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Abstract Bayesian model selection has frequently been the focus of philosoph-
ical inquiry (e.g., Forster, Br J Philos Sci 46:399–424, 1995; Bandyopadhyay
and Boik, Philos Sci 66:S390–S402, 1999; Dowe et al., Br J Philos Sci 58:709–
754, 2007). This paper argues that Bayesian model selection procedures are
very diverse in their inferential target and their justification, and substantiates
this claim by means of case studies on three selected procedures: MML, BIC
and DIC. Hence, there is no tight link between Bayesian model selection
and Bayesian philosophy. Consequently, arguments for or against Bayesian
reasoning based on properties of Bayesian model selection procedures should
be treated with great caution.
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1 Introduction

Model selection is a relatively young subfield of statistics that compares
statistical models on the basis of their structural properties and their fit to the
data. The goal of model selection consists in comparing and appraising various
candidate models on the basis of observed data.1

1In this paper, I understand “model selection” in a quite broad sense. That is, the statistical
analysis need not lead to the selection of a particular model. More appropriate might be “model
comparison”, but I would like to stick with the traditional terminology.
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Following up on Forster and Sober’s seminal (1994) paper, the problem
of model selection attracted much attention in philosophy of science. The
properties of various model selection procedures have been used to argue
for general theses in philosophy of science, such as the replacement of truth
by predictive accuracy as an achievable goal of science (Forster 2002), the
prediction/accommodation problem (Hitchcock and Sober 2004), the real-
ism/instrumentalism dichotomy (Mikkelson 2006; Sober 2008), and the aptness
of Bayesian reasoning for statistical inference (Forster 1995; Bandyopadhyay
et al. 1996; Bandyopadhyay and Boik 1999; Dowe et al. 2007).

This paper explores the extent to which Bayesian model selection pro-
cedures are anchored within Bayesian philosophy, and in particular their
philosophical justification. A model selection procedure is called “Bayesian”
when it assigns prior and posterior probabilities to a parameter of interest.
These probabilities are interpreted as rational degrees of belief (e.g., Bernardo
and Smith 1994).

The classical, subjective view of Bayesian inference consists in reasoning
from the prior to the posterior: high posterior probability becomes a measure
of the acceptability of a hypothesis.2 Scientific inference, including model
selection, is based on this posterior distribution of beliefs. Accordingly, pro-
ponents of the Bayesian view of scientific rationality claim that “scientific
reasoning is essentially reasoning in accordance with the formal principles of
probability” (Howson and Urbach 1993, xvii)—see also Earman (1992, 142)
and Talbott (2008).

However, such an orthodox subjective reading of Bayesianism is seldom
put into practice. First, there is a plethora of practical and methodological
problems, such as are the computational costs of calculating posterior distribu-
tions or handling nested models in a Bayesian framework. Second, when prior
probabilities are assigned, reliable expert opinion is usually hard to elicit so
that the choice of the prior is often dominated by mathematical convenience.
Furthermore, results may be highly sensitive to the prior distribution. Third,
even some Bayesian statisticians argue that their work is more guided by a
focus on testing model adequacy than by genuinely subjective Bayesian belief
revision (Gelman and Shalizi 2012).

Thus, the practice of Bayesian reasoning often differs from eliciting prior
degrees of belief and updating them to posterior degrees of beliefs, as one
may naïvely imagine. In the following sections, we analyze the foundations
of three popular and much-discussed Bayesian model selection procedures—
MML, BIC and DIC—in order to uncover the philosophical foundations of
Bayesian model selection. As a result of this analysis, we conclude that these
procedures are very diverse in the target which they aim at and the justification
that they possess. Instead of conforming to the subjective Bayesian rationale,

2This is different from objective Bayesian inference where the two basic constraints of Bayesian
inference—a coherent prior distribution and conditionalization on incoming evidence—are sup-
plemented by further requirements that narrow down the set of rational degrees of belief, often
up to uniqueness.



Euro Jnl Phil Sci (2013) 3:101–114 103

they are hybrid procedures: they do not primarily aim at an accurate represen-
tation of subjective uncertainty, but use the Bayesian calculus as a convenient
mathematical tool for diverse epistemological goals. This has, as I shall argue in
the conclusions, substantial repercussions on some bold methodological claims
regarding Bayesian reasoning that are made in the literature.

2 MML and the conditionality principle

To avoid equivocations, I begin by fixing some terminology, following Forster
(2002, S127). A statistical (point) hypothesis is a specific probability distribu-
tion from which the data may have been generated, e.g., the standard Normal
distribution N(0, 1). A statistical model refers, by contrast, to families of
hypotheses, e.g. all Normal distributions of the form N(θ, σ 2) with parameter
values θ ∈ R, σ 2 ∈ R

≥0.
For data x1, . . . , xN , let us consider a candidate model M ∈ M with a re-

spective set of parameters. A model selection criterion is a function of the data
that assigns scores to point hypotheses or overarching models. On the basis of
that score, the different models or point hypothesis can be compared, ranked
or averaged. Quite often, we will identify point hypotheses with fitted models:
namely when a particular hypothesis has been obtained by fitting parameters
to the data. For example, a typical fitted model replaces the parameter values
in the general Normal model

〈
N(θ, σ 2), (θ, σ 2) ∈ R × R

≥0
〉

by their maximum
likelihood estimates on the basis of data x: the values θ̂ and σ̂ 2 such that for any
other θ and σ 2: p(x|θ̂ , σ̂ 2) ≥ p(x|θ, σ 2), for probability density p(·) and data x.
While some model selection procedures evaluate models in terms of expected
predictive accuracy (e.g., Akaike 1973), others, typically classified as Bayesian,
aim at the model with the highest posterior probability (e.g., Schwarz 1978).

Now we can turn to the Minimum Message Length (MML) principle
(Wallace 2005; Dowe 2011). MML is a statistical inference procedure aiming
at inferring the hypothesis (“theory”)

that allows the data to be stated in the shortest two-part message, where
the first part of the message asserts the theory, and the second part of the
message asserts the data under the assumption that the asserted theory is
true. (Dowe et al. 2007, 717)

The basic idea is to infer the best explaining hypothesis, which is explicated
as the explanation with the shortest expected message length in a probabilistic
code. That is, the explanation has to trade off the plausibility of the hypothesis
with the likelihood of the data under the hypothesis.

We illustrate this idea by means of an example (cf. Dowe et al. 2007,
721–722). Assume we want to estimate the parameter θ in a Binomial model
B(N, θ), where X quantifies the number of successes in N trials. Then
MML partitions the sample space X = {0, . . . , N} into K interval sets Ik =
{ck−1, . . . , ck − 1} with c0 = 0 and cK = N + 1. Let k j be a weakly monotonic
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Table 1 The optimal MML partitioning of the sample space (= the number of successes)
into intervals Ik j and the corresponding parameter estimates θ̂k j , for the case of the Binomial
distribution B(100, θ) with a uniform prior

Ik j 0 1–6 7–17 18–32 33–49 50–66 67–81 82–93 94–99 100
θ̂k j 0 0.035 0.12 0.25 0.41 0.58 0.74 0.875 0.965 1

See Wallace (2005, 157–160) and Dowe et al. (2007, 721–722)

sequence such that j ∈ Ik j . Then, for each Ik j we define a corresponding point
estimate θ̂k j of θ such that any 0 ≤ j ≤ N is mapped to θ̂k j .

Assuming a uniform prior over θ , the expected message length of estimator
θ̂ is measured by the term

L := −
⎛

⎝
N∑

j=0

p(X = j)
(

log p(θ̂k j) + log p(X = j|θ̂k j)
)
⎞

⎠ . (1)

In the case of N = 100, the optimal partition works with 10 different point
estimates, see Table 1. Notably, the “natural” unbiased estimator X/N does
not perform well on this count: the low prior probability of the associated
intervals, which only consist of a singleton set, diminishes the overall score
of X/N.

From a Bayesian point of view, the two components of L correspond to the
two core components of Bayesian inference: the (log-)prior of the hypothesis
(here: θ̂k j) and the (log-)likelihood of the data, given that hypothesis (here:
p(X = j|θ̂k j)).3 MML proponents then argue that an inference to the theory
that allows for the shortest two-part message will also be an inference to the
most probable theory (or model), vindicating the use of Bayesianism in model
selection, contra Forster and Sober (1994) and Forster (1995): “Bayes not
Bust!” (Dowe et al. 2007).

However, since we measure expected total message length, the optimal
tradeoff depends on the design of the experiment and in particular the sample
size, cf. Eq. 1. This is actually admitted by the inventors of MML:

The receiver of an explanation message is assumed to have prior knowl-
edge on the set X of possible data, and the message is coded on that
assumption. [...] The optimum explanation code requires than one asser-
tion or estimate value serve for a range of distinct but similar possible
data values. Hence, it seems inevitable that the assertion [=hypothesis]
used to explain the given data will depend to some extent on what distinct
but similar possible data values might have occurred but did not. (Wallace
2005, 254, my emphasis)

3Recall also that log P(H|E) · P(E) = log p(H) + log P(E|H).
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What is more, for the entire idea of the “shortest explanation”, we have to
choose between different conceptualizations of the hypothesis space, depen-
dent on the chosen experimental design. This situation is in itself remarkable:
while classical Bayesian reasoning considers the set of candidate models as
fixed, MML aims at finding the partition of the hypothesis space that allows
for the most efficient encoding of hypothesis and data.

These dependencies conflict, however, with subjective Bayesian epistemol-
ogy, and one of its core principles, the Likelihood Principle:

All the information about θ obtainable from an experiment is contained
in the likelihood function Lx(θ) = p(x|θ) for θ given x. Two likelihood
functions for θ (from the same or different experiments) contain the same
information about θ if they are proportional to one another (Berger and
Wolpert 1984, 19)

To see how closely the Likelihood Principle aligns with Bayesian inference,
recall the identity

p(H|E) =
(

1 + p(¬H)

p(H)

p(E|¬H)

p(E|H)

)−1

which is just another way of expressing Bayes’s Theorem. From a Bayesian
point of view, the likelihood function encompasses all relevant experimental
information that is not already contained in the priors.

The Likelihood Principle demands in particular that the inference one draws
do not depend on the space of possible outcomes, or on the sampling protocol.
Whereas in an MML inference, the same data will lead to different best
estimates of θ when obtained from a Binomial design or a Negative Binomial
design, respectively.

At this point, one may doubt that the Likelihood Principle is compelling
for a Bayesian statistician, so much the more as the wording chosen by Berger
and Wolpert is admittedly vague. Therefore it is important to realize that it is
actually equivalent to the conjunction of the following two principles:

Sufficiency Let E be an experiment with a statistical model
parametrized by θ ∈ � and random variable X. If
T(X) is a sufficient statistic for θ , that is, if it satisfies
p(X = x|T = t, θ) = p(X = x|T = t), and ET is the
experiment where any outcome x of E is represented
by reporting the value T(x), then E and ET yield the
same evidence about θ .

(Strong) Conditionality If E is any experiment having the form of a mix-
ture of component experiments Ei, then for each
outcome (Ei, xi) of E, [...] the evidential meaning of
any outcome x of any mixture experiment E is the
same as that of the corresponding outcome xi of the
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experiment Ei which has actually been performed,
ignoring the overall structure of the mixed experi-
ment. (cf. Birnbaum 1962, 270–71)

Since the Sufficiency Principle is unanimously endorsed by both Bayesian
and frequentist statisticians, we can focus our inquiry on the (Strong) Con-
ditionality Principle. Informally, Conditionality can be described as asserting
the irrelevance of experiments that were actually not performed. From a
Bayesian point of view, this is eminently sensible; after all, the entire idea of
Bayesian Conditionalization is based on taking into account (only) evidence
that has actually occurred. Indeed, a lot of Bayesian arguments in statistical
methodology and experimental design (e.g., with respect to optional stopping)
are based on the soundness of that principle and explicitly on the irrelevance
of which results might have been observed (cf. Royall 1997). So Conditionality
and MML are directly at odds with each other.

The conflict is, by the way, known from other foundational debates in
statistical inference. For instance, reference Bayesians such as Bernardo (2011)
determine reference priors for Bayesian inference as a function of the sample
space. Seen in that light, MML is somewhat typical for modern Bayesian
statistics and its departure from Bayesian orthodoxy. It exemplifies a hybrid
approach, where the Bayesian machinery is primarily a mathematical and
conceptual toolbox for solving a specific problem whose definition does not
depend on the Bayesian framework itself: determining the shortest explana-
tion, the most efficient coding of theory and evidence. This is not meant to
doubt that MML shares more with Bayesianism than related model selection
criteria (e.g., Grünwald’s (2005) Minimum Description Length principle). But
it is interesting to see that an identity in formalism, and even an explicit appeal
to Bayesian principles can still hide substantial philosophical differences.

3 Bayesianism without model priors: BIC

We now proceed to the next case study: Schwarz’s Bayesian Information
Criterion (BIC). The BIC is an estimation procedure that aims at the posterior
probability of a parametric model Mθ , that is, at the weighted sum of the
posterior probabilities of the hypotheses in Mθ that correspond to different
values of θ . We will now reconstruct and analyze the motivation of BIC,
following Schwarz (1978).

Assume that Mθ is one of our candidate models, whose elements are
indexed by a parameter vector θ with model dimension K. We would like
to approximate the posterior probability of Mθ . Assume further that all
probability densities for data x (with respect to the Lebesgue measure μ)
belong to the exponential family and that they can be written as

p(x|θ) = eN(A(x)−λ|θ−θ̂ (x)|2). (2)
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Here, θ̂ (x) denotes the maximum likelihood estimate of the unknown θ , and N
the sample size, assuming i.i.d. sampling. This specific form of the likelihood
function seems to make a substantial presumption, but in fact, the densities in
Eq. 2 comprise the most familiar distributions, such as the Normal, Uniform,
Fisher, Poisson and Student’s t-distribution. For that reason, the assumption is
plausible from a practical point of view.

Then we take a standard Bayesian approach and write the posterior prob-
ability of Mθ as proportional to the prior probability p(Mθ ) and the averaged
likelihood of the data x under Mθ :

p(Mθ |x) ∼ p(Mθ )

∫

θ∈�

eN(A(x)−λ|θ−θ̂ (x)|2)dμ(θ)

= p(Mθ ) eN A(x)

∫

θ∈�

e−Nλ|θ−θ̂ (x)|2 dμ(θ).

Substituting the integration variable θ by θ/
√

Nλ, and realizing that for the
maximum likelihood estimate θ̂ (x), p(x|θ̂ (x)) = eN A(x), we obtain

log p(Mθ |x) ∼ log p(Mθ ) + N A(x) + log

(
1

Nλ

)K/2

+ log
∫

θ∈�

e−|θ−θ̂ (x)|2 dμ(θ)

= log p(Mθ ) + N A(x) + 1

2
K log

(
1

Nλ

)
+ log

√
π

K

= log p(Mθ ) + log p(x|θ̂ (x)) − 1

2
K log

(
Nλ

π

)
. (3)

Let us take stock. On the left hand side, we have the log-posterior probability,
a subjective Bayesian’s model comparison criterion. As we see from Eq. 3,
this term is proportional to the sum of three terms: log-prior probability,
the log-likelihood of the data under the maximum likelihood estimate, and
a penalty proportional to the number of model parameters. This derivation,
whose assumptions are relaxed subsequently in order to yield more general
results, forms the mathematical core of BIC.4

In practice, it is difficult to elicit sensible subjective prior probabilities of the
candidate models, and the computation of posterior probabilities involves high
computational efforts. Therefore, Schwarz suggests to estimate log-posterior
probability by a large sample approximation. For large samples, we neglect the
terms in Eq. 3 that make only constant contributions and focus on the terms
that increase in N: log p(Mθ ) drops out of the picture. Therefore, in the long
run, the model with the highest posterior probability will be the model that
minimizes

BIC(Mθ , x) = −2 log p(x|θ̂ (x)) + K log N. (4)

4The number of parameters K enters the calculations because the expected likelihood of the data
depends on the dimension of the model, via the skewness of the likelihood function.
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BIC is intended to estimate the model (not the hypothesis) that accumulates,
in the long run, the most posterior mass. However, it neglects the contribution
of the priors when comparing the models to each other. Keeping in mind the
identity

log p(H|E) = log p(H) + log

(
p(E|H) · 1

p(E)

)
(5)

wee see that BIC could as well be described as an approximation to the log-
ratio measure of confirmation log p(H|E) − log p(H) (up to addition of a
constant).

Therefore, BIC should not be described as having a properly Bayesian
justification: while (log-ratio) confirmation may be suitable for comparing
models on the basis of the evidence (e.g., Milne 1996), it is not suitable for
Bayesian inference since the priors drop out of the picture, as witnessed by the
transition from Eqs. 3 to 4.

This finding is, by the way, in agreement with Schwarz’ note that BIC
extends “beyond the Bayesian context” (1978, 461).5 Even more, frequentist
properties are sometimes invoked in an attempt to justify the practical use of
BIC (e.g., Burnham and Anderson 2002).

To further strengthen this conclusion, note that BIC is quite different from
a numerical large sample approximation for posterior degrees of belief: the
posterior approximated by BIC is detached from subjective prior probability.
So BIC is not just a practical approximation to Bayesian coherence. Compare
BIC to techniques such as Gibbs sampling or Monte Carlo Markov Chains
(Han and Carlin 2001): those techniques aim at numerical approximations
of subjective posterior distributions, and offer computational help for tricky
multi-dimensional integrals. BIC develops a different philosophical rationale.

Neither does the statistical consistency of BIC provide a genuinely Bayesian
justification. Here, consistency does not denote logical consistency with an-
other proposition, but a certain long-run property of statistical estimators. That
is, as sample size increases, the model favored by BIC converges in probability
to the true model as long as the overall model is not misspecified. However,
both Bayesians and frequentists regard consistency only as a necessary con-
straint on good estimators, not as a sufficient reason for using a particular
method. So neither is consistency in any way peculiar to Bayesian inference,
nor is it strong enough to make a case for BIC as opposed to other methods.

Our diagnosis that BIC lacks, in spite of the extensive use of Bayesian
formalism, a fully Bayesian rationale, is supported by the variety of purposes
to which the criterion is put. Sometimes it is regarded as an approximation
to the Bayes factor (Kass and Raftery 1995). Raftery (1995) proposes an
interpretation of BIC as an approximation to the integrated likelihood, which

5Forster and Sober (1994, 23–24) doubt, for quite different reasons, that Schwarz’ Bayesian
approach achieves a satisfactory solution to the model selection problem. Notably they also
question “that it is securely grounded in the Bayesian framework.”
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is easily derived on the basis of the above calculations. Romeijn et al. (2012) see
different worries with a Bayesian understanding of BIC and propose to anchor
it more securely in Bayesian reasoning by taking into account the size of the
parameter space. Hence, what is approximated by the asymptotic analysis of
BIC is not determined by the mathematics themselves and depends on the
general perspective one adopts.

4 Estimating effective complexity: DIC

In reply to the above diagnosis, it is sometimes objected that the distinction
between Bayesian and frequentist model selection procedures should be made
according to their inferential targets (Burnham and Anderson 2002, 2004).
According to that proposal, even if the employed inferential strategies are
not properly Bayesian at every step, as we have seen for MML and BIC, the
target of inference—the posterior probability of a model or a fitted model—
can only be formulated within a Bayesian framework. In support of this view,
it is sometimes asserted that “Bayesians assess an estimator by determining
whether the values it generates are probably true or probably close to truth”
(Forster and Sober 2011, 535) or “the model selection literature often errs
that AIC and BIC selection are directly comparable, as if they had the same
objective target model” (Burnham and Anderson 2004, 299). That is, where
frequentist methods, such as AIC, estimate the predictive performance of
fitted models, Bayesian methods, such as BIC, estimate the posterior proba-
bility of a given model, or construct estimators that minimize mean error with
respect to the posterior distribution. To show that this picture is misleading or
at least incomplete, I conduct a further case study, namely on the Deviance
Information Criterion (DIC).

The DIC is another model selection criterion that is commonly placed in
the Bayesian family. Many model selection criteria, such as AIC and BIC,
can be written and interpreted as an explicit tradeoff of goodness-of-fit and
complexity. This is difficult in a specific context that we often encounter in
practice: complex, hierarchical models (cf. Henderson et al. 2010). That is,
when we represent the marginal distribution of the data x in a probability
model as

p(x) =
∫

θ∈�

p(x|θ) p(θ) dθ (6)

with parameter θ and prior density p(θ), we may sometimes choose to repre-
sent that prior as being governed by a hyperparameter ψ :6

p(θ) =
∫

ψ∈�

p(θ |ψ) p(ψ) dψ. (7)

6The marginal distribution of the data Eq. 6 is not affected by whether we parametrize the prior
with hyperparameter ψ according to Eq. 7.
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However, it is now unclear what should be considered the likelihood function
of the data: p(x|θ, ψ), p(x|θ) or p(x|ψ) (Bayarri et al. 1988)? Consequently,
it is unclear how complexity of the model should be measured: Should we
base our understanding of complexity on the dimension of θ , the dimension
of ψ , or an aggregate of both? Apart from this ambiguity, the complexity of
a model also depends on the amount of available prior information on the
parameter values. The more information we have, the less complex a model is.
Straightforwardly measuring complexity as the number of free parameters, as
in the case of BIC, is therefore inappropriate as a general procedure.

Therefore, Spiegelhalter et al. (2002) propose to measure complexity by
comparing the expected deviance in the data (under the posterior distribution)
to the deviance in the estimate θ̃ (x) that we would like to use. In other
words, complexity manifests itself in terms of “difficulty in estimation”. The
authors propose to measure surprise or deviance in the data x relative to a
point hypothesis parametrized by θ ∈ � by means of the canonical measure
− log p(x|θ) (Bernardo 1979).7 The Bayesian twist of DIC, as opposed to
frequentist approaches, consists in incorporating prior information on the
parameters: “it seems reasonable that a measure of complexity may depend on
both the prior information concerning the parameters in focus and the specific
data that are observed” (Spiegelhalter et al. 2002, 585).

In particular, θ̃ (x) denotes the Bayes estimator of the quantity of interest θ ,
usually the posterior mean of θ . Then, we can compare the expected deviance
in the data (conditional on the posterior distribution of θ) to the deviance we
observe under our estimate of θ̃ (x). This quantity pD indicates how difficult it
is to efficiently fit the parameters of a model Mθ :

pD(Mθ , x) = Eθ |x[−2 log p(x|θ)] − 2(− log p(x|θ̃ (x)))

= 2 log p(x|θ̃ (x)) − 2
∫

θ∈�

log p(x|θ) p(θ |x) dθ (8)

where Eθ |x refers to the posterior expectation with respect to p(θ |x). Reading
Eq. 8 in yet another way, pD measures the extent to which our estimate θ̃ (x) is
expected to overfit the data and how much deviance we can expect to observe
in the future. This interpretation connects pD to the predictive performance of
our estimate.

7There are several possible justifications for this particular measure. First of all, this function
is inversely related to the probability of x under θ . If x occurs and it was considered to be
unlikely, the surprise under the parameter value θ is high. Thus, the hypothesis gets “punished”
by being assigned a high deviance − log p(x|θ) from the data. Vice versa, if x is likely under θ , the
hypothesis is “rewarded” by being assigned a low deviance. Second, if the data x consist of several
independent observations (x1, . . . , xN), then we should be able to decompose the overall deviance
into the deviance of the single observations. The − log p(x|θ) function accounts for that feature
in a particularly natural and intuitive way since log p(x1, . . . , xN |θ) = ∑

i log p(xi|θ): the overall
deviance of independent observations is the sum of the individual deviances.
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Indeed, pD has been used regularly for assigning scores to candidate models,
and it serves as the basis of the Deviance Information Criterion (DIC), a model
comparison procedure trading off deviance and complexity. DIC is defined as

DIC(Mθ , x) = E[D(θ, x)] + pD(Mθ , x) (9)

where the function D(·, ·) is defined as

D(θ, x) = −2 log p(x|θ) + 2 log f (x) (10)

for some standardized function of the data f (x). Taking into account that
Eq. 10 is mainly a function of the deviance between model Mθ and data x,
we can regard the overall DIC score in Eq. 9 as a tradeoff between goodness
of fit (the D-term) and the expected overfit (pD).

The form of DIC already illustrates that its target of inference is not
particularly Bayesian. The difficulty of accurately fitting a model is relevant
for the practitioner (e.g., for checking the adequacy of a model), but not of
intrinsic interest for the orthodox Bayesian reasoner. On the other hand, there
are many Bayesian elements in DIC: the estimator θ̃ (x), whose deviance is
estimated in Eq. 8, is nothing but the posterior mean of θ , and it is evaluated
with respect to the posterior distribution of θ . Also, Spiegelhalter et al. (2002)
show how DIC can be understood as an approximate estimator of posterior
expected loss.

The inventors of pD and DIC are actually aware of that tension and clarify
that they believe a rigorous Bayesian justification to be neither available nor
necessary:

Our approach here can be considered to be semiformal. Although we
believe that it is useful to have measures of fit and complexity, and
to combine them into overall criteria that have some theoretical jus-
tification, we also feel that an overformal approach to model ‘selection’
is inappropriate since so many other features of a model should be
taken into account before using it as a basis for reporting inferences [...].
(Spiegelhalter et al. 2002, 602)

DIC is thus a formidable example of a hybrid, eclectic approach to inference
in model selection: it is inspired by Bayesianism, frequentism and statistical
decision theory. Notably, this eclecticism can go either way: For instance, if the
amount of prior information is substantial compared to the data set, then the
classical, frequentist AIC can be calibrated as to asymptotically approximate
the Bayes factor of different models (Kass and Raftery 1995), or it can be
represented as a more general Bayesian criterion (Forster and Sober 2011).8

From this analysis, we see that the idea to identify Bayesian model selection
by means of its inferential targets is not convincing. In particular, DIC clearly

8Resampling procedures, cross-validation, provide another benchmark for model selection proce-
dures (Stone 1977; Forster 2007), and it is an empirical question to what extent they can perform
this function better or worse than a Bayesian analysis.
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demonstrates that the targets of Bayesian model selection procedures are
much more nuanced and varied than just posterior probabilities or Bayes
estimates. Second, and more generally, target and justification of a model
selection procedure are usually intertwined and hard to separate from each
other.

5 Conclusions

What do Bayesian model selection procedures teach us about Bayesian phi-
losophy of science? Their explicitly Bayesian formalism suggests that they
are supported by a full-fledged Bayesian philosophy of inference. A closer
look reveals, however, that this claim is not substantiated. Popular Bayesian
model selection procedures, such as MML, BIC and DIC, may only partially
conform to Bayesian reasoning, even if they are firmly anchored within the
Bayesian formalism. Rather, they should be described as hybrid procedures:
the Bayesian calculus may serve a different goal (MML: efficient coding), some
crucial elements of Bayesian reasoning may be dropped (BIC: subjective pri-
ors), and ideas and techniques from different philosophies (DIC: Bayesianism,
decision theory, frequentism) may be mixed. This need not conflict with a
general classification as Bayesian model selection procedures, but it highlights
differences in target, justification and intended application context.

Accordingly, the question of what justif ies these procedures cannot be an-
swered in full generality. Neither of them has a general frequentist or Bayesian
justification. Consequently, the adequacy of the chosen procedure depends
on whether the implicit assumptions in the derivations of the procedures are
satisfied. For example, BIC discounts the priors and focuses on asymptotic
behavior, whereas DIC is particularly apt in hierarchical models, etc. MML, on
the other hand, does not work with a fixed set of candidate models: efficiently
partitioning the model space is already an essential part of the inference
problem! This is a crucial difference to BIC and DIC. The practitioner faces
the non-trival task to ensure that a model selection procedure is adequate for
a given application context.

Thus, there is no unified “Bayesian philosophy of model selection” ex-
emplified in MML, BIC and DIC. This has repercussions on attempts to
exploit properties of Bayesian model selection procedures for an assessment
of Bayesian statistical inference in general. For example, Forster and Sober
(1994) write:

Bayesianism is unable to capture the proper significance of considering
families of curves [...] Akaike’s reconceptualization of statistics does
recommend that the foundations of Bayesian statistics require rethinking.
(Forster and Sober 1994, 26, original emphasis)

Other authors, on the contrary, promote Bayesianism because of the apparent
success of Bayesian model selection in practice. For instance, Dowe et al.
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(2007) defend MML on grounds of its generality, efficiency and invariance
under transformations of the parameter space. Then they conclude:

Since MML is a Bayesian technique we should conclude that the best
philosophy of science is Bayesian. (Dowe et al. 2007, 712)

However, we have seen that an implicit premise of such arguments—namely
that Bayesian model selection is firmly anchored in Bayesian philosophy—
is usually not satisfied. Therefore it is hard to draw a general moral from
Bayesian model selection for the philosophical dispute between Bayesians
and frequentists. Such a negative conclusion may not appeal to everyone,
but to me, it seems the most honest answer to the question of what kind
of philosophical claims can be supported by the statistical practice of model
selection.
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