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Abstract

Training and testing of conventional machine learning models on binary classification problems depend on the proportions
of the two outcomes in the relevant data sets. This may be especially important in practical terms when real-world
applications of the classifier are either highly imbalanced or occur in unknown proportions. Intuitively, it may seem sensible
to train machine learning models on data similar to the target data in terms of proportions of the two binary outcomes.
However, we show that this is not the case using the example of prediction of deleterious and neutral phenotypes of
human missense mutations in human genome data, for which the proportion of the binary outcome is unknown. Our
results indicate that using balanced training data (50% neutral and 50% deleterious) results in the highest balanced
accuracy (the average of True Positive Rate and True Negative Rate), Matthews correlation coefficient, and area under ROC
curves, no matter what the proportions of the two phenotypes are in the testing data. Besides balancing the data by
undersampling the majority class, other techniques in machine learning include oversampling the minority class,
interpolating minority-class data points and various penalties for misclassifying the minority class. However, these
techniques are not commonly used in either the missense phenotype prediction problem or in the prediction of disordered
residues in proteins, where the imbalance problem is substantial. The appropriate approach depends on the amount of
available data and the specific problem at hand.
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Introduction

In several areas of bioinformatics, binary classifiers are common

tools that have been developed for applications in the biological

community. Based on input or calculated feature data, the

classifiers predict the probability of a positive (or negative)

outcome with probability P(+) = 1–P(–). Examples of this kind of

classifier in bioinformatics include the prediction of the phenotypes

of missense mutations in the human genome [1–8], the prediction

of disordered residues in proteins [9–17], and the presence/

absence of beta turn, regular secondary structures, and trans-

membrane helices in proteins [18–21].

While studying the nature of sequence and structure features for

predicting the phenotypes of missense mutations [22–25], we were

confronted by the fact that we do not necessarily know the rate of

actual deleterious phenotypes in human genome sequence data.

Recently, very large amounts of such data have become available,

especially from cancer genome projects comparing tumor and

non-tumor samples [26]. This led us to question the nature of our

training and testing data sets, and how the proportions of positive

and negative data points would affect our results. If we trained a

classifier with balanced data sets (50% deleterious, 50% neutral),

but ultimately genomic data have much lower rates of deleterious

mutations would we overpredict deleterious phenotypes? Or

should we try to create training data that resembles the potential

application data? Should we choose neutral data that closely

resembles potential input, for example human missense mutations

in SwissVar, or should we use more distinct, for example data from

close orthologues of human sequences in other organisms, in

particular primates?

Traditional learning methods are designed primarily for

balanced data sets. The most commonly used classification

algorithms such as Support Vector Machines (SVM), neural

networks and decision trees aim to optimize their objective

functions that usually lead to the maximum overall accuracy – the

ratio of the number of true predictions out of all predictions made.

When these methods are trained on very imbalanced data sets,

they often tend to produce majority classifiers – over-predicting

the presence of the majority class. For a majority positive training

data set, these methods will have a high true positive rate (TPR)

but a low true negative rate (TNR). Many studies have shown that

for several base classifiers, a balanced data set provides improved

overall classification performance compared to an imbalanced

data set [27–29].

There are several methods in machine learning for dealing with

imbalanced data sets such as random undersampling and over-

sampling [29,30], informed undersampling [31], generating

synthetic (interpolated) data [32], [33], sampling with data

cleaning techniques [34], cluster-based sampling [35] and cost-

sensitive learning in which there is an additional cost to

misclassifying a minority class member compared to a majority

class member [36,37]. Provost has given a general overview of
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machine learning from imbalanced data sets [38], and He and

Garcia [39] show the major opportunities, challenges and

potential important research directions for learning from imbal-

anced data.

Despite the significant literature in machine learning from

imbalanced data sets, this issue is infrequently discussed in the

bioinformatics literature. In the missense mutation prediction field,

training and testing data are frequently not balanced and the

methods developed in machine learning for dealing with

imbalanced data are not utilized. Table 1 shows the number of

mutations and the percentage of deleterious mutations in training

data set and testing data set for 11 publicly available servers for

missense phenotype prediction [1–3,6,7,40–42]. Most of them

were trained on imbalanced data sets, especially, nsSNPAnalyzer

[3], PMut [2,43,44], SeqProfCod [41,45] and MuStab [46]. With

a few exceptions, the balanced or imbalanced nature of the

training and testing set in phenotype prediction was not discussed

in the relevant publications. In one exception, Dobson et al. [47]

determined that measures of prediction performance are greatly

affected by the level of imbalance in the training data set. They

found that the use of balanced training data sets increases the

phenotype prediction accuracy compared to imbalanced data sets

as measured by the Matthews Correlation Coefficient (MCC). The

developers of the web servers SNAP [5,6] and MuD [7] also

employed balanced training data sets, citing the work of Dobson

et al. [47].

The sources of deleterious and neutral mutation data are also of

some concern. These are also listed in Table 1 for several available

programs. The largest publicly available data set of disease-

associated (or deleterious) mutations is the SwissVar database [48].

Data in SwissVar are derived from annotations in the UniprotKB

database [49]. Care et al. assessed the effect of choosing different

sources for neutral data sets [50], including SwissVar human

polymorphisms for which phenotypes are unknown, sequence

differences between human and mammalian orthologues, and the

neutral variants in the Lac repressor [51] and lysozyme data sets

[52]. They argue that the SwissVar human polymorphism data set

is closer to what one would expect from random mutations under

no selection pressure, and therefore represent the best ‘‘neutral’’

data set. They show convincingly that the possible accuracy one

may achieve depends on the choice of neutral data set.

In this paper, we investigate two methodological aspects of the

binary classification problem. First, we consider the general

problem of what effect the proportion of positive and negative

cases in the training and testing sets has on the performance as

assessed by some commonly used metrics. The basic question is

how to achieve the best results, especially in the case where the

proportion in future applications of the classifier is unknown. We

show that the best results are obtained when training on balanced

data sets, regardless of the rate of proportions of positives and

negatives in the testing set. This is true as long as the method of

assessment on the testing set appropriately accounts for any

imbalance in the testing set. Our results indicate that ‘‘balanced

accuracy’’ (the mean of TPR and TNR) is quite flat with respect to

testing proportions, but is quite sensitive to balance in the training

set, reaching a maximum for balanced training sets. The

Matthews’ correlation coefficient is sensitive to the proportions

in both the testing set and the training set, while the area under the

ROC curve is not very sensitive to the testing set proportions and

also not to the training set proportions when the minority class is at

least 30% of the training data. Thus, while the testing measures

depend to greater or lesser extents on the balance of the training

and/or testing sets, they all achieve the best results on the

combined use of balanced training sets and balanced testing sets.

Second, for the specific case of missense mutations, we show

data that mutations derived from human/non-human-primate

sequence comparisons may provide a better data set compared to

the human polymorphism data. This is precisely because the

primate sequence differences with human proteins are more

consistent with what we would expect on biophysical grounds than

the human variants. The latter are of unknown phenotype and

may be the result of recent mutations in the human genome, some

of which may be at least mildly to moderately deleterious.

Methods

Data Sets
To compile a human mutation data set, we downloaded data on

mutations from the SwissVar database (release 57.8 of 22–Sep-

2009) [48]. After removing unclassified variants, variants in very

long proteins to reduce computation time (sequences of more than

2000 amino acids), redundant variants, and variants that are not

accessible by single-site nucleotide substitutions (just 150 mutation

types are accessible by single-site nucleotide change), we compiled

separate human disease mutation as the deleterious mutations and

human polymorphism as the neutral mutations, these two data sets

labeled HumanDisease and HumanPoly respectively.

Non-human primate sequences were obtained from UniprotKB

[49]. We used PSI-BLAST [53,54] to identify likely primate

orthologues of human proteins in the SwissVar data sets using a

sequence identity cutoff of 90% between the human and primate

sequences. More than 75% of the human-primate pairs we

identified in this procedure have sequence identity greater than

95%, and are very probably orthologues. Mutations without

insertions or deletions within 10 amino acids on either side of the

mutation of amino acid differences in the PSI-BLAST alignments

were compiled into a data set of human/primate sequence

differences, PrimateMut. Only those single-site nucleotide substitu-

tions were included in PrimateMut, although we did not directly

check DNA sequences to see if this is how the sequence changes

occurred. Finally, where possible, we mapped the human mutation

sites in the HumanDisease, HumanPoly, and PrimateMut data sets to

known structures of human proteins in the PDB using SIFTS [55],

which provides Uniprot sequence identifiers and sequence

positions for residues in the PDB. This mapping produced three

data sets, HumanDiseaseStr, HumanPolyStr, and PrimateMutStr.

To produce an independent test set, we compared the SwissVar

release 2012_03 of March 21, 2012 with that of release 57.8 of

Sep. 22, 2009 used in the previous calculations. We selected the

human-disease mutations and human polymorphisms contained in

the new release and searched all human proteins in Uniprot/

SwissProt against primate sequences to get additional primate

polymorphisms, and then compared these human disease muta-

tions and primate polymorphisms with our training data set to get

those human disease mutations and primate polymotphisms not

contained in the training data set as our independent testing data

set. The resulting independent testing data set contains 2316

primate polymorphisms, 1407 human polymorphisms and 1405

human disease mutations.

The data sets are available in Data S1.

Calculation of Sequence and Structure Features
We used PSI-BLAST [53,54] to search human and primate

protein sequences against the database UniRef90 [49] for two

rounds with an E-value cutoff of 10 to calculate the PSSM score

for the mutations. From the position-specific scoring matrices

(PSSMs) output by PSI-BLAST, we obtained the dPSSM score

Balanced Data Sets in Bioinformatics Classifiers
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which is the difference between the PSSM score of the wildtype

residues and the PSSM scores of the mutant residues.

To calculate a conservation score, we parsed the PSI-BLAST

output to select homologues with sequence identity greater than

20% for each human and primate protein. We used BLAS-

TCLUST to cluster the homologues of each query using a

threshold of 35%, so that the sequences in each cluster were all

homologous to each other wither a sequence identity $35%. A

multiple sequence alignment of the sequences in the cluster

containing the query was created with the program Muscle

[56,57]. Finally, the multiple sequence alignment was input to the

program AL2CO [58] to calculate the conservation score for

human and primate proteins.

For each human mutation position, we determined if the

amino acid was present in the coordinates of the associated

structures (according to SIFTS). Similarly, for each primate

mutation, we determined whether the amino acid of the human

query homologue was present in the PDB structures. For each

protein in our human and primate data sets whose (human)

structure was available in the PDB according to SIFTS, we

obtained the symmetry operators for creating the biological

assemblies from the PISA website and applied these symmetry

operators to create coordinates for their predicted biological

assemblies. We used the program Naccess [59] to calculate

surface area for each wildtype position in the biological

assemblies as well as in the monomer chains containing the

mutation site (i.e., from coordinate files containing only a single

protein with no biological assembly partners or ligands). For the

human mutation position, if the amino acid can be presented in

the coordinates of more than one associated structures, we

calculated the surface area for those associated structures and

get the minimal surface area as the surface area of that human

mutation.

Contingency Tables for Mutations
We compared the different data sets using a G-test, for which

the commonly used Chi-squared test [60] is only an approxima-

tion (both developed by Pearson in 1900 [61]; Chi-squared was

developed by Pearson because logarithms were time-consuming to

calculate),

Table 1. The #mutations and percentage of deleterious mutations for published methods.

Program Training data #mutations %D Testing data #mutations %D ACC BACC

SNAP PMD/EC dataseta 80817 51 CrossValidation 80817 51 80 80

SeqProfCod SP-Dec05b 8987 69 SP-Dec06c 2008 40 73 69

SNPs3D-profile HGMD disease and inter-ortholog
residue difference

21246 45 CrossValidation 21246 45 86 85

SNPs3D-stability HGMD disease and inter-ortholog
residue difference with structure
information

6077 62 CrossValidation 6077 62 78 80

PMut SWP-Lacd 11588 81 CrossValidation 11588 81 87 92

SWP-Evole 20706 45 CrossValidation 20706 45 84 81

PDBstf 2207 60 CrossValidation 2207 60 87 86

PHD-SNP HumVar 21185 61 CrossValidation 21185 61 74 73

HumVarProf 8718 61 NewHumVar 935 16 74 74

OutPhD-SNP08g 34314 50 76 76

nsSNPAnalyzer SwissVar database
.= 10 homologous sequence

4013 87 SwissVar database
,10 homologous sequence

205 85 75 73

SeqSubPred The mutations from Swiss-Prot
database (released version 57.2)

49532 41 SP-Dec06 2008 40 80 79

MuD Bromberg and Rost data set with
structure informationh

12133 51 LacI 4041 44 81 80

HIV-1 protease 336 67 69 70

T4 Lysozyme 2015 32 47 67

MuStab Data set from PhD-SNP 1480 31 CrossValidation 1480 31 85 81

PolyPhen2 HumDivi 9476 33 CrossValidation 9476 33 84 86

HumVarj 21978 59 CrossValidation 21978 59 76 77

a39887 disease mutations from PMD database, 13990 neutral mutations from PMD and 26840 neutral mutations from residues that differed in pairwise alignments of
enzymes with experimentally annotated similarity in function and the same EC numbers.
bDerived from the Swiss-Prot release 48 (Dec 2005).
cIncludes only mutations from protein sequence deposited in Swiss-Prot from January to November 2006 (release 51).
dThe neutral mutations are extracted from LacI.
eThe neutral mutations are extracted from the evolutionary model.
fStructure-based case.
gAvailable at http://gpcr2.biocomp.unibo.it/̃emidio/PhD-SNP/OutPhD-SNP08.txt.
hThe data set of SNAP.
i3155 damaging alleles annotated in the Uniprot database as causing human Mendelian diseases and affecting protein stability or function, 6321 differences between
human proteins and their closely related mammalian homologs, assumed to be nondamaging.
j13032 human disease-causing mutations from UniProt and 8946 human nonsynonymous single-nucleotide polymorphisms without annotated involvement in disease.
doi:10.1371/journal.pone.0067863.t001
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G~2
Xk
i~1

oi ln
oi

ei

� �
ð1Þ

where oi is the observed number of category i and ei is the expected

number of category i, k is the total number of categories. G is

sometimes called G2 by mistaken analogy to x2.
Assuming Ni denotes the number of mutations in data set 1 and

N2 denotes the number of mutations in data set 2 and for each type

of mutation, i, o1(i) is the observed number of mutation i in data set

1 and o2(i) is the observed number of mutation i in data set 2, then

the total frequency of mutation i across both data sets is

o1(i)zo2(i)ð Þ= N1zN2ð Þ. We calculate the expected number of

mutations of type i in data set 1 and 2:

e1(i)~N1
o1(i)zo2(i)

N1zN2

ð2Þ

e2(i)~N2
o1(i)zo2(i)

N1zN2
ð3Þ

So G for those two data sets is:

G~G1zG2~2
Xk
i~1

o1(i) ln
o1(i)

e1(i)

� �
z2

Xk
i~1

o2(i) ln
o2(i)

e2(i)

� �
ð4Þ

Because the two sets of data are independent and being

compared to their average, there are 2k-1 degrees of freedom (299

for 150 mutations accessible by single-nucleotide mutations).

Accuracy Measures
We focus on the question of which measure is appropriate to

evaluate the performance of SVM models depending on whether

the training or testing sets are imbalanced. We define several of

these measures as follows. The true positive rate (TPR) measures

the proportion of actual positives which are correctly identified.

The true negative rate (TNR) measures the proportion of actual

negatives which are correctly identified. Positive predictive value is

defined as the proportion of the true positive against all the

positive results (both true positives and false positives) and the

overall accuracy is the proportion of true results (both true

positives and true negatives) in the population. These measures are

defined as:

TPR~
TP

TPzFN
~

TP

P

TNR~
TN

TNzFP
~

TN

N

PPV~
TP

TPzFP

NPV~
TN

TNzFN

ACC~
TPzTN

PzN

ð5Þ

where P is the number of positive examples and N is the number of

negative examples in the testing data set, TP is the number of true

positives, TN is the number of true negatives, FP is the number of

false positives and FN is the number of false negatives.

When the testing data are highly imbalanced, it is easy to

achieve high accuracy (ACC) simply by predicting every testing

data point as the majority class. To evaluate the performance of an

SVM model on imbalanced testing sets, we use three measures:

Balanced Accuracy (BACC) [62], which avoids inflated perfor-

mance estimates on imbalanced data sets, the Matthews Corre-

lation Coefficient (MCC) [63] which is generally regarded as a

balanced measure, and the area under Receiver Operating

Characteristic (ROC) curves (AUC) [64]. The balanced accuracy

and Matthews Correlation Coefficient are defined as:

BACC~
1

2
TPRzTNRð Þ ð6Þ

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P|N|(TPzFP)|(TNzFN)
p ð7Þ

The ROC curve is a plot of the true positive rate versus the false

positive rate for a given predictor. A random predictor would give

a value of 0.5 for the area under the ROC curve, and a perfect

predictor would give 1.0. The area measures discrimination, that

is, the ability of the prediction score to correctly sort positive and

negative cases.

Results

The Selection of Neutral Data Sets
From SwissVar, we obtained a set of human missense mutations

associated with disease and a set of polymorphisms of unknown

phenotype, often presumed to be neutral. From the same set of

proteins in SwissVar, we identified single-site mutations between

human proteins and orthologous primate sequences with PSI-

BLAST (see Methods). Table 2 gives the number of proteins and

mutations in each of six data sets: HumanPoly, HumanDisease,

PrimateMut and those subsets observable in experimental three-

dimensional structures of the human proteins, HumanPolyStr,

HumanDiseaseStr, and PrimateMutStr.

We decided first to evaluate whether HumanPoly or PrimateMut

would make a better set of neutral mutations for predicting the

phenotype of human missense mutations. We were especially

concerned that the phenotypes of the HumanPoly mutations are

unknown. We use the value of G, for which x2 is only an

approximation [60], to compare the distribution of those single-

Table 2. The number of proteins, mutations and self G-
square for each data set.

Data set* #Proteins Num G1 G2 G

HumanPoly 10619 29467 80.3 82.7 163.0

HumanDisease 2446 19056 64.6 63.5 128.2

PrimateMut 3153 22790 84.3 84.4 168.6

HumanPolyStr 1302 3325 77.0 87.4 164.3

HumanDiseaseStr 562 6938 69.7 79.8 149.4

PrimateMutStr 719 3575 78.9 85.6 164.5

*Data sets are available in Supplemental Material.
doi:10.1371/journal.pone.0067863.t002
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nucleotide mutations in the different data sets. G compares a set of

observed counts with a set of expected counts over discrete

categories, such as the possible single-site mutations. To compare

two different data sets, we calculated the expected counts for each

data set using frequencies from the combined data sets and then

calculated G=G1+G2 (G1 for data set 1 and G2 for data set 2).

To see how G behaves, we calculated G for each of the six data

sets by randomly splitting each into two subsets and then

calculating the observed numbers, expected numbers and G for

150 mutation types (those accessible by single-nucleotide muta-

tions) using Equations 2, 3 and 4. Table 2 shows G for the six data

sets. The P-values for these values of G, calculated from x2 tables

with 299 degrees of freedom, are all equal to 1.0, demonstrating

that the half subsets are quite similar to each other as expected.

By contrast, the values of G when comparing two different data

sets exhibit much larger values. Table 3 shows G for various pairs

of data sets. According to the G values in Table 3, the large data

sets HumanPoly and PrimateMut are the most similar, while

HumanDisease is quite different from either. However, HumanPoly

is closer to HumanDisease than PrimateMut, which brings up the

question of which is the better neutral data set. The values of G for

the subsets with structure follow a similar pattern (Table 3). P-

values for the values of G in Table 3 are all less than 0.001.

Care et al. [50] showed that the Swiss-Prot polymorphism data

are closer to nucleotide changes in non-coding sequence regions

than human/non-human mammal mutations are. However, the

non-coding sequences are not under the same selection pressure as

coding regions are. While positions with mutations leading to

disease are likely to be under strong selective pressure (depending

on the nature of the disease), it is still likely that positions of known

neutral mutations are under some selection pressure to retain basic

biophysical properties of the amino acids at those positions.

To show this, we plotted the contributions to G for HumanPoly

and PrimateMut as a heat map in Figure 1. From Equation 4, the

contribution for any one mutation is proportional to:

o1(i) ln
o1(i)

e1(i)

� �
zo2(i) ln

o2(i)

e2(i)

� �

The data set providing overrepresentation of category i having a

positive value and the data set with an underrepresentation of

category i having a negative value but with smaller absolute value,

so that the sum is always positive. Substitutions with very different

frequencies in the two data set contribute much more to G. To

create a heat map, we plotted the value of:

G� ~ sign o1 ið Þ ln o1 ið Þ
e1 ið Þ

� �� �

| o1 ið Þ ln o1 ið Þ
e1 ið Þ

� �
zo2 ið Þ ln o2 ið Þ

e2 ið Þ

� �� � ð9Þ

for each mutation type where o1 ið Þ ln o1 ið Þ=e1 ið Þð Þ represents the
value of mutation i in the HumanPoly data and o2 ið Þ ln o2 ið Þ=e2 ið Þð Þ
represents the value of mutation i in the PrimateMut data set. G* is

positive (orange colors in Figure 1) when a mutation is

overrepresented in the HumanPoly data, compared to the

PrimateMut data. G* is negative (blue colors in Figure 1) when a

mutation is overrepresented in the PrimateMut data, compared to

the HumanPoly data.

It is immediately obvious from Figure 1 that mutations we

would consider on biophysical grounds to be largely neutral

(RRK, FRY, VRI and vice versa) are overrepresented in the

PrimateMut data compared to the HumanPoly data. Conversely,

mutations that on biophysical grounds we would expect to be

deleterious (RRW, mutations of C, G, or P to other residue types,

large aromatic to charged or polar residues) are overrepresented in

the HumanPoly data compared to the PrimateMut data.

We calculated predicted disorder regions for the proteins in

each of the data sets using the programs IUpred [10], Espritz [65],

and VSL2 [66]. Residues were predicted to be disordered if two of

the three programs predicted disorder. According to predicted

disorder regions, we calculated whether the mutation positions in

each data set were in regions predicted to be ordered or

disordered. In the HumanPoly and PrimateMut data sets, 31% and

23.6% of the mutations were predicted to be in disordered regions

respectively, while in the HumanDisease set only 14.3% of the

mutations were in predicted disordered regions. Thus, the

differences between HumanPoly and PrimateMut are not due to

differences in one important factor that may lead to additional

mutability of amino acids, in that disordered regions are more

highly divergent in sequence than folded protein domains. This

result does explain why the proportion of residues in HumanDisease

that can be found in known structures (HumanDiseaseStr), 36.4%, is

so much higher than that for HumanPoly and PrimateMut, 11.3%

and 15.7% respectively.

Further, we checked if the proteins in the different sets had

different numbers of homologues in Uniref100, considering that

the disease-related proteins may occur in more conserved

pathways in a variety of organisms. We calculated the average

number of proteins in clusters of sequences related to each protein

in the three sets using BLASTCLUST, as described in the

Methods. Proteins in each cluster containing a query protein were

at least 35% identical to each other and the query. Proteins in the

HumanDisease, HumanPoly, and PrimateMut had 26.4, 25.8, and 28.5

proteins on average respectively (standard deviations of 89.6,

103.2, and 92.0 respectively). Thus the HumanDisease proteins are

intermediate in nature between the PrimateMut and HumanPoly

proteins in terms of the number of homologues, although the

numbers are not substantially different.

It appears then that the PrimateMut data show higher selection

pressure (due to longer divergence times) for conserving biophys-

ical properties than the HumanPoly data. Since polymorphisms

among individuals of a species, whether human or primate, are

relatively rare, the majority of sequence differences between a

single primate’s genome and the reference human genome are

likely to be true species differences. Thus, they are likely to be

either neutral or specifically selected for in each species. On the

other hand, the SwissVar polymorphisms exist specifically because

Table 3. The G values for different datasets against each
other.

Data set 1 Data set 2 N1 N2 G1 G2 G

HumanPoly HumanDisease 29467 19056 3023.1 1976.8 4999.9

HumanPoly PrimateMut 29467 22790 1013.7 1461.5 2475.2

HumanDisease PrimateMut 19056 22790 5198.9 4376.4 9575.3

HumanPolyStr HumanDiseaseStr 3325 6938 742.8 329.2 1071.9

HumanPolyStr PrimateMutStr 3325 3575 288.6 307.0 595.6

HumanDiseaseStr PrimateMutStr 6938 3575 807.6 1516.0 2323.6

doi:10.1371/journal.pone.0067863.t003

Balanced Data Sets in Bioinformatics Classifiers

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e67863



they are variations among individuals of a single species. They are

of unknown phenotype, especially if they are not significantly

represented in the population. We therefore argue that the

PrimateMut data are a better representation of neutral mutations

than the HumanPoly data. In what follows, we use the PrimateMut

data as the neutral mutation data set, unless otherwise specified.

We calculated two sequence-based and two structure-based

features for the mutations in data sets HumanPolyStr, HumanDisea-

seStr and PrimateMutStr to compare the prediction of missense

phenotypes when the neutral data consists of human polymor-

phisms or primate sequences. From HumanDiseaseStr, we selected a

sufficient number of human disease mutations to combine with

human polymorphisms (called Train_HumanPoly) and primate

polymorphisms (called Train_Primate) to construct two balanced

training data sets. From our independent testing data set

(described in the Methods Section), we selected sufficient human

disease mutations to combine with human polymorphisms (called

Test_HumanPoly) and primate polymorphisms (called test_primate) to

create two balanced independent testing data sets. Table 4 shows

the results of SVM model trained by training data sets

Train_humanPloy and Train_Primate, and tested by independent

testing data sets Test_HumanPoly and Test_Primate.

The results in Table 4 show that the primate polymorphisms

achieve higher cross-validation accuracy than the human

polymorphisms on all measures. This confirms that the primate

polymorphisms are more distinct in their distribution from the

human disease mutations than the human polymorphisms. In

particular, the true negative rate for the primate cross-validation

results are much higher than for the human polymorphism results.

Further, we tested each model (Train_Primate and Train_HumanPoly)

on independent data sets. The two testing data sets, Test_Primate

and Test_HumanPoly contain the same disease mutations but

different neutral mutations. The Train_Primate model achieves the

same TPR for each of the independent testing set at 82.5%, since

the disease mutations are the same in each of the testing sets.

Similarly, Train_HumanPoly achieves the same TPR for each of the

testing sets at a lower rate of 78.1% since the human disease

mutations are easier to distinguish from the primate mutations

than the human polymorphisms. As may be expected, the TNR of

Train_HumanPoly is better with Test_HumanPoly (70.6%) than is

Train_Primate (67.3%), since the negatives are from similar data

sources (human polymorphisms).

It is interesting that regardless of the training data set, the

balanced measures of accuracy are relatively similar for a given

Figure 1. The contributions to G for HumanPoly and PrimateMut. Only those 150 mutations accessible by single-nucleotide changes are shown
in color; others are shown in gray. Wildtype residue types are given along the x-axis and mutant residue types are given along the y-axis. Blue squares
indicate substitution types that are overrepresented in PrimateMut, while orange squares indicate substitution types that are overrepresented in
HumanPoly.
doi:10.1371/journal.pone.0067863.g001
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testing data set. For Test_Primate, the BACC is 82.1% and 80.1%

for the primate and human training data sets respectively. For

Test_HumanPoly, the BACC values are 74.9% and 74.4%

respectively. The MCC and AUC measures in Table 4 show a

similar phenomenon. Thus, the choice of neutral mutations in the

testing set has a strong influence on the results, while the choice of

the neutral mutations in the training data set less so.

The Importance of Balanced Training Sets
The more general question we ask is how predictors behave

depending on the level of imbalance in either the training set or

testing set or both. In the case of missense mutations, we do not a

priori know what the deleterious mutation rate may be in human

genome data. To examine this, we produced five training data sets

(train_10, train_30, train_50, train_70 and train_90) using the same

number of training examples, but with a different class distribution

ranging from 10% deleterious (train_10) to 90% deleterious

(train_90). We trained SVMs on these data sets using four-features:

the difference in PSSM scores between wildtype and mutant

residues, a conservation score, and the surface accessibility of

residues in biological assemblies and protein monomers.

Figure 2a shows the performance of the five SVM models in 10-

fold cross-validation calculations in terms of true positive rate

(TPR), true negative rate (TNR), positive predictive value (PPV),

and negative predictive value (NPV) as defined in Equation 5. In

cross validation, the training and testing sets contain the same

frequency of positive and negative data points. Thus on train_10,

the TPR is very low while the TNR is very high. This is a majority

classifier and most predictions are negative. Train_90 shows a

similar pattern but with negatives and positives reversed. The PPV

and NPV show a much less drastic variation as a function of the

deleterious and neutral content of the data sets. For instance, PPV

ranges from about 65% to 90% while TNR ranges from 35% to

100% for the five data sets.

In Figure 2b, we show four measures of accuracy: ACC, BACC,

MCC, and AUC. Overall accuracy, ACC, reaches maximum

values on the extreme data sets, train_10 and train_90. These data

sets have highly divergent values of TPR and TNR as shown in

Figure 2a and are essentially majority classifiers. By contrast, the

other three measures are designed to account for imbalanced data

in the testing data sets. BACC is the mean of TPR and TNR. It

achieves the highest result in the balanced data set, train_50, and

the lowest results for the extreme data sets. The range of BACC is

59% to 81%, which is quite large. Similarly, the MCC and AUC

measures also achieve cross-validation maximum values on

train_50 and the lowest values on train_10 and train_90. The

balanced accuracy and Matthews Correlation Coefficient are

highly correlated, although BACC is a more intuitive measure of

accuracy.

To explore these results further, we created 9 independent

testing data sets using the same number of testing examples, but

with different class distribution (the percentage of deleterious

mutations from 10%–90%) to test the five SVM models described

above (train_10, train_30, etc.). Figure 3 shows the performance of

those five SVM models tested by the 9 different testing data sets.

In Figure 3a and Figure 3b, we show that the true positive and

true negative rates are highly dependent on the fraction of

positives in the training data set but nearly independent of the

fraction of positives in the testing data set. The true positive rate

and true negative rate curves of the five SVM models are flat and

indicate that the true positive rate and true negative rate are

determined by the percentage of the deleterious mutations in the

training data – a higher percentage of deleterious mutations in

training data leads to a higher true positive rate and a lower true

negative rate. Figure 3c shows the positive predictive value which

is defined as the proportion of the true positives against all the

positive predictions (both true positives and false positives).

Figure 3d shows the negative predictive value, which is defined

similarly for negative predictions. In both cases, the results are

highly correlated with the percentages of positives and negatives in

the training data. The curves in Figure 3c show that the positive

predictive value of the five SVM models increases with increasing

percentage of deleterious (positive) mutations in both the training

and testing data sets. The SVM model trained by data set train_10

achieves the best PPV while Figure 3a shows that this model also

has the lowest TPR (less than 30%) for all nine testing data sets,

because its number of false positives is very low (it classifies nearly

all data points as negative). The NPV results are similar but the

order of training sets is reversed and the NPV numbers are positive

correlated with the percentage of negative data points in the

testing data.

In Figure 4, we show four measures that assess the overall

performance of each training set model on each testing data set –

the overall accuracy (ACC) in Figure 4a, the balanced accuracy

(BACC) in Figure 4b, the Matthews correlation coefficient (MCC)

in Figure 4c, and the area under the ROC curve (AUC) in

Figure 4d. The overall shapes of the curves for the different

measures are different. The ACC curves, except for train_50, are

significantly slanted, especially the train_10 and train_90 curves.

The BACC curves are all quite flat. The MCC curves are all

concave down, showing diminished accuracy for imbalanced

testing data sets on each end. The AUC curves are basically flat

but bumpier than the BACC curves. The figures indicate that the

various measures are not equivalent.

The balanced accuracy, BACC, while nearly flat with respect to

the testing data sets, is highly divergent with respect to the training

data sets. The SVM model train_50 achieves the best balanced

accuracy for all nine different testing data sets. The SVM models

trained on data sets train_30 and train_70 are worse than train_50

Table 4. Performance of the models trained by human polymorphism and primate polymorphism.

Training data Testing data TPR TNR PPV NPV BACC MCC AUC

Train_Primate CrossValidation 84.0 78.2 79.4 83.0 81.1 0.623 0.88

Test_Primate 82.5 81.7 81.9 82.4 82.1 0.642 0.89

Test_HumanPoly 82.5 67.3 71.6 79.4 74.9 0.504 0.82

Train_HumanPoly CrossValidation 80.9 64.1 69.3 77.1 72.5 0.457 0.79

Test_Primate 78.1 82.1 81.4 79.0 80.1 0.603 0.88

Test_HumanPoly 78.1 70.6 72.7 76.3 74.4 0.489 0.82

doi:10.1371/journal.pone.0067863.t004
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by up to 8 points, which would be viewed as a significant effect in

the missense mutation field, as shown in Table 1. The train_10 and

train_90 sets are much worse, although these are significantly more

imbalanced than used in training missense mutation classifiers. In

Figure 4c, the MCC of train_50 achieves the best results for most of

the testing data sets; train_30 is just a big higher for testing at 0.2

and 0.3, and train_70 is a bit higher at 0.9. The MCC can be as

much as 10 points higher when trained and tested on balanced

data than when trained on imbalanced data (train_70). Figure 4d

shows the area under ROC cures (AUC) behaves similarly to

BACC in Figure 4b. The AUC distinguishes train_50 from train_30

and train_70 to only a small extent, but the difference between

these curves and train_10 and train_90 is fairly large.

Discussion

A common objective in bioinformatics is to provide tools that

make predictions of binary classifiers for use in many areas of

biology. Many techniques in machine learning have been applied

to such problems. All of them depend on the choice of features of

the data that must differentiate the positive and negative data

points as well as on the nature of the training and testing data sets.

While computer scientists have studied the nature of training and

testing data, particularly on whether such data sets are balanced or

imbalanced [38], the role of this aspect of the data is not

necessarily well appreciated in bioinformatics.

In this article, we have examined two aspects of the binary

classification problem: the source of the input data sets and

whether the training and testing sets are balanced or not. On the

first issue, we found that a negative data set that is more distinct

from the positive data set results in higher prediction rates. This

result makes sense of course, but in the context of predicting

missense mutation phenotypes it is critical that the neutral data

points are truly neutral. We compared the ability of primate/

human sequence differences and human polymorphisms to predict

disease phenotypes. The primate/human sequence differences

come from a small number of animal samples and the reference

human genome, which is also from a small number of donors. The

majority of intraspecies differences are rare, and thus the majority

of primate/human differences are likely to reflect true species

differences rather than polymorphisms within each species. It

seems likely that they should be mostly neutral mutations, or the

result of selected adaptations of the different species.

On the other hand, the polymorphisms in the SwissVar

database are differences among hundreds or thousands of human

donors. Their phenotypes and prevalence in the population are

unknown. It is more likely that they are recent sequence changes

which may or may not have deleterious consequences and may or

may not survive in the population. Some authors have tried to

estimate the percentage of SNPs that are deleterious. For instance,

Yue and Moult estimated by various feature sets that 33–40% of

missense SNPs in dbSNP are deleterious [67]. However, the

training set for their SVMs contained 38% deleterious mutations

and it may be that these numbers are correlated. In our case, we

predict that 40% of the SwissVar polymorphisms are deleterious,

while only 20.6% of the primate mutations are predicted as

deleterious. With a positive predictive value of 80.4%, then

perhaps 32.4% of the SwissVar polymorphisms are deleterious.

In any case, the accuracy of missense mutation prediction that

one may obtain is directly affected by the different sources of

Figure 2. The cross-validation results of five SVM models trained on data sets that are 10%, 30%, 50%, 70% and 90% deleterious
mutations (x-axis = 0.1, 0.3, 0.5, 0.7 and 0.9 respectively). (a) Values for TPR, TNR, PPV, and NPV. (b) Values for MCC, BACC, AUC, and ACC.
doi:10.1371/journal.pone.0067863.g002
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neutral data and deleterious data, separately from the choice of

features used or machine learning method employed. Results from

the published literature should be evaluated accordingly.

We have examined the role of balanced and imbalanced

training and testing data sets in binary classifiers, using the

example of missense phenotype prediction as our benchmark. We

were interested in how we should train such a classifier, given that

we do not know the rate of deleterious mutations in real-world

data such as those being generated by high-throughput sequencing

projects of human genomes. Our results indicate that regardless of

the rates of positives and negatives in any future testing data set

such as human genome data, support vector machines trained on

balanced data sets rather than imbalanced data sets performed

better on each of the measures of accuracy commonly used in

binary classification, i.e. balanced accuracy (BACC), the Matthews

correlation coefficient (MCC), and the area under ROC curves

(AUC). Balanced training data sets result in high, steady values for

both TPR and TNR (Figure 3a and 3b) and good tradeoffs in the

values of PPV and NPV (Figure 3c and 3d).

Even at the mild levels of training imbalance shown in Table 1

(30–40% in the minority class), there would be what would be

considered significant differences in balanced accuracy of about

8% and MCC of 10%. The AUC is considerably less sensitive to

the imbalance in the training set from 30–70% deleterious

mutation range, probably because it measures only the ordering

of the predictions rather than a single cutoff to make one

prediction or the other.

For the programs listed in Table 1, it is interesting to examine

their efforts in considering the consequences of potential

imbalance in the training data sets. The authors of both SNAP

[5,6] and MuD [7] used very nearly balanced training data sets

and noted the effect of using imbalanced data sets in their papers.

In MuD’s case, they eliminated one third of the deleterious

mutations from their initial data set in order to balance the

training data. SNSPs3D-stability [67] was derived with the

program SVMLight [68–70], which allows for a cost model to

upweight the misclassification cost of the minority class, which the

authors availed themselves of. MuStab [46] also used SVMLight

but the authors did not use its cost model to account for the

imbalance in their training data set (31% deleterious). The

program LIBSVM [71] also allows users to use a cost factor for the

minority class in training. Two of the programs in Table 1,

SeqProfCod [41,45] and PHD-SNP [40] used this program, but

did not use this feature to deal with imbalance in their training

data sets. Finally, programs using other methods such as a

Random Forest (SeqSubPred [72] and nsSNPAnalyzer [3]), a

Figure 3. (a) TPR, (b) NPR, (c) PPV, and (d) NPV of five SVM models trained on 5 different data sets (train_10, train_30, train_50,
train_70, and train_90) tested by 9 different testing data sets, ranging from 10% deleterious (x-axis = 0.1) to 90% deleterious (x-
axis = 0.9).
doi:10.1371/journal.pone.0067863.g003
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neural network (PMut [2,43,44]), and empirical rules (PolyPhen2

[73]) also did not address the issue of training set imbalance.

In any case, given that relatively large training and testing data

sets can be obtained for the missense mutation classification

problem (see Table 1), it is clear that balancing the data in the

training set is the simplest way of dealing with the problem, rather

than employing methods that treat the problem in other ways

(oversampling the minority class, asymmetric cost functions, etc.).

In light of the analysis presented in this paper, it is useful to

examine one other group of binary classifiers in bioinformatics –

that of predicting disordered regions of proteins. These classifiers

predict whether a residue is disordered or ordered based on

features such as local amino acid composition and secondary

structure prediction. However, the typical training and testing data

sets come from structures in the Protein Data Bank, which

typically consist of 90–95% ordered residues. Only 5–10% of

residues in X-ray structures are disordered and therefore missing

from the coordinates. We examined the top five predictors in the

most recent CASP experiment [74] in terms of how the methods

were trained and tested. These methods were Prdos2 [14],

Disopred3C [75], Zhou-Spine-D [16], CBRC_Poodle [17], and

Multicom-refine [76]. Some parameters of the data sets from the

published papers and the prediction rates from the CASP9 results

are shown in Table 5. All five methods were trained on highly

imbalanced data sets, ranging from just 2.5% disordered

(DisoPred3C) to 10% disordered (Zhou-Spine-D). DisoPred3C

also had the lowest TPR and highest TNR of these five methods,

which is consistent with the results shown in Figure 3a and 3b. It

was also the only method that specifically upweighted misclassified

examples of the minority class (disordered residues) during the

training of a support vector machine using SVMlight, although

they did not specify the actual weights used. The developers of

Zhou-Spine-D used a marginally imbalanced training set to

predict regions of long disorder (45% disordered), arguing that this

situation is easier than predicting disorder in protein structures,

where the disorder rate is about 10%. In the latter case, they use

oversampling of the minority class of disordered residues in order

to train a neural network. The other three methods listed in

Table 5 did not use available cost models in the machine learning

methods they used, including LIBSVM (CBRC-Poodle) or

SVMLight (Prdos2) or any form of weighting or oversampling in

a neural network (Multicom-refine). Because the percentage of

disordered residues in protein structures is relatively low, it may be

appropriate to apply asymmetric costs and oversampling tech-

Figure 4. (a) ACC, (b) BACC, (c) MCC, and (d) AUC of five SVM models trained on 5 different data sets (train_10, train_30, train_50,
train_70, and train_90) tested by 9 different testing data sets, ranging from 10% deleterious (x-axis = 0.1) to 90% deleterious (x-
axis = 0.9).
doi:10.1371/journal.pone.0067863.g004
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niques in attempting to account for the skew in training data in the

disorder prediction problem, but these techniques have not been

widely applied for the disorder prediction problem.

In summary, the problem of imbalanced training data occurs

frequently in bioinformatics. Even mild levels of imbalance – at

30–40% of the data in the minority class – is sufficient to alter the

values of the measures commonly used to assess performance in

ways that authors of new studies would think of as notable

differences. When large amounts of data in the minority class are

easy to obtain, the simplest solution is to undersample the majority

class and effectively balance the data sets. When these data are

sparse, then bioinformatics researchers would do well to consider

techniques such as oversampling and cost-sensitive learning

developed in machine learning in recent years [30] [77–79].
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