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1 Introduction

Arguably, the astrophysical result of most impact on the nuclear physics community of the last couple
of decades was the precise determination that massive (& 1.9M�) neutron stars exist. The first
measurement was made by Demorest et al.[1], followed soon after by Antoniadis et al.[2] and others.
The implications of the existence of such heavy stars for the nature of dense nuclear matter are
numerous and these observations raised questions that still remain unanswered.

The exact composition of the matter in the innermost parts of the core of such heavy stars is the
subject of much debate and speculation. In spite of published work which had demonstrated that
one could support such heavy stars even with hyperons in the core [3], Ref. [1] suggested that their
existence demonstrated the opposite. A plethora of models for the dynamics of dense matter that met
the roughly 2M� requirement rapidly appeared. These models ranged from exotic proposals of stars
containing quark matter or strange matter to more conservative extensions of existing theories with
additional, repulsive three-body forces, notably between hyperons and nucleons.

On the observational side, the field has benefited enormously from the first gravitational wave
(GW) measurement of a binary neutron star merger [4]. Even though we have just a single example
so far, the improved sensitivity that will follow from the current upgrade of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) suggests that we will see many more examples in the near
future. The analysis of the signal from that one example has shown that we can use it not only to
determine neutron star radii but in addition a completely new observable, the tidal deformability.
Another major step forward has been the first data from the Neutron Star Interior Composition
ExploreR (NICER) mission [5], which promises to provide accurate measurements of neutron star
radii.

There are now a number of models which provide a description of neutron stars and are not only
consistent with the existence of heavy neutron stars but also lead to the presence of strange degrees of
freedom in the core. The so-called hyperon puzzle, namely that the models that allow for the nucleons
to decay to strange baryons do not agree with heavy mass measurements, even though hyperons are
expected to be created given a large energy density, is naturally solved in these models. These attempts
to describe dense matter with hyperon states require extra repulsion amongst such particles. We will
review how such attempts are in fact consistent with the repulsive three-body forces that come from
the change in the baryon structure in-medium.

The structure of this review is the following. In the first part, we review the current astrophysical
data. We then review those models which attempt to provide an account of the changes in baryon
structure in dense media. We also review some attempts to model dense hyperonic matter via the
introduction of extra phenomenological forces. Subsequently, we will discuss how these models succeed
in providing a natural solution to the hyperon puzzle, alongside other possible solutions. For other
summaries of the nature of strange matter see, for example, the recent reviews [6], [7], [8] and [9].
For more detail on the equation of state of nuclear matter and its astrophysical implications, see
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 10, 24, 25, 26, 27, 28].

2 Neutron Stars

In this section, we provide a brief overview of the current data for masses and radii of neutron stars,
where, for the latter, we restrict ourselves to the most recent NICER results and the GW constraints.
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2.1 Masses

The current state of neutron star mass measurements is depicted in Fig. 1. We see that the only
measurements of heavy neutron stars with reasonably small errors are those of PSR J1614-2230 [29]
and PSR J0348+0432 [2], along with PSR J0740+6620 [30] which is the newest member of the heavy
neutron star club. Nevertheless, the uncertainties on the aforementioned pulsars still make them all
comparable with each other within two standard deviations. Therefore, a conservative lower estimate
for the maximum mass of neutron stars is that of PSR J1614-2230, namely, 1.908±0.016M�.

2.2 Radii

Other than their masses, the radii of neutron stars are extremely sensitive to different models for the
equations of state. However, the experimental constraints on radii are less numerous and until recently
the systematic errors were quite large. The first new source of a constraint came on August 17th 2017,
with the first gravitational wave measurement [4] of the merger of two neutron stars. This yielded the
result that the radii of the neutron stars involved in the merger both lie within R = 11.9+1.4

−1.4, at the
90% confidence level.

More recently, the NICER mission, with its X-ray telescope on the space station, obtained results [5,
37] for PSR J0030+0451. The collaboration applied different analyses on the data and obtained values
of (all at 68% credibility) 12.71+1.14

−1.19km and mass 1.34+0.15
−0.16M� in Ref. [5] and 13.02+1.24

−1.06km in Ref. [37]

with the mass estimated at 1.44+0.15
−0.14M�. Another recent measurement by the NICER collaboration

was that of pulsar PSR J0740+6620 which by virtue of being much heavier, is of considerable interest
to nuclear physicists. They measured a radius of 12.39+1.3

−0.98km for a mass of 2.07± 0.06M� [38].

3 Modelling Dense Matter

Historically, studies of the properties of nuclear matter were primarily aimed at understanding finite
nuclei. They were based primarily on using two-body and three-body potentials with standard tech-
niques in quantum many-body theory, such as Brueckner-Hartree-Fock (BHF) [39], Bethe-Brueckner-
Goldstone (BBG) [40]. The two-body potentials were derived from phenomenological fits to nucleon-
nucleon scattering [41]. The quantum Monte Carlo variational approach has had considerable success
with light nuclei [42], with parameters of the phenomenological three-body force tuned to nuclear data.

In recent years there has been a great deal of activity using chiral effective field theory [43, 44, 45, 46,
47, 48], with its systematic expansion in powers of momentum. This approach builds in the constraints
of chiral symmetry within a Lagrangian theory built upon pion and nucleon degrees of freedom, plus
counterterms. With a similar number of parameters to those needed for phenomenological potentials
(typically 25-30), it yields a good description of nucleon-nucleon scattering data. Within the same
framework, one also has a systematic expansion of a three-nucleon force, with counterterms again
tuned to nuclear data. Once again one finds excellent agreement with data for light nuclei [49, 50],
with estimates of systematic errors.

Building upon the work of Vautherin and Brink [51], the most popular theoretical treatment of
finite nuclei has been the Hartree-Fock calculations using forces of the Skyrme type [52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62]. In this approach one fits the parameters of the most general, local, velocity
dependent energy functional to the properties of some set of finite nuclei [63, 64].

All of these non-relativistic methods are based on solid grounds and generally provide predictions
in excellent agreement with their selected target nuclei. However, it is not clear that they can provide
meaningful descriptions of neutron star matter much in excess of normal nuclear matter density. In
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Figure 1: Neutron star masses gathered from [12] and updated with the measurements recently pub-
lished in [31, 30, 32, 33, 34, 35, 36, 37]
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particular, a non-relativistic approach cannot be considered reliable for densities beyond 1-2 times the
saturation density of symmetric nuclear matter (n0). Noting that the central density for the typical
neutron star with mass 1.4 M� is of order 3n0, one needs a different approach and this has led to
the widespread application of Relativistic Mean-Field (RMF) models (the basis of which is reviewed
in Ref. [65]).

Of course, the RMF models are not without their difficulties. They often do not reproduce the
properties of light nuclei as well as the non-relativistic models described earlier. The coupling constants
in the relativistic Lagrangian density have to be fit to known nuclear matter parameters, however, there
is often not enough data to constrain the potentially high number of parameters. This is especially so
when one explicitly considers many-body forces, meson self-interactions and, of course, hyperons. For
that reason, it is often difficult to gauge numerically the models’ systematic biases and the number of
models of the same family that provide often widely different predictions is high.

Lagrangian models are typically based upon a baryon-meson Lagrangian density, of which Eq. (1)
is a generic example. To this one can apply different techniques in many-body quantum field theory.
Most commonly the model is treated in mean-field approximation (hence, relativistic mean-field). For
instance, take the Lagrangian density

L =Ψ̄B
(
/∂ −MB + gσσ + gδt · δ − gω /ω − gρt · /ρ

)
ΨB

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)

+
1

2

(
∂µδ · ∂µδ −m2

δδ
2
)

− 1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ − 1

4
Rµν ·Rµν +

1

2
m2
ρρµ · ρµ.

(1)

The static mean-field approximations would amount to

σ → 〈σ〉 = σ̄ ωµ → 〈ωµ〉 = 〈ω0〉 = ω̄

ρµ → 〈ρµ〉 = 〈ρ0〉 = ρ̄ δ → 〈δ〉 = δ̄ .
(2)

Under these approximations and with some trivial algebra, the problem of finding the Equation of
State (EoS) of the system defined by the Lagrangian 1 can be solved exactly, as it now amounts to a
Fermi sea of dressed baryons

εBaryon =
∑∫ d3k

(2π)3

√
k2 +M?2

B , (3)

where the mass of the baryons is dressed by the mean scalar fields, and the meson mean-field component
is

εMeson =
m2
σσ̄

2

2
+
m2
δ δ̄

2

2
+
m2
ωω̄

2

2
+
m2
ρρ̄

2

2
. (4)

The many different models in the RMF family are all based upon this foundation [66, 67, 68, 69,
70, 71, 72, 73, 74, 75]. Modifications often include non-linear sigma potentials, U(σ), and meson-
meson couplings, such as σ2δ, σ2δ2, ρ2ω2 and the inclusion of explicitly density dependent parameters,
amongst many others. Some more refined approaches also include the so-called exchange terms, or Fock
terms. This can be done as a perturbative correction to RMF or it can be included self-consistently
(see for instance Refs. [76, 77]), in which case it is usually denoted Relativistic Hartree-Fock (RHF).

4 Models Based on Quark-Meson Phenomenology

As mentioned in the introduction, a particular sub-family of RMF models has proven effective in
modelling finite nuclei, nuclear matter and neutron star core matter with a very small number of
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parameters. These models acknowledge that the baryon structure could play a role in nuclear dynamics.
They are built upon the foundation of quark-meson phenomenology, which states that baryons in a
nuclear medium can be modelled by a confined state of three quarks (interactions among which, such
as one-gluon-exchange, can later be added perturbatively) that interact with quarks in other baryons
by the exchange of meson fields.

In this section, we show a few examples of models in this family and discuss briefly their similarities
and differences.

4.1 The Quark-Meson Coupling Model (QMC)

Physically, it is reasonable to assume that, the higher the density, and, as a consequence, the closer
the baryons are to each other, the more likely it is that their internal degrees of freedom will play a
role. Furthermore, considering the energy scales of the system, the scalar mean-field potential exerted
on a nucleon at saturation density is typically, depending on the model, hundreds of MeV, sometimes
up to 0.5GeV (see for instance [78, 65, 79, 80]). Such a strong scalar potential is comparable with
the energy needed to excite a nucleon and indeed constitutes a large fraction of its mass, providing
a strong indication that, even at saturation, the underlying structure of the baryon and its dynamics
may play a role in many-body systems. However, attempting a full QCD solution of any nuclear-level
phenomena is prohibitively difficult. It is reasonable to begin by modelling it phenomenologically.

The QMC model [80, 81] attempts just that. Consider a single isolated baryon in a many-body
system. Take it to be reasonably described by the MIT-Bag model, ergo, three light quarks trapped
on a spherical cavity

L0 = ψ̄q(i/∂ −mq)ψq − B for |~u| ≤ RB
(1 + i~γ · û)ψq(~u) = 0 at |~u| = RB

(5)

where RB is the radius of the bag and B is the bag constant. The solution of this problem is elementary
and expanding on the eigenstates of the free particle Hamiltonian(

−iγ0~γ · ∇+ γ0mq

)
φ(~u)α =

Ωα
RB

φ(~u)α,

∫
VB

d3u φiφj = δij , (6)

where α is a collection of quantum numbers, we obtain for a quark in its lowest energy state inside the
bag,

φ0m(~u) =
N√
4π

(
j0(xu/RB)χm

−βq~σ · ûj1(xu/RB)χm

)
, (7)

where the boundary condition determines x by j0(x) = β(x)j1(x). The energy eigenvalue is just
Ω0 =

√
x2 + (mqRB)2, the normalisation is N−2 = 2R3

Bj
2
0(x) [Ω0(Ω0 − 1) +mqRB/2] /x2, and finally,

βq =
√

(Ω0 −mqRB) / (Ω0 +mqRB).
However, as stated above, the model calculates the effects of the nuclear medium on this structure

(where structure is understood as the wave-function of the valence quarks inside the bag). The effective
interaction between the light quarks in different nucleons is mediated by the exchange of meson fields.
These extra coupling terms are, for instance, with the scalar-isoscalar field σ, just LσqI = gqσσψ̄ψ , for the
vector-isoscalar, LωqI = −gqωωµψ̄γµψ , the vector-isovector and scalar-isovector, LρqI = −gqρψ̄t · ρµγµψ
and LδqI = gqδ ψ̄t · δψ , where t denotes one half of the Pauli matrices for isospin.

In mean-field approximation, the scalar fields will modify the mass of the quarks, which, as can
be seen by the expression for the wave function, will cause φ0m(~u) to depend on σ̄ and δ̄ non-linearly.
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Since the strengths of the mean scalar fields depend on the scalar charge of the nucleons, one must
solve the problem self-consistently at each density. On the other hand, the vector fields simply shift
the energy of the quarks and thus, the energy of the bag in a linear way, with no change in the valence
quark wave functions. This difference in the role of the scalar and vector mean-fields explains why it
is not enough to just use the fact that the sum of the scalar and vector mean-fields is relatively small
to dismiss any role for quark degrees of freedom in nuclei.

Calculating the energy of a stationary bag, that is, the mass of a baryon, we obtain the result

E0 = M?
N (σ̄, δ̄) +

∑
q

gqωω̄ +
∑
q

gqρIqρ̄ , (8)

with the nucleon effective mass

M?
N (σ̄, δ̄) =

∑
q Ωq0(σ̄, δ̄)Nq

RB
+ BVB , (9)

where the index q signifies the flavour of the quark. Before associating this directly with the mass of
the baryon we may account for zero-point fluctuations and the centre of mass correction (namely z0).
Note that careful study of the centre of mass correction [80] showed that it is essentially independent of
the mean scalar field, in contrast with early applications of the idea. One must also include one-gluon
exchange, which provides a density-dependent colour hyperfine splitting [82] of otherwise degenerate
baryons ∆EM . These modifications (see Refs. [3, 79]) yield a more detailed effective mass for the
baryon

M?
N (σ̄, δ̄) =

∑
q Ωq0(σ̄, δ̄)Nq − z0

RB
+ BVB + ∆EM . (10)

Note that not only the Dirac energy eigenvalues but also the OGE term depend on the mass of the
quark, which depends on the scalar potentials. This in turn makes the effective mass of the baryons
non-linearly dependent on the scalar mean-fields. This dependence, however, is not introduced a
posteriori with extra free parameters. Rather it is calculated within the model. Such non-linearity
in the baryon effective mass is clearly a many-body effect and is equivalent to the introduction of
many-body forces [83]; again with no new parameters. If we solve Eq. (10) for several values of the
meson mean-fields we can deduce the functional dependence of the baryon mass on the scalar fields

M?
N (σ̄, δ̄) = MB − gBσ (σ̄, δ̄)σ̄ − gBδ (σ̄, δ̄)IB δ̄ , (11)

where IB is the isospin of the baryon.
The way the effective mass depends on the mean-fields is clearly non-linear, however, it is accurately

reproduced by a quadratic function of the isoscalar mean-field potential. That is, setting aside the
much smaller effect of δ̄ for the moment, the effective mass is

M?
N (σ̄) = MN − gσσ̄ +

d

2
(gσσ̄)2. (12)

The quantity d is referred to as the scalar polarizability, by analogy with the electric polarizability. It
describes the response of the internal structure of the nucleon which acts to oppose the applied scalar
field. The dependence on the isovector-scalar potential is well approximated by a linear function,
making the effective mass equal to [84]

M?
N (σ̄, δ̄) = MN − gσσ̄ +

d

2
(gσσ̄)2 + gδIB δ̄ − d2 × (gσσ̄)(gδ δ̄) , (13)

to a very good approximation.
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4.1.1 Meson Structure

It is true that the exchanged mesons have a quark structure just as much as the baryon. This is
trivial for the ω and ρ mesons, while the σ is rather more complicated as it represents the exchange
of two pions, including virtual ∆ excitation, as well as the exchange of a quark-anti-quark composite.
Therefore, some modifications of the QMC model take that into account as well [85].

Let α be any meson field, then we can write its effective mass as

m?
α = mα + a1σ + a2σ

2 + · · · . (14)

Following Ref. [85], where the isovector-scalar meson was neglected, we discuss the meson mass depen-
dence on the sigma mean-field only. The coefficients of this expansion can be free parameters, however,
for the vector mesons one can make an expansion

m?
α = mα +

(
∂m?

α

∂σ

)
σ=0

σ +
1

2!

(
∂2m?

α

∂σ2

)
σ=0

σ2 + · · · (15)

and take the derivatives to be 2/3 of those for the baryon case – given the quark content – e.g. for the
first derivative (

∂m?
α

∂σ

)
σ=0

=
2

3

(
∂M?

N

∂σ

)
σ=0

. (16)

However, some calculations using the Dyson-Schwinger equations have shown that the meson chan-
nel masses are more or less indifferent to the effects of chemical potential [86, 87, 88]. This could be
explained by considering the quark-meson coupling model effects on the meson fields up to higher-order
fluctuations. These fluctuation terms tend to increase the meson mass [3, 89] and hence tend to cancel
the mean-field effects modelled in Eq. (16). For this reason, almost all applications of the QMC model
have kept the meson masses independent of density.

4.1.2 Other Effects

Several other works have attempted to include additional effects associated with baryon structure.
One interesting modification is the inclusion of Fock terms at the quark level. Refs. [90, 91, 92] include
such effects for pion exchange within the framework of the cloudy bag model, which we will discuss in
more detail in Sec. 4.6. Including quark-level Fock terms results in a density dependence for the scalar
polarizability (see Eq. (12)) and the dependence of the effective mass on the scalar potential is no
longer well approximated by a parabola. This effect becomes even more non-linear if the quark-level
Fock terms are included self-consistently, as in Ref. [93]. For the moment these calculations have not
included the effect of short-range nucleon-nucleon correlations which significantly reduce short distance
overlap between nucleons.

One can also include the Fock terms self-consistently at the baryon level, as done in Refs. [77, 94,
95, 96] and most recently [97]. According to Ref. [77], the influence of the self-consistent Hartree-Fock
approximation in the content and structure of a neutron star is sizable. The hyperon content of β-
equilibrium matter in that work was restricted to the presence of Ξ− only and the maximum mass of
the star went up substantially compared to the self-consistent Hartree calculation. The effects reported
by Stone et al. [97] were much less dramatic.

The fact that the baryon has a finite volume has also been considered. Aguirre et al. [98] attempted
to include excluded volume effects within the QMC model by imposing an equilibrium relation between
the pressure of the bag and the baryonic pressure. They calculated the radius of the bag at each step
in density and observed a lowering of the baryon size by 10% in the star’s centre compared to the
vacuum case.
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4.2 Structure of Finite Nuclei

While the QMC model was formulated as a relativistic theory, for application to finite nuclei it is more
convenient to use it to derive an equivalent, non-relativistic energy density functional (EDF) [89]. This
approach has become more sophisticated since the first systematic application by Stone et al. [99]. The
latest version includes pion Fock terms [100], a more accurate non-relativistic reduction of the σ field in
terms of density and the self-coupling of the σ field of order σ3 [101]. The latter was found to be essential
to reproduce the energies of the giant monopole resonances (GMR), with a nuclear incompressibility
of order 240 MeV.

Figure 2 illustrates the level of agreement between the latest version of the model and the exper-
imental binding energies and rms charge radii of all known even-even nuclei. The rms deviation of
the binding energies is just 0.29%, which is remarkable for a theory with just 5 parameters (the σ , ω
and ρ couplings to the light quarks, the mass of the σ and the coefficient of the σ3 interaction). For
comparison UNDEF1 [103, 64, 104] reproduced the binding energies with a deviation of 0.55%, while
FRDM [105], with more than 25 parameters, managed 0.18%. The rms charge radii were reproduced
at the 0.5% level, a small improvement on both UNDEF1 and DD-MEδ [70, 106]. It is especially
interesting that the binding energies of superheavy nuclei are reproduced at a level better than 0.1%,
which suggests the potential for application [107] to the search for nuclei beyond Z = 118.

4.3 Tests of changing hadron structure

The argument that the large scalar mean-field in a nuclear medium may be expected to lead to changes
in the structure of a bound proton is compelling [108]. Nevertheless it is critical to test this theoretical
argument against experimental evidence. We briefly review the two most promising ways of testing
this idea, which represents a fundamental change in paradigm for nuclear theory.

The first method to probe the structure of a bound nucleon involves the famous EMC effect [109,
110]. This revealed a significant reduction in valence quarks carrying a high momentum fraction in a
nucleus compared with a free nucleon. The first calculation of this effect within the QMC model [111]
revealed that it reproduced the major features of the effect. Later studies using the covariant NJL
model, rather than the MIT bag model, for the basis of a QMC-like description of atomic nuclei, have
demonstrated [112, 113, 114, 115] excellent agreement with modern data [116, 117] for the EMC effect
across the periodic table.

In addition to describing existing data very well, the QMC approach predicts a number of new
phenomena that can be tested in future experiments. This includes an isovector effect where the EMC
effect is larger for d than u quarks in a nucleus with N>Z. This can be tested in parity violating deep
inelastic scattering. It is also predicted that the spin dependent EMC effect, involving an unpaired
valence proton, should be at least as large as the unpolarized EMC effect [113, 118]. It also has the
key advantage of discriminating [119] between the explanations of the EMC effect based upon short
range correlations [120, 121] and those based upon the mean-field induced changes upon which we have
focussed. This will be tested at Jefferson Lab on 7Li in the near future [122].

An additional key test of the idea stems from remarkable early work on the Coulomb sum-rule by
Morgenstern, Meziani and collaborators [123, 124]. This work strongly indicated that the electric form
factor of a bound proton was significantly different from that of a free proton, a result expected within
the QMC model [125, 126]. Precise new results from Jefferson Lab, which are expected to resolve this
issue experimentally, are under analysis at the present time. The current theoretical and experimental
situation is summarized in Fig. 3, which is taken from Ref. [126].
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Figure 2: Deviations from experiment of the absolute binding energies and rms charge radii of all
known even-even nuclei – from Ref. [102].
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Figure 3: Coulomb sum rule determined at ρ = 0, 0.1 and 0.16 fm−3, corresponding to a free nucleon
current, a density typical of 12C; and nuclear matter saturation density. The data for 208Pb is from
Refs. [127, 124] and for 12C from Ref. [123], both without the relativistic correction factor of de For-
est [128]. The Green’s function Monte Carlo results are taken from Ref. [129]. The effects of relativity
and the predicted modification of the proton electric form factor in-medium are both dramatic, with
each tending to lower the Coulomb sum rule at large three-momentum transfer, |q|, by as much as
20%. RPA indicates that those calculations include the correlations arising within the random phase
approximation. (The figure is taken from Ref. [126].)

4.4 The Bogoliubov-QMC Model (B-QMC)

An interesting recent proposal [130, 131] that also takes into account in-medium changes in baryon
structure is based on a Bogoliubov Hamiltonian with quark-meson interactions in mean-field approxi-
mation. That is, the quarks are described by eigenstates of

hD = −iα · ∇+ β (κ|r|+m− gqσσ) . (17)

The most obvious fundamental difference between this model and the basic QMC model described in
the previous section is the fact that here [130], what confines the quarks is a linear potential rather
than an infinite spherical well. The free parameter κ, which is essentially the string tension, was fixed
so as to reproduce the mass of the free nucleon and, as previously with the QMC model, an energy
density was derived from an RMF construction where the mass of the nucleon was the effective mass
calculated by the model. We shall return to this model in section 6, however, it is worth pointing out
that it also predicts heavy stars with strange baryonic matter in the core. The predictions for hyperonic
stars go up to 2M� and the species fraction obtained in beta-equilibrium is similar to the QMC result.
The indication here seems to be that the results are somewhat independent of the confinement model
(a hypothesis that is also supported by a third model we will discuss in the next section).

Much has happened, however, since the publication of these original papers. The most recent
discussion of the model [132] includes an ss̄ component in the vector-isoscalar channel, constrained by
Λ hypernuclear data. We shall return to this point in section 6.
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4.5 The Quark-Mean-Field Model (QMF)

A further example of a model that is based on quark-meson interaction but nevertheless attempts to
provide a different description of the confining potential is the Quark-Mean-Field model [133, 134, 135].
In this work the confining potential is taken to be a harmonic oscillator, which is an equal mixture
of Lorentz scalar and vector terms. This has the property of being analytically solvable in the Dirac
equation

U(r) =
1

2

(
1 + γ0

) (
ar2 + V0

)
. (18)

As with the previous two models mentioned, they write an RMF model from the solution to the Dirac
equation, designed to reproduce the appropriate effective mass that their microscopic model of the
baryon yields. They also verify hyperonic matter able to reach the 2M� limit.

4.6 Chiral and Cloudy QMC

Within Ref. [90] and later in Refs [91, 92] the Cloudy Bag Model (CBM) [136, 137, 138, 139] was used
within the framework of the quark meson phenomenology. Taking a typical CBM Lagrangian density,
such as

LCBM =

[
ψ̄

{
iγµ∂

µ −m+ i
m

fπ
γ5~τ · ~φ+

1

2fπ
γµγ5~τ ·

(
∂µ~φ

)}
ψ −B

]
θV−

1

2
ψ̄ψδS+

1

2

(
∂µ~φ

)2
−1

2
m2
π
~φ2 ,

(19)
where B is the bag constant, θV the bag volume step function and δS the Dirac delta function at
the bag surface, and finally φ is the pseudo-scalar pion field. In particular, Ref. [90] also includes
gluon exchange between the quarks. Here, as opposed to the classical QMC model, the energy of the
stationary bag – the mass of the baryon – is calculated in Hartree-Fock approximation at the quark
level (whereas usually the Fock terms tend to be neglected) and finite size effects for the pion are
also included via a form factor for the pion-quark interaction. This results in a more complex density
dependence of the mass of the baryon and, particularly, a density-dependent scalar polarizability (the
d factor in Eq. (12)).

After including the pion cloud and gluon exchange between the quarks, one then proceeds to
calculate the equation of state at the baryonic level. Taking this effective mass, M?, Ref. [90] includes
σ and ω exchange between the baryons in mean-field approximation. That is, Fock terms are omitted
at the baryon-meson level, and the effects of NN correlations are not included, for example by dropping
the contact terms in the pion-nucleon Fock terms, as done in Refs. [63, 79] and others. Miyatsu et
al. [92] do, however, add the isovector-vector ρ exchange as well as the strange mesonic channels, σ?

and φ, which were missing in Ref. [90].
As shown in [92], the gluon interaction tends to stiffen the EoS and the full CBM based quark-

meson coupling model does tend to give higher maximum masses for neutron stars compared with the
standard QMC model by almost 0.2M�. However, it also tends to increase the incompressibility of
nuclear matter by a significant amount, putting it at K0 ≈ 310MeV, which is higher than most giant
monopole resonance data suggests it should be [101, 140, 141].

4.7 The NJL Based QMC Model

When it comes to the phenomenology of dense matter, no model has been more prolific than the
NJL model (an excellent review of which can be found in Ref. [142]). Most of its applications have
been to model deconfined quark matter (see Ref. [142]). However, there have been a few works on
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Figure 4: Bethe-Salpeter equation used in Ref. [149]

Figure 5: Fadeev equation describing quark-diquark correlations from the same reference

baryon structure ranging from hadronisation [143] to baryon dissociation in hot [144] and dense [145]
media. The NJL model has been successful describing hadron properties in vacuum. Including an
infra-red cutoff within the proper-time regularisation scheme in the NJL model simulates confinement,
in that the quarks cannot be on-mass-shell, and it can also be used to derive [146] a quark-meson
phenomenological model. Refs. [147, 148] were devoted to such a calculation. Starting from an SU(2)-
flavour symmetric quark Lagrangian

L = ψ̄(i/∂ −m)ψ +
∑
α

Gα
(
ψ̄Γαψ

)2
, (20)

in the same spirit as the QMC model, one calculates the effective mass of the baryon in medium,

M = m− 2Gπ 〈ρ| ψ̄ψ |ρ〉 , (21)

and implements it within a baryon-level calculation, in the case of [147] using the Lagrangian density

L = ψ̄
(
i/∂ −M − 2Gωγ

µωµ −Gργµτ · ρµ
)
ψ − (M −m)2

4Gπ
+Gωω

µωµ +Gρρ
µρµ + LI . (22)

A further attempt to substitute the bag model description of the baryon with an alternative model
was carried out in Ref. [149] where, within the NJL model, based on the fundamental work of Ref. [146],
one self-consistently solves a Bethe-Salpeter equation for the diquarks (Fig. 4) and a Faddeev equation
for the baryons described as quark-diquark correlations (Fig. 5)

In Ref. [149] it was once again found that the mass of the baryons depends non-linearly on the
sigma mean-fields and, here again, it was found that this change affects the equation of state and the
composition of dense matter. Importantly, as in the previous models which showed that the Σ baryon
is energetically unfavourable and thus does not contribute, here too the Σ was found to be unbound.
Nevertheless, it was found that the equation of state within this model is softer in comparison with the
other quark-meson based models mentioned above, including other NJL efforts such as Refs. [147, 150].
In Ref. [95] the NJL approach of [149] was extended to include a deconfined quark phase under the
same model.
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5 RMF Models with Many-Body Forces

In the previous sections we have seen a number of models which share some common features. They all
attempt to provide a dense matter description that takes into account the fact that the baryon is not
a fundamental object. However, it is noticeable that they are all based on very similar grounds, the
phenomenological quark-meson models. Let us approach other RMF-type models that also succeed in
providing a maximum mass of order 2M� result with hyperon content but which are not based on the
quark-meson phenomenology.

Some models, such as Refs. [151, 152, 153, 154] and [155], amongst others, attempt to provide an
RMF description with phenomenological many-body forces. Recognising that such forces exist and
must play an essential role, Ref. [152] provides a claim for the effective coupling of the scalar mesons
to the baryons, namely

g∗σb ≡
(

1 +
gσbσ + gδbI3bδ3

ζmb

)−ζ
gσb,

g∗δb ≡
(

1 +
gσbσ + gδbI3bδ3

ζmb

)−ζ
gδb,

(23)

where ζ is a model parameter. This is not at all based on any claim about the internal hadron
structure, however, by virtue of its non-linearity, this inevitably yields many-body forces and is, in
fact, comparable to the QMC model. What it does that the QMC model does not is to allow for
different non-linear behaviour of the coupling, subject to this free parameter, ζ. The QMC model, in
comparison, provides a clear origin for these many-body forces, with no additional parameters, based
upon the medium induced baryon structure alterations.

That this approach is, to some extent, phenomenologically similar to the QMC model and its
variations is best and most easily shown in the species fraction. Ref. [151], for instance, finds that the
Σs are suppressed and do not appear in dense nuclear matter (since we know from data on finite nuclei
that the ΣN interaction must be repulsive [156, 157], that is correct) and it also has the Λ appear
before the Ξ. Fig. 6 shows the same in the QMC model.

The benefit of the purely phenomenological approach is that it allows for a lot of flexibility on the
functional dependence of the effective couplings with the mean-field. However, the benefit of the quark-
meson approach is that it provides a simple explanation for the nature of these non-linear couplings
without new parameters. Indeed it was the only theory to anticipate the presence of hyperons in
heavy neutron stars before they were discovered [3]. Nevertheless, both approaches seem to agree on a
number of key observables.

6 The Strange Puzzle

One common trend amongst the quark-meson type models is that they all naturally include many-
body forces that increase the pressure of infinite nuclear matter with hyperon degrees of freedom.
When it comes to the so called hyperon puzzle, moreover, they all – or most of them – predict
heavy neutron stars with maximum masses of order 2 M�, often with fewer parameters as well.
Furthermore, when used to derive an equivalent non-relativistic energy density functional, the QMC
model also provides excellent agreement with data on finite nuclei with a comparatively small number
of parameters [99, 102].

The underlying description of nuclear matter in the quark-meson approach is fully relativistic and
completely consistent with data both from astrophysical and terrestrial experiments. Nevertheless,
there are puzzles about the composition of the matter inside neutron star cores. While the terminology
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Figure 6: Species fraction in the QMC model

of a “hyperon puzzle” is clearly outdated, given that several models that include the full octet are
consistent with the data (quark-meson models or otherwise), whether the strange matter is confined
or deconfined is truly a puzzle. This section is devoted to the investigation of such a puzzle.

6.1 Modified Gravity as a Solution

From the discovery of the mass of PSR-J1614 by [1], the notion that models of neutron star matter that
include hyperons in the core were in tension with heavy masses was widespread (in spite of the published
work in Ref. [3]). Amongst the first few attempts to solve this issue after the work of Demorest et al.,
Refs. [158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176] put
forward the idea that this puzzle is not a crisis of the nuclear equation of state physics, but rather
of gravitation. Alternative theories to Einstein’s General Relativity (GR) or, modified gravity, are
alternative hypothesis to dark matter in solving open cosmological questions. These works continue
to the present day [177, 178, 179], and, although alternative ways to deal with the hyperon problem
from the nuclear perspective have been found, it remains an important hypothesis. A good review of
such theories can be found in Ref. [180].

6.2 Many-Body Forces

As discussed in a previous section, Refs [151, 152, 153, 154] all attempt to include many-body forces
directly within an RMF description of nuclear matter. Importantly, though, the strangeness puzzles
are also of interest to χEFT practitioners. The recent Refs. [181, 182, 183, 184] all pay attention to
these ∆ and hyperon many body forces from a χEFT perspective. For instance, Ref. [182] employs
a three body hyperon interaction derived by the Jülich-Bonn-Munich collaboration [185]. They find
that the NNΛ repulsion pushes the Lambda appearance threshold to higher densities as many body
forces usually do [84, 186, 63, 79, 151, 152, 153, 154]. The influence of this many-body repulsion on
the equation of state and the neutron star mass is huge, taking the maximum mass from 1.3 to above
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1.9M�.
From the perspective of other approaches to microscopic potential models, Ref. [187] employs a

model for hyperon interactions based on meson, pomeron and odderon exchanges, with which they
find low masses for neutron stars – a common issue amongst models that include hyperons (the afore-
mentioned hyperon puzzle).

Temperature effects and heat transport coefficients are also of great interest. In the recent works
of Refs. [188, 189, 190], temperature effects were included within the BHF formalism. Particularly
Ref. [189] shows both models with hyperons and without hyperons agreeing with cooling observations.
In fact, the constraints on neutron star thermal evolution – or more specifically the cooling speed – were
also recently taken into account in Refs. [191] and [192], while in [193, 194] the effects of three-body
forces were taken into account in BHF theory at finite temperature. Finally, we note that a complete
treatment of Fock terms within the QMC model at finite temperature has recently been reported by
Stone and collaborators [97].

6.3 Strange Mesons

Another important piece of this puzzle is, what is the role of strange mesons? Some early works
which were particularly impactful [195, 196, 197, 198, 199] deal with this question, as well as several
subsequent publications [200, 201, 202, 203, 204, 205, 206, 207]. These works attempt to address the
aforementioned issue. Particularly, Ref. [203] shows that their RMF model, in the presence of a strange
φ mean-field, recovers the 2M� threshold and is compatible with available data.

One important issue in neutron star physics is that of meson condensation, including kaon conden-
sation. This has been studied, for example, in Refs. [198, 204, 205, 206, 207, 208]. The origin of the
interest in kaon condensation is the early idea of [209] pion condensation in nuclei. This was based on
the proposal that, at a certain density, nuclear matter would suffer a phase transition into a phase with
a non-zero pion condensate. The threshold for such a transition would be the point at which pions
can be created at no energy cost. Several models for the pion self-energy in nuclear matter attempted
to pinpoint such a density threshold (see Ref. [210] and explained the semi-crystalline structure that
nuclear matter would have to assume for such a condensate to be possible [211, 212].

It has been shown, however, that short range repulsive interactions such as omega exchange is
enough to prohibit pion condensation and the idea has more or less been dismissed. However, both
pion and kaon condensation (via a nearly identical mechanism) were proposed to exist at densities far
higher than nuclear matter, perhaps being stable in the core of neutron stars. Within the framework
of quark-meson phenomenological models this hypothesis was studied in Refs. [198, 204, 205, 206, 207].
The quark-meson framework was implemented in a similar way as it is for the baryon states, where
the effective mass of the hadron is calculated via the bag model (or whatever other confining model)
for non-interacting quarks that couple to σ, ω and ρ. The mass of the kaon is derived naturally as
[198]

m?
K =

Ω? + Ωs − zK
R?K

+
4

3
πR?3KB , (24)

where its radius is fixed by ∂RK
m?
K = 0, and one uses the effective Lagrangian

L =
[(
∂µ + igKω ωµ + igKρ

τ3
2
ρµ

)
K
]† [(

∂µ + igKω ω
µ + igKρ

τ3
2
ρµ
)
K
]
−m?2

K K̄K + Lmatter . (25)

Once the kaon density is incorporated into the equation of state, stellar structure equation solutions
show that, as expected, the tendency is for the kaon condensation to lower the maximum mass. This
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would “solve” the hyperon puzzle as it accounts for strange degrees of freedom, which are expected at
high density, but does not suffer from such a drastic softening of the EoS.

Another solution to the hyperon puzzle that involves strange mesons is to include the φ and σ?

mesons (e.g., Refs. [199, 203, 202], amongst others). The extra repulsion of the φ meson increases the
stiffness of the EoS. Together with a self-consistent implementation of the σ? which, as is typical of
quark-meson coupling models, produces attraction that grows less quickly than the density because of
the scalar polarizability (see Eq. (12)), also comfortably solves the so called hyperon problem.

However, it is important to be careful with respect to the explicit introduction of extra strange
degrees of freedom. Constraining the coupling constants at saturation density is difficult enough with
non-strange mesons. Perhaps most importantly, typical values of the σ and ω coupling constants when
applied to hyperons reproduce the gross properties of Λ hypernuclei.

6.4 Exotic Ideas

There are more hypotheses, however, that do not neatly fit this dichotomy between hyperons or quarks
in the core. One prominent hypotheses is the so called Quarkyonic matter [213]. According to this
hypothesis, dense QCD matter would be comprised of deconfined quark matter. However, quantum
fluctuations at and above the Fermi surface would manifest only as colourless states, effectively creating
a layer at the top of the Fermi sea which would be populated by baryons. Both quarks and baryons
would populate the core and would be discriminated only by momentum. For detailed discussions on
quarkyonic matter and its possible role in neutron star physics see Refs [213, 214, 215, 216, 217, 218].

One key feature of the quarkyonic model that makes it interesting is that it exhibits a characteristic
peak in the speed of sound at mid-range densities, after which the speed of sound goes down again.
This early stiffness helps the star to sustain higher masses. However, it does seem to be somewhat in
contrast with the claims of Ref. [219] in which lower maximum speed of sound EoSs (specially those
which do not grossly violate the conformal limit of c2s = 0.3) are correlated with higher neutron star
masses.

Other hypotheses also contemplate the possibility that both the residual strong force of baryons
interacting with baryons by the exchange of meson fields, and the fundamental strong force of quarks
and gluons could play a role simultaneously. One example is the so called Multi-Pomeron exchange
Potential (MPP) [220, 221, 222, 223, 224, 225, 182, 226] according to which there could be, at high
densities, a pomeron based many-body repulsion that, by virtue of being universal amongst all baryons,
would not affect the baryon content of the star but could generate a large amount of repulsion.

Another example of a model that takes into consideration quarks and baryon degrees of freedom
together is the quark percolation model [227, 228, 229, 230]. This is based on the premise that at
sufficiently high densities the distinction between the baryonic picture and quarkyonic picture becomes
blurred. If the density is high enough the baryon wave functions would start to overlap. The quarks
in the meson clouds of the overlapping baryons would behave as sea quarks and their wave functions
would become constant in space.

All of these hypotheses – quarkyonic matter, the MPP model, and the percolation model – are based
on very different ideas. Nevertheless, they are similar inasmuch they discuss the physics of regimes
where the relevant degrees of freedom are neither exclusively quarks and gluons nor exclusively baryons
and mesons.
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6.5 Strange Quark Matter or Hyperonic Core?

The notion of a “hyperon” puzzle as it was first conceived is certainly outdated. Several models are
capable of obtaining heavy stars with hyperon cores, as discussed extensively in this review. However,
the puzzle that does remain is whether the strange matter in the core of neutron stars is confined
or deconfined? The hypothesis of quark matter in the core of neutron stars is old [231, 232] and has
gained much traction recently, especially with the work of Annala et al. [219]. These authors devised
a model-independent parametrization of the EoS via a linear piecewise construction of the speed of
sound (squared) of dense matter as a function of the baryonic chemical potential:

c2s (µ) =
(µi+1 − µ) c2s,i + (µ− µi) c2s,i+1

µi+1 − µi
(26)

for a given set {(
µi, c

2
s,i

)}Np

i=1
. (27)

From the speed of sound one can obtain the full equation of state via standard thermodynamic relations.
Based on the parametrization of the speed of sound they generated a large set of EoSs via random

Monte Carlo, constraining them at large density by perturbative QCD and low densities by χEFT,
and applied certain selection rules on these functions. Causal EoS that yield stars with a mass at
least 2 M� were shown to have a common behaviour, with a speed of sound that approached the
conformal value c2s = 1/3 and polytropic index less than . 1.75. One possible interpretation is that
this is evidence of quark matter [219], given that very high density quark matter in the perturbative
regime shows these characteristics.

However, as shown by Motta et al. [233], these characteristics are also shared by the quark-meson
EoS discussed in this review, in particular that of the QMC model once hyperons are included. In
Fig. 7 we can see the allowed EoSs from Ref. [219] and the respective restrictions on the speed of
sound. As discussed above, the QMC model yields a very similar reduction in the speed of sound to
that given by quark matter.

The quark-meson based equations of state also respect the constraints of tidal deformability taken
from the GW170817 measurement [4] and in every other respect they appear to be very similar to
equations of state that suffer a soft transition to pure deconfined quark matter at high densities [233].
At the moment, there appears to be no reliable way of determining if the EoS of neutron star matter
does involve deconfinement at higher density.

7 Conclusion

The composition of neutron stars is certainly still a major puzzle with no universally accepted answer.
One of the most pressing issues is whether the baryonic matter suffers a phase transition to a deconfined
state. Whether or not that happens at some high density, there can be no doubt that the role of changes
in the internal structure of the baryons deserves serious attention. As discussed in section 4.2, there
is ample evidence that the quark structure of the nucleon plays a role even in finite nuclei, perhaps
providing an explanation of the EMC effect[111]. The success of the QMC model [99, 101, 102] in
describing heavy nuclei with so few model parameters is certainly an indication, albeit indirect, that
such effects may be present.
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Figure 7: Allowed EoSs band from Ref. [219] overlapped with the QMC model EoS from Ref. [233]
together with the relevant TOV. The radius constraints come from the works of [5], labelled NICER1,
[37] which was labelled NICER 2, and the gravitational wave measurements [4] GW170817.

Neutron stars, with central densities many times the saturation density of normal nuclear matter
should be expected to show even larger effects of the anticipated changes in the internal structure
of baryons. Such studies are made particularly interesting by the appearance of hyperons in the
cores of heavier stars. While the so-called ”hyperon puzzle” has been resolved, other aspects, such as
their role in neutrino cooling are just beginning to be studied seriously – see for example Ref. [234].
Their participation in dense matter at the higher temperatures associated with supernovae and the
proto-neutron stars formed after neutron star mergers is also a rich area for further study.

With new data from the NICER mission and from further gravitational wave measurements of
neutron star mergers, we expect to soon be able to discriminate between the many models for the EoS
of dense matter that we have discussed.
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