenced by age. Alteration in the microbiota begins at
birth, for instance, the delivery route of the baby. This change
in the types of microbiota in infants is less than in adults (due
to the absence of hard dental tissues, only feeding by breast
milk/formula and so on) and is observed until later ages
[32, 34]. Microbiota maturation by biological or passive
changes due to vaccines, antibiotics, viral infection, teeth
decay/filling, and different disease alerts gradually [28, 35–
37]. Common oral diseases like dental caries, gingivitis, and
oral mucosal disease are caused by endogenous bacteria
[38]. Pathogenic viruses act as exogenous factors to make
dysbiosis. Ling et al. indicated that hepatitis B virus (HBV)
infection elevated Fusobacterium, Filifactor, Eubacterium,
Parvimonas, and Treponema in the oral cavity leading to
the unpleasant smell of mouth [39]. Also, dysbiosis of bacte-
rial colonization in the respiratory tract and oral cavity was
induced by the H1N1 influenza virus, leading to secondary
bacterial infection [18].

Table 1: The predominant human oral microbiota.

Sites Microbiota Ref

Lips Streptococcus spp., C. Albicans [30]

Hard palate
Streptococcus spp., Uncl. Pasteurellaceae, Mogibacterium Veillonella, Catonella Prevotella, Uncl.

Lactobacillales, Gemella
[21]

Tongue
Front two-thirds of the tongue: Streptococcus mutans

[25, 31]Tongue dorsum: Streptococcus salivarius, S. oralis, S. mitis, Actinomyces naeslundii,Haemophilus spp.,
Rothia mucilaginosa

Gingival sulcus
Proteobacteria (genus Acinetobacter, Haemophilus, Moraxella), Firmicutes (Streptococcus,

Granulicatella, Gemella)
[32]

Buccal mucosa Firmicutes (Streptococcus sanguinis, S. oralis, S. mitis) [31, 155]

Palatine tonsils Streptococcus, Prevotella, Neisseria, Fusobacterium, Veillonella [156]

Saliva
Firmicutes (genus Streptococcus and Veillonella), Bacteroidetes (genus Prevotella), and

Betaproteobacteria (genus Neisseriaceae)
[25, 31, 157]

Teeth (dental plaque)

Tooth crown: Firmicutes (genus Streptococcus and Veillonella)

[25, 31, 32]
Supragingival plaque: Firmicutes and Actinobacteria (genus Corynebacterium and Actinomyces)

Subgingival plaque: Obsidian Pool OP11, TM7, Deferribacteres, Spirochaetes, Fusobacteria,
Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, C. albicans
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2.1. The Microbiota of the Oral Cavity. The oral cavity con-
sists of soft tissues (including lips, soft palate, tonsil, and ton-
gue), saliva, and hard tissue, e.g., teeth. It harbors a high
diversity of microbial organisms, and each tissue contains
its specialized microbial community. Mucosal surfaces have
monolayers of microorganisms compared with the tongue
that has thick biofilms [40].

2.2. The Microbiota of the Oropharynx. The oropharynx is
located in soft palate and upper of the epiglottis. Microbiota
of the oropharynx in healthy adults is similar to other muco-
sal surfaces in the oral cavity and colonized by members of
Firmicutes, Proteobacteria, and Bacteroidetes (including
Streptococcus, Neisseria, Haemophilus, and Lachnospira
spp.) [18, 41–43].

2.3. The Microbiota of the Laryngopharynx. The salivary
microbiota after the oropharynx drain into the laryngophar-
ynx. Indeed, it connects the upper aerodigestive tract to the
digestive tract. The Firmicutes, Fusobacteria, Proteobacteria,
Actinobacteria, and Bacteroidetes were reported as the pri-
mary bacterial population in this site [44].

3. Physiologic Features of
Respiratory Microbiota

Over the past two decades, many studies have examined the
impact of oral microbiota on disease or human health. The
oral tissues use some mechanisms and molecules to balance
the oral flora and potential pathogens. Microbial communi-
ties are tissue-specific, which can tolerate the dominant phys-
icochemical environment. The microbiota adhere to the
epithelial surfaces’ mucosal membrane and can resist the
saliva flow [38]. However, the saliva flow plays a role in host
defense and contains antimicrobial peptides, lysozyme, lacto-
ferrin, defensins, and lactoperoxidase to prevent microbial
overgrowth [45–48]. Immunomodulation of commensals is
another mechanism to maintain the oral host-microbe bal-
ance. The epithelial cells are natural physical barriers against
pathogens, and they secrete antimicrobial mediators like IL-
6, IL-8, TNF-α, IL-1β/α, defensins, and cathelicidin LL-37
[49]. The formation of pores on the bacterial cytoplasmic
membrane is considered as a significant role of defensins
and LL-37. α/β–defensins are found in all oral tissues, saliva,
and gingival crevicular fluid.

Defensins as antimicrobial functions can induce chemo-
tactic ability to recruit monocytes, macrophages, and even
T cells [50, 51]. Among immune cells that are involved in
healthy oral immunity responses, neutrophils serve the main
role. In healthy junctional epithelial tissue, LL-37 and defen-
sins attract neutrophils. This attraction leads to migrated
neutrophils that lie in the gingival margin to make a barrier
against dental plaque germs [52]. Commensals also control
neutrophil migration in gingival tissues through modulating
intracellular adhesion molecule 1 (ICAM-1) and E-selectin
expression [53]. Neutrophils can generate nitric oxide and
nitrogen intermediates with protective effects against bacteria
[54]. IL-17-mediated immunity contributes to mucosal fun-
gal surveillance, especially Candida spp. In parallel, IL-17

enhances the epithelium integrity via regulation of claudin,
promotes the antimicrobial peptides expressed by epithelial
cells, and elicits the secretion of neutrophil chemotaxis [49,
55]. The point to consider is that the commensal bacteria
inhibit IL-17 family members’ overexpression in a negative
feedback manner to keep the oral homeostasis [56].

The other mechanism is bacteriophages that regulate the
oral ecosystem as biocontrollers. Endodontic infection
caused by Enterococcus faecalis could be healed through bac-
teriophages [57, 58]. Lytic bacteriophages can lyse bacteria
and alleviate the bacterial pathogen numbers. The released
substances from lysed bacteria also activate the immunity
responses. These findings led to defining a concept called
“immunophage synergy” [59]. Besides, bacteriophages have
a direct impact on host immunity, either adaptive or innate
immunity. Macrophages and dendritic cells can take up the
bacteriophages as a virus or with their hosts and, conse-
quently, induce cytokine responses. They also act as opsonin
molecules to cover bacterial cytoplasmic membrane to stim-
ulate phagocytosis. Commensal bacteriophages induce spe-
cific anti-phage antibodies. Specific anti-T4 phage IgG
against viral gp24 and gp23 proteins was found in sera of
healthy subjects [60, 61].

The presence of multiple species can give balance to pop-
ulations of microorganisms in the body, e.g., Pichia in the
oral cavity has an antagonistic relation with Aspergillus,
Fusarium, and particularly Candida. Sometimes competition
for nutrient uptake can limit germination and adhesion. A
decrease in Pichia amount accompanies by increase in the
growth of opportunistic fungi [62]. Bacteria use quorum
sensing to communicate with other bacteria. Antagonistic
interactions occur between Porphyromonas gingivalis (Pg),
a periodontal pathogen and normal flora Streptococcus Gor-
donii (S. Gordonii), Streptococcus intermedius, and Strepto-
coccus mitis. Arginine deiminase, encoded by the ArcA
gene in these commensals, decreases expression of FimA that
is a virulence factor in Pg. Hydrogen peroxidase produced by
these streptococci can limit P. gingivalis growth in oral cavity
[63]. Due to the lack of catalases in S. Gordonii, Actinomyces
naeslundi breaks down the H2O2 generated by S. Gordonii. A
symbiotic relationship is present between these two bacteria
while competes with other possible pathogens [64, 65]. A
competition between commensals and Streptococcus mutans
(S. mutans) was suggested. Commensals overcome S. mutans
by alkali components like urea to nearly provide a neutral
environment [66]. Further, serine protease challisin derived
from S. Gordonii interferes and degrades S. mutans bacterio-
cin production [67].

4. Pathogenesis of Respiratory Microbiota

Periodontitis, defined as destructive gum infection with tooth
attachment loss and severe inflammation, is mainly caused
by Porphyromonas gingivalis (P. gingivalis). Pg’s adherence
is mediated by a virulence gene known as FimA [68]. P. gin-
givalis also harbors dpp genes, which code dipeptidyl pepti-
dases (DPP) [69, 70]. Interestingly, dpp genes present in
subgingival crevice colonized bacteria, but not in mucosal
surfaces and tongue isolated bacteria [71]. The high DPP4
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activity was observed in the saliva of patients with chronic
periodontitis [72]. DPP4 can degrade incretin hormones
released in response to fat and glucose ingestion by increas-
ing insulin secretion. However, the effect of insertion is not
seen in people who have type 2 diabetes [71, 73, 74]. P. gingi-
valis through α5β1-integrin expressed on the epithelial cells,
crosses the epithelial barrier, and enters the bloodstream
[75]. LPS from P. gingivalis activates the TLR-4 signaling
and triggers the secretion of IL-1β and IL-6 [76, 77]. TLR-4
signaling activated by Pg is also reported to be associated with
human pancreatic tumors [78]. Moreover, anti-P. gingivalis
antibodies in mouse model of periodontitis were able to pre-
vent mice developing metabolic diseases [69]. Viral infec-
tions such as Herpes simplex virus-1, cytomegalovirus, and
EBV virus can impair or suppress the immune system and
induce aggressive periodontitis. A cooperative complex of
Pg, S. aureus, and Herpes simplex-1 accelerates aggressive
periodontitis [79]. Kaposi’s sarcoma-associated herpesvirus
(KSHV) is known as the most common AIDS-associated
tumor [80]. The lipoteichoic acid (LTA) of S. aureus and
lipopolysaccharide (LPS) of Pg can facilitate entry of KSHV
through upregulation of heparan sulfate and heparan sulfate
proteoglycans (viral receptors) and induce reactive oxygen
species production (ROS). The LTA and LPS established viral
latency by increasing viral latency-associated nuclear antigen
(LANA) expression [81]. These findings suggested the role of
Pg as a periodontal microbiota on the immune system and
systemic diseases.

On the other hand, other periodontal pathogens, Fuso-
bacterium, Prevotella, and Alloprevotella were enriched in
HPV-negative in nonsmokers patients with oral cavity squa-
mous cell cancer (OC-SCC) while commensal Streptococcus
spp. was decreased. These oral pathogens were the primary
source for transcriptional stimulation of genes encoding
HSP90A, TLR-1/2/4 ligands [82]. Kim et al. indicated that
HSP90 could increase telomerase expression through pro-
moter activation of human oral cancer cells. This expression
can interact with the human telomerase reverse transcriptase
(hTERT) promoter [83].

Dental caries is much dependent on dietary carbohy-
drates. The S. mutans can alter these carbohydrates to
organic acids and reduce the pH [84].

Mucosal candidiasis, known as thrush [85], is a common
disease in patients receiving high doses of chemotherapy or
immunosuppressive agents and caused by Candida albicans
(C. albicans) [49, 86]. A key point of C. albicans diseases is
the yeast-to-hyphal transformation by phospholipases
(PLs). This phospholipase is capable of destroying the junc-
tions between epithelial cells and cell membranes [45]. The
C. albicans penetrates the epithelial cells of mucosal mem-
branes directly or by binding Als3 and Ssa1 of hypha to E-
cadherin, epidermal growth factor receptors, and HER2 of
cells [87]. Furthermore, aspartic proteinase 2 (Sap2), another
C. albicans’s lytic enzyme, can protect the organism from
immune system proteins such as salivary lactoferrin and
immunoglobulins. Saps can activate inflammatory factor
IL-1β in mucosal lesions [88]. Also, some external factors like
antifungals can help to elevate dysbiosis. In immunocompro-
mised patients, fluconazole can enhance C. dubliniensis. The

C. dubliniensis is known as another germ in oral candidiasis
and candidemia, which can increase, Saps expression [88–
90].

Hepatocytes are the hepatitis B virus’s primary host cells.
The HBV infection is transmitted by blood or sexual activity
[91]. Interestingly, the diversity of oral microbiota was
decreased in HBV chronic liver disease (HBV-CLD) patients.
In HBV-CLD, patients’ Fusobacterium, Treponema, Eubacte-
rium, Parvimonas, Pseudomonas, and Filifactor could be
detected, which can induce an increased risk of periodontal
disease. Indeed, the long-term course of HBV infection and
gut-liver axis microbiome changes were the probable causes
of oral microbiota alteration. This reduction led to dysbiosis
in gut microbiota. In HBV-CLD patients, a high level of
inflammation factors like IL-6 and IL-1β impaired the oral
immunity system by increasing the abundance of Fusobacter-
ium and Treponema, which attacked gut microbiota as
opportunistic pathogens [39]. Immunodeficiency disorders
or infections dysregulate the immune system and influence
the balance of oral microbiota. In HIV patients, dominant
oral organisms are correlated with CD4 T cell count [92].

5. Respiratory Microbiota and COVID-19

The primary transmission route of COVID-19 is respiratory
droplets. It can also be transmitted through close contact [93,
94]. Human microbiota comprises viruses, phages, bacteria,
and fungi [95]. It is believed that bacteria and fungi’ coinfec-
tion play a notable role during COVID-19 [10]. For instance,
comorbidity associated with severe COVID-19 is a chronic
pulmonary disease (CPD) [96]. The airway microbiota com-
position is altered in CPD patients [97].

Zhou et al. reported the secondary infections and coinfec-
tions in COVID-19 patients [98]. Regularly, the human
microbiota influences susceptibility to respiratory infections
[99]. Microbiota compounds in the lung are altered in
COVID-19 patients, and the changes may have an essential
role in the COVID-19 immunity and severity [100]. Com-
mensal bacteria can affect antiviral immunity activation,
and probiotics can reduce the time duration and degree of
respiratory viral infections [101]. Some Gram-positive bacte-
rial microbiota like Staphylococcus aureus has been shown to
prevent influenza virus infections [102]. In patients with
influenza A and B admitted to the ICU, the percentage of
invasive pulmonary aspergillosis (IPA) is higher than
patients with severe pneumonia caused by other pathogens
except for flu (19% versus 5%) [103]. Schauwvlieghe et al.
reported that the 3-month mortality rate of influenza
patients with and without the IPA is 51% and 28%, respec-
tively [103]. Regarding the epidemiological data to decrease
morbidity and mortality in COVID-19 patients, antifungal
chemoprophylaxis and environmental measures could be
proposed [104].

Oral health deterioration in COVID-19 patients due to
external ventilation and subsequent complexities can be
caused by hyposalivation, even affecting the lower respiratory
tract, similar to aspiration pneumonia [105]. Impaired bal-
ance of oral microbiota arises from systemic treatments and
changes in the intraoral environment and may lead to other
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problems [105]. The large populations in the oral and upper
respiratory tract microbiotas are from the Streptococcus spp.
[106]. Streptococci can metabolize carbohydrates in the fer-
mentation process and yield acids, which has a role in dental
caries progress by species like S. mutans [106]. Patients with
COVID-19 have notable lung microbiota, especially with
potential dysbiosis and divergence from healthy individuals
[107]. Streptococcus salivarius (S. salivarius) is a predomi-
nant oral cavity microbiota [108]. Colonization of S. salivar-
ius K12 strain reduces the occurrence of some viral upper
respiratory tract infections; in SARS-CoV-2 patients, this
field needs further investigation [107]. In a study published
in 2003, the severe acute respiratory syndrome (SARS)
patients had a secondary infection, including a high percent-
age of the Pseudomonas aeruginosa, Staphylococcus spp., Ste-
notrophomonas maltophilia, Klebsiella terrigena, and fungal
[109]. Further research is needed to confirm how microbiota
communication is changing post-COVID-19 infection, inter-
and intrapersonally. The results of current studies related to
microbiota in the COVID-19 patients are shown in Table 2.

6. Respiratory Microbiota Dysbiosis
and COVID-19

A neglected function of lung microbiota is the maintenance
of immune tolerance, which leads to the prevention of
inflammatory responses, helps lung homeostasis, and can
also be supposed as lung health status [110]. The oral cavities
are known as a notable reservoir of SARS-CoV-2 [111]. Since
the oral microbiota interacts with SARS-CoV-2, efficient oral
health care efforts are needed to reduce severe SARS-CoV-2
infections [112]. The microbiota in the human body, such
as nasal channels, oral cavities, skin, gastrointestinal tract,
and urogenital tract, are important in physiological process,
immunity, and nourishment [113]. By recognizing crucial
microbiota functions in human health and disease, it could
be found that many complicated human disorders are corre-
lated with microbiota [113, 114]. The schematic view of lung
microbiota changes in disease and health conditions is con-
ducted in Figure 1 [100]. With new insight into microbiota’s

role in human diseases and health, these findings can be
implemented as a novel therapeutic target [115]. The healthy
oral cavity’s microbiota is distinct from bacterial inhabitants
of other organs in human body. The human oral cavity
comprises a distinct set of niches containing the tongue, ton-
sils, saliva, and teeth [116]. The same bacteria population
organizes the oral microbiome in each healthy oral cavity
niche [113, 116].

However, the microbiota is not uniform in different oral
cavity circumstances. Bacterial diversity varies significantly
between other sampling sites, including saliva, buccal
mucosa, and back of the tongue supragingival plaque, and
subgingival plaque [117].

Lung microbiota contributes to immunological homeo-
stasis [110]. Viral infection may have considerable interplays
with the commensal microbiota. Commensal microbiota can
be altered by viral infections or even be reduced during infec-
tion [118].

Concerning COVID-19, a highly significant difference in
the lung microbiota composition has been observed between
patients with SARS-CoV-2 pneumonia and healthy popula-
tion, implying a dysbiosis in patient’s lung microbiota
[119]. The Corynebacterium spp., Staphylococcus spp., Pro-
pionibacterium spp., and several Malassezia spp. have been
recognized as the core nasal members microbiome already
[120]. Chonmaitree et al. collected nasopharyngeal microbi-
ota samples longitudinally during health and disease in
infants [121]. The results suggested that bacterial oto-
pathogen genera (Haemophilus spp., Streptococcus spp.,
and Moraxella spp.) were highly abundant in nasopharyn-
geal microbiota. These bacteria appear to correlate with
upper respiratory tract infection (URI) symptoms during
viral infection. Chonmaitree et al. mentioned the probiotic
bacterium Staphylococcus spp. and Bifidobacterium spp.
played a crucial role in inhibiting the otopathogens’ harm-
ful effects [121].

Respiratory microorganisms were widely characterized
[42, 113, 122]. Balance in three factors, microbial immigra-
tion, microbial elimination, and relative reproduction rates,
can determine lung microbiome characteristics [123]. The

Table 2: The predominant microbiota in the COVID-19 patients reported from current studies.

Type Outcome Ref

Acinetobacter, Chryseobacterium, Burkholderia, Brevundimonas,
Sphingobium

The critical impact of mucosal microbiota on the susceptibility to
SARS-CoV2 infection and severity of COVID-19 patients

[158]Cutaneotrichosporon, Issatchenkia, Wallemia, Cladosporium,
Alternaria, Dipodascus, Mortierella, Aspergillus, Naganishia,
Diutina, and Candida

Firmicutes (42%), Bacteroidetes (25), Proteobacteria (18%),
Actinobacteria (8%), and Fusobacteria (5%)

No statistically significant differences in nasopharyngeal
microbiota of SARS-CoV-2 infection.

[144]

Acinetobacter (80.70%), Chryseobacterium (2.68%), Burkholderia
(2.00%), Brevundimonas (1.18%), Sphingobium (0.93%),
Mycobacterium (3.59%), and Prevotella (0.56%) COVID-19 mortality is associated with complex mixed bacterial

and fungal infections in the lungs, and microbiota monitoring is
necessary in the lower respiratory tract for on-time personalized

therapy.

[159]Cutaneotrichosporon (Cryptococcus, 28.14%), followed by
Issatchenkia (8.22%), Wallemia (4.77%), Cladosporium (4.67%),
Alternaria (4.46%), Dipodascus (4.01%), Mortierella (3.22%),
Aspergillus (2.72%), Naganishia (2.53%), Diutina (2.15%), and
Candida (1.42%)
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human respiratory tract harbors a homogenous microbiota
that reduces biomass from the upper to the lower tract [42].
The nasopharynx core microbiome remains indistinct
because it varies extensively from person to person in seasons
[122]. One study reported that the upper respiratory tract’s
microbial balance is typically unique to each person, chang-
ing little over time [124]. However, the antimicrobial pro-
phylaxis and treatment may induce dysbiosis in airway
microbiota and increase the Haemophilus parainfluenzae
and yeast colonization [125].

By increasing mucosal function and the ability to differ-
entiate structure, stimulating in both the innate and adaptive
immune systems, and giving “colonization resistance”
against pathogen invasion, the human microbiota is regarded
to benefit the host [126]. The commensal microbiota’s
importance was described in viral infection, with the com-
mensal microbiota composition critically regulating host
immune response following respiratory infections such as
influenza A virus [127]. A wide range of respiratory tract
infections is caused by viruses, including coronavirus, rhino-
virus, respiratory syncytial virus, and influenza virus [128].
Infection by respiratory viruses has a pathological effect on
the respiratory tract caused by the viral invasion or immuno-
pathogenesis process and induced microbiome alterations
and secondary infection [18, 129, 130]. Lei et al. reported that
monitoring fungal infection in patients with SARS-CoV-2
should be considered due to the high positive rate of fungal
antigenemia [131]. Also, Chen et al. reported fungal coinfec-
tions, including C. albicans and C. glabrata, between patients
with COVID-19 [10]. Preliminary reports showed further
investigations need to evaluate fungal coinfection among
COVID-19 patients [10, 131]. In one study beginning in
the outbreak and with the fast spread of the SARS-CoV, the

first few cases were treated with a mixture of ribavirin and
corticosteroids, with good results. Long-term treatment with
high-dose steroids and the lack of an active antimicrobial
agent can cause difficulties such as disseminated fungal infec-
tion in patients [132]. Corticosteroid therapy, which is usu-
ally sufficient to modulate immune reaction in severe
inflammatory conditions, seems harmful in some of the
COVID-19 cases [133, 134]. Fungal and bacterial infections
are common complications of viral pneumonia in seriously
ill patients [135]; a comprehensive investigation is needed
in COVID-19 patients.

7. Respiratory Microbiota and COVID-
19 Transmission

Yildiz et al., in an experience of influenza A virus infection on
a mouse model, indicate qualitative dysbiosis and bacterial
superinfection sensitivity in the lower respiratory tract
microbiota compounds [136]. Observing overall shifts in
the bacterial and fungal community of sinus diversity was
shown to be attributed to a compound of personal, seasonal,
and annual changes [120]. Oral opportunistic pathogens like
Capnocytophaga and Veillonella were found in the broncho-
alveolar lavage (BAL) sample of the COVID-19 patients
[112]. The poor oral hygiene, cough, raised inhalation condi-
tions, and ventilation cause a transmission route for oral
microbiota to penetrate the lower respiratory tract and cause
respiratory disorders [112].

During COVID-19, some pathological oral conditions
could be aggregated, especially in the compromised immune
system and prolonged therapeutic approach [105]. Appear-
ing evidence submits that the nasopharyngeal microbiota’s
composition is correlated with susceptibility to acute

Microbial density
Disease condition

Microbial diversity

Inhibit infection and inflammation
Microbiome functions Immunity expansion

Immune cells stimulates

Microbial density
Healthy condition

Lungs
Microbial diversity

Figure 1: The lung microbiome in disease and health condition.

6 BioMed Research International



respiratory infections and, importantly, the host immune
response in children [137]. It has been shown that respiratory
tract bacteria are not inactive during severe respiratory
infections but rather have a complex interaction with the
host immune response and infecting viruses [138, 139]. Eco-
system imbalance may cause overgrowth and invasion by
bacterial pathogens and beginning respiratory or invasive
diseases [140]. Respiratory bacteria and respiratory viruse
colonization is frequently competitive interspecies interac-
tions and can induce microbiota dysbiosis at the nasopha-
ryngeal niche [140].

SARS-CoV-2 infection likely occurs in patients already
colonized with bacteria. Besides, the very reasonable possibil-
ity exists that severe COVID-19 patients could be subse-
quently or coincidentally infected by bacteria and fungi
[10]. In COVID-19, detecting bacterial or fungal infection
based on the clinical and radiological form could be challeng-
ing. The microbiological techniques can help diagnose,
mainly sputum culture [135]. The bacterial composition of
the nasal microbiota varies between stages of life [141]. A
cross-sectional study focused on this transition indicates that
puberty has a significant impact on nasal microbiota composi-
tion. There are statistically significant differences in nostril
microbiota compounds, in which Actinobacteria spp. and par-
ticularly Corynebacterium spp., Propionibacterium spp., and
Turicella spp. are overrepresented in some conditions [142].
By affecting COVID-19 on most of the ciliated cells in the
alveoli and disturbance on clearing the airways, progressive
debris and fluid accumulation could be expected [143].

8. Respiratory Microbiota and COVID-
19 Severity

The human upper respiratory tract is the leading entrance for
aerosol-transmitted microorganisms, including SARS-CoV-
2 [144]. The complex interactive oral microbiota has an
expansive biofilm configuration. Besides the bacteria, Can-
dida is a typical microbiota. Also, 100 recognized species of
pathogenic fungi, including Cryptococcus spp., Aspergillus
spp., and Fusarium spp., appear to reside in some individuals
[145]. The microbiota of healthy lungs overlaps with that
found in the mouth [146]. In bronchoalveolar lavage fluid
samples from healthy adults, the well-known genera consist
of Streptococcus spp., Prevotella spp., and Veillonella spp.
are detected [146, 147]. Strain K12 of Streptococcus salivarius
has been clinically demonstrated to play a role in creating a
stable upper respiratory tract microbiota due to the ability
to stimulate IFN-γ release and to activate natural killer cells
(NK) without triggering aggressive inflammatory responses.
Also, strain K12 is capable of protecting the host from path-
ogenic viral infections. The proposed antiviral capability of
strain K12 has been attributed to the observed development
of an adaptive immune response, as revealed by the detection
of enhanced IFN-γ levels in human saliva [107]. More inves-
tigation needs to evaluate the impact of strain K12 on SARS-
CoV-2 and COVID-19 severity.

The innate and adaptive immune systems are active
against the SARS-CoV-2 infection. Lymphopenia, with an
enormously decreased of B cells, CD4+ and CD8+ T cells,

NK cells, and monocytes, is associated with the increased
severity of COVID-19 [148, 149]. The regulatory T cells can
affect microbiota and microbiota regulating the immune sys-
tem and play an essential role in maintaining homeostasis
[150, 151]. Gathering obtained evidence with different medi-
ations such as antibiotic exposure, and microbiota transfer
showed that the microbiota could enhance antiviral immu-
nity, a new perspective for efficient treatments in COVID-
19 patients [19]. The SARS-CoV-2 mutations could cause
alterations in virus pathogenicity [152]. Hence, it is crucial
to investigate the pattern and rate of mutations that hap-
pened [153].

Lung microbiota is associated with disease susceptibility
and severity [154]. Shen et al. analyzed changes in the lung
microbiota composition in SARS-CoV-2-infected patients
and showed the microbial balance in these patients’ BAL.
Commensal and pathogenic bacteria dominate this commu-
nication, and this composition is also different from the
healthy control group [119]. Few studies have been per-
formed on the interaction between lower respiratory tract
(LRT) microbiota and viral infections. Alterations in the
microbiota in the LRT during viral infection were variable
and might result from the reduced capability to remove path-
ogens in the upper respiratory tract [19]. Probiotics can
develop immunity against influenza infection. The microbi-
ota can probably work as a target for antiviral therapy [19].
It needs to be understood how microbiota could help assess
clinical status and serve as a target for anti-SARS-CoV-2
therapies [19].

9. Conclusion

Microbiota communities play critical roles in immune sys-
tem homeostasis. Therefore, any alteration in the healthy
humans’ microbiota can have detrimental impacts on health
andmay lead to an infection or the progression of the disease.
It seems that the microbiota balance differs between the
healthy group and COVID-19 patients. Dysbiosis in certain
microbiota species’ populations may alter the pathogenesis
of COVID-19 in patients. Therefore, tracking these changes
is useful as a prognostic approach during COVID-19 treat-
ment. Further studies are needed to determine significant cel-
lular changes resulting from SARS-CoV-2 and microbiota
interactions.
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