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Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery

is generally very poor. The neurotrophins have emerged as an important modulator of

axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation

and signaling, as well as its role in activity-dependent treatments including electrical

stimulation, exercise, and optogenetic stimulation are discussed here. The importance

of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present

in 30% of the human population and may hinder the efficacy of these treatments

in enhancing regeneration after injury is considered. Preliminary data are presented

on the effectiveness of one such activity-dependent treatment, electrical stimulation,

in enhancing axon regeneration in mice expressing the met allele of the Val66Met

polymorphism.
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PERIPHERAL NERVE INJURY

Despite the ability of axons in peripheral nerves to regenerate, recovery is generally very poor
(Portincasa et al., 2007; Scholz et al., 2009). The cellular changes that occur after an injury
often cannot sustain axon regeneration for the duration required to reinnervate target organs
(Fu and Gordon, 1995a,b). The neurotrophins have emerged as an important modulator of axon
regeneration, particularly brain derived neurotrophic factor (BDNF). Here, we will review BDNF
and its role in activity-dependent treatments to enhance regeneration. Then we will discuss a single
nucleotide polymorphism in the bdnf gene, Val66Met, which is present in 30% of the human
population and may hinder the efficacy of these treatments (Egan et al., 2003; Shimizu et al.,
2004). Finally, we will present preliminary data on the effectiveness of one such activity-dependent
treatment, electrical stimulation (ES), in enhancing axon regeneration in mice expressing the met
allele of the Val66Met polymorphism.

BRAIN DERIVED NEUROTROPHIC FACTOR

BDNF is a member of the neurotrophin family, which also includes nerve growth factor
(NGF), neurotrophin 3 (NT3), and neurotrophin 4/5 (NT4/5). BDNF is required for normal
development—BDNF knockout (KO) is embryonic lethal (Jones et al., 1994; Schwartz et al., 1997).
In adulthood, BDNF is involved in synaptic plasticity, long term potentiation (LTP), learning and
memory as well as hippocampal neurogenesis and regeneration after injury (Lindsay, 1988; Lewin
and Barde, 1996; Lu et al., 2014; Richner et al., 2014). In the subsequent paragraphs, we review
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how BDNF is regulated at the level of mRNA transcripts, protein
trafficking, and receptor binding, following with its role in
peripheral nerve regeneration.

Regulation of BDNF Transcripts
The human BDNF gene resides on the short arm of the
11th chromosome (Maisonpierre et al., 1991). It consists
of 9 exons—eight 5′ untranslated exons and one protein
coding 3′ exon (Figure 1) (Liu et al., 2006; Aid et al., 2007;
Pruunsild et al., 2007). Through alternative splicing, 17 distinct
mRNA transcripts for BDNF have been identified in humans
and 11 in rodents (Pruunsild et al., 2007). Additionally,
the 3′UTR of the gene contains two polyadenylation sites,
resulting in both a long 3′UTR and a short 3′UTR, doubling
the possible splice variants. The entire protein-coding
region resides on exon IX, so the mature BDNF protein
synthesized is identical regardless of mRNA splicing. Splice
variants allow for spatial and temporal control of the BDNF
transcript.

Spatial control of the 5′UTRs can be seen in exon expression
throughout the body. BDNF transcripts containing exons I,
II, and III are found exclusively in the brain, and transcripts
containing exon IV are predominantly found peripherally in the
lung and heart, but can also be found in brain tissue (Timmusk
et al., 1993). Even within brain tissue, different promoters can be
found in different cell types. For example, exon IV transcripts
are required for proper GABAergic interneuron function in the
prefrontal cortex (Sakata et al., 2009).

Many different stimuli exert temporal control over BDNF
transcription. In cultured cortical neurons, Ca2+ influx results
predominantly in transcription of exon IV-containing mRNA
(Tao et al., 1998). This promoter contains a cAMP/Ca2+-
response element-like element (CaRE3/CRE) that is required
for activity-dependent transcription (Tao et al., 1998; Hong
et al., 2008). The transcription factor CREB binds this element,
is phosphorylated by calcium-regulated kinase cascades, and
recruits transcriptional machinery resulting in Ca2+ dependent
transcription of exon IV-containing BDNF mRNA (West et al.,
2001; Lonze and Ginty, 2002). Other stimuli have been identified
in modulating BDNF expression. In motoneurons, exon VI

FIGURE 1 | Structure of BDNF gene and location of Val66Met SNP in the coding exon IX. The G to A substitution in the prodomain results in a valine to methionine

substitution and decreased Ca2+-dependent release of BDNF.

transcripts are androgen sensitive, despite no known androgen
response element on the bdnf gene (Ottem et al., 2010; Sabatier
and English, 2015). There is, however, an estrogen response
element (Sohrabji et al., 1995). SRY-box containing gene 11
(Sox11), a transcription factor involved in neuronal survival,
axon growth, and regeneration after injury, increases exon I
containing BDNF mRNA transcripts specifically in peripheral
DRG neurons, but not in CNS neurons (Jankowski et al., 2006;
Salerno et al., 2012; Struebing et al., 2017). Exons II and VI are
sensitive to tricyclic and atypical antidepressants (Vaghi et al.,
2014).

A further role for 5′ promoter exons regulating BDNF mRNA
may lie in mRNA trafficking. In both cortical and hippocampal
neurons, BDNFmRNA is found in dendrites and activity induces
trafficking of BDNF mRNA to distal dendrites (Tongiorgi et al.,
1997; Capsoni et al., 1999; Chiaruttini et al., 2008, 2009).
Interestingly, only certain splice variants are found in dendrites—
those containing exons IIB, IIC, and VI (Pattabiraman et al.,
2005; Chiaruttini et al., 2008). Transcripts containing exons I, III,
and IV are restricted to the cell body.

Further spatial and temporal translational control of BDNF
mRNA may come via the 3′UTR. The bdnf 3′ UTR contains two
polyadenylation sites. This allows for both a long 3′UTR and a
short 3′UTR to be transcribed (Timmusk et al., 1993; Aid et al.,
2007; Pruunsild et al., 2007). These different 3′UTRs are thought
to determine mRNA trafficking within the cell. Both the long
and short 3′UTR transcripts can be found in the dendrites under
different conditions (Vicario et al., 2015). However, in general,
the long 3′UTR transcripts are trafficked to the dendrites, where
local BDNF synthesis can regulate pruning and enlargement
of synapses, whereas the short 3′UTR transcripts stay in the
cell body (An et al., 2008). Both depolarization of the neuron
as well as BDNF itself increase the number of BDNF mRNA
transcripts targeted to the dendrites (Tongiorgi et al., 1997;
Righi et al., 2000). Remarkably, the short 3′UTR transcripts
account for the majority of BDNF translation, whereas the long
3′UTR transcripts are translationally repressed by RNA binding
proteins which stabilize the mRNA until neural activity elicits
rapid local translation (Lau et al., 2010; Allen et al., 2013; Vaghi
et al., 2014). Calcium influx associated with neuronal activity
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also results in increased stabilization of BDNF mRNA (Fukuchi
and Tsuda, 2010). Conversely, the 3′UTR also contains regions
which interact with microRNAs, which are short, non-coding
RNA strands that complement mRNA transcripts and result
in transcript degradation (Bartel, 2004). Numerous microRNAs
have been identified as regulators of BDNF, andmicroRNA access
to binding sites depends on the presence of the long or short
3′UTR (Mellios et al., 2008; Varendi et al., 2014).

BDNF Trafficking and Secretion
BDNF, like the other neurotrophins, is synthesized as a pre-
proprotein. The pre-domain functions as a signaling peptide that
directs synthesis to the endoplasmic reticulum (ER) for future
packaging as a secretory protein. It is immediately cleaved to
form proBDNF upon sequestration in the ER (Lessmann et al.,
2003). Within the ER, proBDNF forms homodimers (Kolbeck
et al., 1994). Both proBDNF and a further cleaved form, mature
BDNF, can be packaged into vesicles and secreted. ProBDNF
is approximately 29 kDa, and once cleaved, mature BDNF is
approximately 14 kDa (Seidah et al., 1996a). Intracellularly,
cleavage can occur within the trans-Golgi network or secretory
vesicles by furin, a protease, and proprotein convertases PCSK6
and PC5-6b. Extracellularly, cleavage is executed by tissue
plasminogen activator or matrix metalloproteinases, which are
secreted in an activity-dependent manner (Krystosek and Seeds,
1981; Gualandris et al., 1996; Seidah et al., 1996a,b; Lee et al.,
2001; Mowla et al., 2001; Hwang et al., 2005; Keifer et al., 2009;
Nagappan et al., 2009; Yang et al., 2009). Once cleaved, the
prodomain is not immediately degraded, and can be secreted
with mature BDNF (Anastasia et al., 2013).

From the trans-Golgi network, BDNF is directed to two
different secretory pathways: a constitutive pathway and a
regulated, Ca2+ dependent pathway (Mowla et al., 1999;
Lessmann et al., 2003; Kuczewski et al., 2009). The constitutive
pathway consists of small granules (50–100 nm diameter) that
fuse with the cell membrane near the neuronal somata and
proximal processes. The regulated secretory pathway consists of
larger granules (300 nm diameter) that fuse in distal processes
and axon terminals (Conner et al., 1997; Kohara et al., 2001;
Brigadski et al., 2005; Dieni et al., 2012). The dual pathway
for release is distinctive of BDNF. The other neurotrophins are
preferentially secreted through a constitutive pathway. Under
normal conditions, most neuronal BDNF is packaged into the
regulated pathway (Lu et al., 2014).

Two important interactions have been identified in the
sorting of BDNF into the regulatory pathway. The first to be
discovered was the interaction between the sorting receptor
carboxipeptidase E (CPE) and a three-dimensional motif on
the mature domain of BDNF (Lou et al., 2005). Knocking out
CPE in cortical neurons blocks activity-dependent release of
BDNF and increases constitutive release. Similarly, adding this
motif to NGF redirected its release to the regulated secretory
pathway (Lou et al., 2005). The second interaction is between the
prodomain and the protein sortilin (Chen et al., 2005). Sortilin
is localized predominantly to the Golgi apparatus and interacts
with the BDNF prodomain to direct it to the regulated secretory
pathway (Nielsen et al., 2001; Chen et al., 2005). When sortilin

is unable to interact with the prodomain of BDNF, regulated
release is decreased, but there is no compensatory increase in
constitutive release (Chen et al., 2005; Lu et al., 2005). This has
led to the hypothesis that the interaction between sortilin and
the prodomain of BDNF is necessary for proper protein folding,
which allows CPE to interact with the mature domain and sort
BDNF into one of the two pathways (Lu et al., 2005). When
NT-4/5, which is secreted constitutively, is modified to contain
the BDNF prodomain, it is trafficked to the regulated secretory
pathway (Brigadski et al., 2005). Similarly, blocking the cleavage
of the prodomain of NGF, which is also released constitutively,
results in its sorting into regulated secretory pathways (Mowla
et al., 1999).

BDNF Receptors
Once secreted, BDNF can bind to one of two receptors—
tropomyosin receptor kinase B (trkB) or the common
neurotrophin receptor, p75NTR. Mature BDNF preferentially
binds trkB, resulting in pro-growth signaling, whereas proBDNF
(as well as the other proneurotrophins) preferentially binds
p75NTR, resulting in antigrowth signaling (Lee et al., 2001).
BDNF is primarily secreted as proBDNF (Mowla et al., 1999,
2001; Chen et al., 2004). Thus the availability of proteins that
cleave the prodomain may regulate which receptor is activated
by BDNF release, providing another mechanism for control of
BDNF signaling.

The trkB receptor is a typical tyrosine kinase. When ligand
is bound, it dimerizes and autophosphorylates. In addition
to BDNF, trkB can also bind NT-4/5. Several isoforms of
trkB have been discovered, including isoforms that change its
sensitivity to NT-4/5, as well as a truncated form that lacks an
intracellular kinase domain (Eide et al., 1996). The truncated
form acts as a dominant negative receptor, forming heterodimers
with full length trkB receptors and blocking neurotrophin
signaling (Eide et al., 1996; Fryer et al., 1997). Another possible
role for truncated trkB on astrocytes and Schwann cells may
be to act to control the pool of available neurotrophins,
preventing them from degrading or signaling until released
into the extracellular space (Alderson et al., 2000). In its full-
length form, trkB has several intracellular tyrosine residues that
can be phosphorylated (Huang and Reichardt, 2003). Three
possible signaling cascades are then activated: phospholipase
C gamma (PLCG); phosphotidyl-inositol-3 kinase (PI3K); and
mitogen activated protein kinase/extracellular receptor kinase
(MAPK/ERK) (Reichardt, 2006).

The phosphorylation of residue Y490 creates a binding site
for adaptor protein Shc (Patapoutian and Reichardt, 2001). Shc
binding trkB allows for activation of Ras and further activation
of the MAPK/ERK pathway. Downstream of this pathway is
mechanistic target of rapamycin (mTOR). Shc binding residue
Y490 also results in the recruitment of PI3K and activation of
protein kinase B (Akt) (Reichardt, 2006). The phosphorylation
of residue Y785 creates a binding site for PLCG, which is
then phosphorylated by trkB (Patapoutian and Reichardt, 2001).
This phosphorylation activates PLCG, which then hydrolizes
phosphotidylinositides to generate diacylglyerol (DAG), which
activates protein kinase C (PKC), and inositol 1,4,5 triphosphate
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(IP3), which results in an influx of intracellular Ca2+ stores from
the ER. These signaling cascades all converge at the level of the
nucleus, where transcription is affected through CREB and other
transcription factors (Minichiello, 2009).

Once bound to ligand, trkB is endocytosed to form a signaling
endosome (Delcroix et al., 2003; Reichardt, 2006). Both ligand
and receptor are contained within the endosome, allowing trkB to
continue signaling as it is trafficked through the cell. In this way,
trkB can be moved closer to the nucleus, where it can affect gene
transcription, as well as brought into closer proximity to signaling
effectors (Delcroix et al., 2003). However, not all actions of trkB
happen at the level of the soma—BDNF-trkB activation has been
shown to affect local protein synthesis in the growth cone as well
(Yao et al., 2006).

The second receptor for BDNF is the pan-neurotrophin
receptor, p75NTR (Rodríguez-Tébar et al., 1992). Generally
thought of as a pro-death receptor, p75NTR is a member of
the tumor necrosis factor receptor super family and contains
a cytosolic death domain (Liepinsh et al., 1997; Locksley et al.,
2001). It is expressed primarily during development, but sensory
neurons and spinal motoneurons maintain low expression
through adulthood (Ernfors et al., 1989; Heuer et al., 1990; Wyatt
et al., 1990; Ibáñez and Simi, 2012). Its cytosolic domain is non-
enzymatic, so its actions depend entirely on associations with
cytoplasmic proteins (Nagata, 1997). Despite its canonical role,
p75NTR can mediate both pro-death and pro-survival signals
depending on its cytosolic partners. For example, p75NTR is
required during development for normal neuron growth and
ramification (Yamashita et al., 1999). Multiple adaptor complexes
interact with its cytosolic domain to mediate downstream effects
(Dechant and Barde, 2002).

Additionally, p75NTR has multiple membrane-bound and
extracellular binding partners which can alter whether its
signaling is pro-survival or pro-death. Through extracellular
pairing with sortilin, p75NTR is able to bind the proneurotrophins
(Nykjaer et al., 2004; Teng et al., 2005), resulting in pro-death
or anti-growth signaling through downstream JNK activation
or caspase activation (Reichardt, 2006). However, neurotrophin
binding to p75NTR can also result in NFκB activity, which is
a pro-survival signal (Carter et al., 1996; Hamanoue et al.,
1999; Middleton et al., 2000). One key protein regulated by
p75NTR is RhoA, a small GTPase that regulates the actin
cytoskeleton and inhibits axon elongation (Walsh et al., 1999;
Schmidt and Hall, 2002). Through such interactions with the so-
called death domain of p75NTR, neurotrophin binding inhibits
Rho (Yamashita et al., 1999; Roux and Barker, 2002). Through
forming a receptor complex with the Nogo receptor, NgR1,
p75NTR can act as a receptor for myelin-associated glycoprotein
(MAG) (Wang et al., 2002), which enhances Rho activation and
results in neurite collapse (Mi et al., 2004). Curiously, p75NTR

can act as a binding partner for the trks, including trkB, and
increases affinity and selectivity of binding and thus enhancing
trk signaling (Bibel et al., 1999).

Like trkB, truncated forms of p75NTR have been identified.
One short p75NTR isoform lacks an extracellular ligand binding
domain, but contains its intracellular machinery (Roux and
Barker, 2002). This form is unable to bind the neurotrophins

(Dechant and Barde, 1997). The extracellular domain of p75NTR

can also be cleaved by extracellular metalloproteinases (Roux
and Barker, 2002). These isoforms could act as modulators of
neurotrophin signaling.

The two receptors for BDNF are generally thought to
have opposing roles and may mediate a balance between
growth and death. trkB has a higher affinity for mBDNF,
but as levels of neurotrophin increase, p75NTR will also
bind mBDNF and activate signals in direct opposition to
trkB. Because of the different affinities for pro- and mature
BDNF, cleavage of BDNF becomes another mechanism to
control its downstream signaling effects (Lee et al., 2001).
Depolarization of a neuron, which results in secretion of BDNF,
also results in secretion of tissue plasminogen activator which
cleaves proBDNF to create mature BDNF (Gualandris et al.,
1996). BDNF-trkB signaling increases expression of matrix
metalloproteinase 9, which also cleaves BDNF (Kuzniewska et al.,
2013).

ROLE OF BDNF IN PERIPHERAL NERVE
INJURY

In peripheral nerves, BDNF is synthesized by motoneurons, a
subset of DRG neurons, and Schwann cells (Apfel et al., 1996;
Cho et al., 1997; Michael et al., 1997). After nerve crush or
complete transection, BDNF mRNA increases in all three cell
types, including in trkB- and trkC-expressing DRG neurons not
found previously to express BDNF (Meyer et al., 1992; Funakoshi
et al., 1993; Kobayashi et al., 1996; Michael et al., 1999; Al Majed
et al., 2000a; English et al., 2007). BDNF mRNA can be found in
low levels in the sciatic nerve, and after injury, that expression
is upregulated. This upregulation is sustained over the course of
weeks and can be attributed to both neuronal and non-neuronal
sources (Meyer et al., 1992; Funakoshi et al., 1993). In facial
nerve injury, upregulation of BDNF is correlated with enhanced
functional outcome (Grosheva et al., 2016).

Following sciatic nerve injury, a transient increase in both
BDNF and full length trkB mRNA is found in motoneurons
(Kobayashi et al., 1996; Al Majed et al., 2000a). Unlike sensory
neurons, NGF and trkA are not expressed by motoneurons,
nor are they upregulated after injury (Funakoshi et al., 1993;
Escandon et al., 1994). There is a small and short-lived
upregulation of NT3 and NT4/5 in motoneurons (Funakoshi
et al., 1993). TrkC is expressed by adult motoneurons, but it
is not upregulated after injury (Johnson et al., 1999). Thus, the
rapid upregulation of BDNF and trkB make it likely that BDNF
is the main neurotrophin mediating early motoneuron response
to nerve injury (Boyd and Gordon, 2003).

Schwann cells express only the truncated form of trkB, which
has the potential to act as a dominant negative receptor for BDNF
and NT4/5. Schwann cell truncated trkB mRNA levels decrease
significantly after sciatic nerve injury (Frisén et al., 1993). This
could be viewed as pro-regenerative, enabling available BDNF
to bind to trkB receptors on regenerating neurites and enhance
their growth. Conversely, after injury, Schwann cells upregulate
p75NTR, which has been suggested to result in sequestration of
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neurotrophins and inhibit regeneration (Taniuchi et al., 1986;
Bibel et al., 1999; Scott and Ramer, 2010).

trkB in Peripheral Nerve Injury
Axons regenerate through the formation of growth cones, which
need cytoskeletal proteins, such as actin and tubulin, to extend
and stabilize the new growth. Beta actin mRNA is localized
to peripheral axons, and peripheral nerve injury triggers actin
mRNA to be transported down the axon for local protein
synthesis (Koenig et al., 2000; Sotelo-Silveira et al., 2008; Willis
et al., 2011). BDNF/trkB signaling triggers local translation of
transported mRNAs through a Ca2+-dependent mechanism,
and this is required for bidirectional turning toward BDNF
(Yao et al., 2006). BDNF application to injured axons increases
the number of actin waves (transport of actin filaments and
associated proteins toward the growth cone) per hour (Difato
et al., 2011; Inagaki and Katsuno, 2017). Neurotrophins also
stimulate growth cone sprouting and actin accumulation in the
sprouts (Gallo and Letourneau, 1998). Both of these processes
aremediated through the PIP3/PI3K signaling pathway described
above (Asano et al., 2008). When an actin wave reaches the
growth cone, the growth cone enlarges, branches, and undergoes
forward expansion (Flynn et al., 2009). Application of BDNF
to growth cones results in microtubule reorganization to form
lamellipodial as well as filopodial elongation (Gibney and Zheng,
2003).

In addition to local protein synthesis, trkB signaling has
effects on cyclic AMP (cAMP) production, which may be
important for the initial extension of growth cones across
the site of injury. The MAPK/ERK pathway of BDNF/trkB
signaling results in inhibition of phosphodiesterases (PDE) which
normally degrade cAMP (Gao et al., 2003). As such, BDNF/trkB
signaling results in increased levels of cAMP (Souness et al.,
2000; Gao et al., 2003). This pathway has been shown to
be necessary to overcome inhibition by MAG, and therefore
PDE inhibition has been most thoroughly studied in models
of spinal cord injury, where MAG inhibition of axon growth
creates a substantial barrier to regeneration (Cai et al., 1999;
Gao et al., 2003; Batty et al., 2017). Although injured peripheral
nerves do not suffer inhibition by MAG to the same extent
as that seen in the central nervous system, early in the
regeneration process, inhibitory proteoglycans and myelin debris
form an impermissible environment for axon regeneration
(shen et al., 1998). Increasing cAMP through PDE inhibition
enhances peripheral regeneration after injury, and it is likely
that trkB activation contributes to this cAMP-mediated effect on
regeneration (Gordon et al., 2009; Udina et al., 2010).

The different neurotrophin signaling pathways activated
through trk receptors converge at the level of transcription
in the nucleus. CREB, resulting from trkB-generated PI3K-
Akt activation, increases sensory neurite outgrowth (White
et al., 2000). Inhibiting phosphatase and tensin homolog
(PTEN), an endogenous inhibitor of the PI3K pathway, through
genetic knock out or pharmacology, enhances peripheral nerve
regeneration in vivo and neurite outgrowth in vitro (Park et al.,
2008; Christie et al., 2010). Numerous other transcription factors
downstream of MAPK/ERK signaling, such as c-jun, STAT3, and

ATF-3, have all been associated with changes in gene expression
after injury that enhance survival and regeneration (Makwana
and Raivich, 2005). mTOR, also downstream of MAPK/ERK
signaling and repressed by PTEN, regulates protein synthesis and
is also beneficial for DRG regeneration after injury (Park et al.,
2008; Abe et al., 2010).

p75NTR in Peripheral Nerve Injury
Because of its roles in both pro-death and pro-survival signaling,
it is not surprising that the role of p75NTR in regeneration after
injury has been controversial. Although generally considered an
anti-growth signal, its role is far more complex as evidenced by
conflicting results using p75NTR knock-out mice.

Although expression is high during development, mature
Schwann cells do not express p75NTR. Schwann cell expression
of p75NTR increases after injury (Taniuchi et al., 1986; Heumann
et al., 1987a,b). Deletion of p75NTR in Schwann cells mediates
improved regeneration inDRGneurons (Scott and Ramer, 2010).
Conversely, for motoneurons, Schwann cell p75NTR deletion
results in diminished functional recovery and axonal growth
(Tomita et al., 2007). Expression of p75NTR is thought to
mediate remyelination through a BDNF-dependent mechanism.
Disruption of endogenous BDNF signaling impairs myelination
(Cosgaya et al., 2002; Zhang et al., 2008), as does p75NTR

knockout from Schwann cells (Cosgaya et al., 2002; Song et al.,
2006; Tomita et al., 2007).

In motoneurons, p75NTR levels rise dramatically after injury,
returning to baseline levels by 30 days (Raivich and Kreutzberg,
1987; Yan and Johnson, 1988; Ernfors et al., 1989; Koliatsos
et al., 1991; Saika et al., 1991; Rende et al., 1995; Gschwendtner
et al., 2003). This upregulation in p75NTR does not result in
motoneuron cell death, however (Bueker and Meyers, 1951;
Kuzis et al., 1999). Treating injured motoneurons with low-
levels of recombinant human BDNF enhances their regeneration.
Higher doses, however, result in failure to regenerate, which
can be reversed by p75NTR blockade (Boyd and Gordon, 2002).
There is currently no motoneuron-specific p75NTR knockout
model, but conflicting results have been found with regard
to motoneuron regeneration in p75NTR pan-knockout mice.
Boyd and Gordon found improved motor axon regeneration
in knockout mice after peroneal nerve transection (Boyd and
Gordon, 2001). Gschwendtner et al. found no effect of knocking
out p75NTR on facial nerve axon regeneration (Gschwendtner
et al., 2003). Ferri et al. found worse axon regeneration but
improved functional recovery after facial nerve crush (Ferri et al.,
1998). Song et al. found fewer regenerating axons in p75NTR

knockout mice using both sciatic nerve and facial nerve crush
injuries (Song et al., 2009). Most recently, Zhang et al. found
worse axonal regeneration among p75NTR knockout mice using
a facial nerve crush model (Zhang et al., 2010). Using cell-type
specific knockout of p75NTR or targeting the binding partners of
p75NTR that result in different signaling could provide clarity to
these conflicting results in how p75NTR is affecting motoneuron
regeneration.

Sensory neurons decrease expression of p75NTR after injury
(Zhou et al., 1996). Unlike adult motoneurons, there is significant
cell death of DRG neurons after an injury, but this is restricted
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to small-diameter, mainly cutaneous afferent neurons (Welin
et al., 2008; Wiberg et al., 2018). Cell death in these smaller
DRG neurons can be blocked by application of NGF (Rich
et al., 1987; Ljungberg et al., 1999). Likewise, in injured DRG
neurons, BDNF acts in an autocrine loop to prevent cell death,
and disruption in BDNF expression increases cell death (Acheson
et al., 1995). A decrease in expression of p75NTR could act as a
survival signal, such that the endogenous increased neurotrophin
secretion would be more likely to bind trk receptors and result in
pro-survival signaling. In support of this hypothesis, in cultures
of DRG neurons in which p75NTR has been rendered inactive,
cell survival is higher, and increased neurotrophin concentration
does not result in increased cell death (Zhou et al., 2005).
Similarly, disrupting the NT binding domain of p75NTR results
in increased sprouting after injury in DRG neurons (Scott et al.,
2005).

Despite the upregulation of BDNF and its receptors after
injury, neither BDNF nor the other neurotrophins (NGF,
NT3, and NT4/5), is required for spontaneous regeneration of
peripheral neurons (Diamond et al., 1987, 1992; Streppel et al.,
2002; Wilhelm et al., 2012). However, application of exogenous
BDNF enhances axonal regeneration, functional recovery and
decreases synaptic stripping (Lewin et al., 1997; Boyd and
Gordon, 2002, 2003; Davis-Lopez de Carrizosa et al., 2009).
Recently, small molecule trkB agonists have been developed, and
these also enhance regeneration after injury (English et al., 2013).

ACTIVITY DEPENDENT TREATMENTS
ENHANCE REGENERATION

The first published report using activity-dependent treatments
to enhance peripheral nerve regeneration was from Hines in
1942. He tested both electrical stimulation (ES) and different
exercise paradigms in enhancing functional outcome in rats
with tibial nerve transections (Hines, 1942). Since then, there
has been great interest in treatments which activate injured
neurons, collectively known as activity-dependent treatments,
to enhance nerve regeneration (Udina et al., 2011a). These
treatments include ES (Table 1), exercise (Tables 2–4), and
more recently, optogenetic stimulation (Table 5). One benefit
of activity-dependent treatments is the potential for easy
translation from bench to bedside—using ES and exercise in
human patients would require meeting far fewer regulatory
requirements than the use of an experimental drug. Moreover,
for nerve injuries that require surgical intervention, ES could
be performed easily at the time of surgical repair of the
nerve, as has already begun with clinical trials for patients
undergoing surgery for carpal tunnel release and complete
digital nerve transection (Gordon et al., 2010; Wong et al.,
2015). Exercise has the advantage of being low cost and
allowing patients to take control of their recovery. However,
in the case of extensive injuries, exercise may not be an
option for a recovering patient. For this reason, finding
treatments that mimic the effects of exercise, such as optogenetic
stimulation, may be advantageous in treating patients. To
accomplish such a goal, an understanding of the biological

basis for the enhancement seen with these treatments is
necessary.

Electrical Stimulation
Immediately after a peripheral nerve injury, a calcium wave
propagates along the cut axons toward their cell bodies. Blocking
this calcium wave through inhibition of voltage gated calcium
channels or inhibition of calcium release from the neuronal
endoplasmic reticulum blocks regeneration (Ghosh-Roy et al.,
2010). It has been proposed that ES mimics the retrograde
calcium wave that propagates at the time of injury in order
to elicit cell-autonomous mechanisms that initiate regeneration
(Mar et al., 2014). This hypothesis is supported by evidence that
ES enhances early regeneration by accelerating the process of
axons crossing the site of injury to enter endoneurial tubes in the
segment of the nerve distal to the injury (Brushart et al., 2002).
ES results in a doubling of the number of motoneurons crossing
the site of injury into the distal nerve at 1 week after nerve injury
(Brushart et al., 2002). Without treatment, axons can take as long
as 4 weeks to cross the site of injury, but by 3 weeks after injury,
Al Majed et al. found all electrically stimulated motoneurons had
already regenerated to their target muscle compared to 8 weeks
for untreated controls (Al Majed et al., 2000b; Brushart et al.,
2002).

The first applications of ES focused on the functional recovery
of the affected muscles. In 1983; Nix and Hopf described that
as early as 2 weeks after injury, treatment with 4Hz stimulation
24 h daily increased twitch force, tetanic tension, and muscle
action potentials (Nix and Hopf, 1983). In 1985; Pockett and
Gavin found earlier return of the plantar extensor reflex with
just 15–60min of 20Hz stimulation (Pockett and Gavin, 1985).
Al Majed et al. chose their 20Hz regimen based on the mean
physiological frequency of motoneuron discharge and tried
numerous stimulation regimens, stimulating continuously for
1 h, 1 day, 1 week, and 2 weeks. They were the first to examine
the effect of ES on the regenerating axons (Loeb et al., 1987; Al
Majed et al., 2000b). Just 1 h of 20Hz stimulation resulted in long-
lasting enhancement of peripheral nerve regeneration. Following
publication of this paper, 20Hz stimulation became the standard
for studying ES (Table 1).

Without treatment, axon regeneration into motor or sensory
pathways in the distal segment of a cut nerve is random
for the first 2 weeks following injury (Brushart, 1993).
Motoneurons whose axons have entered only sensory pathways
(endoneurial tubes previously occupied by cutaneous axons)
remain permanentlymistargeted (Brushart, 1993). Enhancing the
speed of regeneration but increasing mistargeting could result
in poorer functional recovery. However, ES has been shown
to increase the sensorimotor specificity of regenerating axons
after peripheral nerve injury. More motoneurons regenerate
exclusively into motor pathways in rats treated with ES
(Al Majed et al., 2000b). Fewer than 40% of injured DRG
neurons reinnervated sensory pathways in controls compared
to 75% in ES-treated animals (Brushart et al., 2005). However,
innervating a motor endoneurial tube does not necessitate
reaching the appropriate muscle target. Indeed, topographic
analysis of motoneuron regeneration after ES revealed increased
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TABLE 1 | Effect of electrical stimulation on peripheral nerve regeneration.

Regimen Model Result References

Unspecified 3 min/day Rat tibial nerve crush Functional recovery Hines, 1942

4Hz 24 h/4 weeks Rabbit soleus nerve crush Functional recovery Nix and Hopf, 1983

20 hz 15–60min Rat sciatic nerve crush Functional recovery Pockett and Gavin, 1985

20Hz 60min, 24 h, 1

week, 2 weeks

Rat femoral nerve transection Axonal growth Al Majed et al., 2000b

20Hz 8 h/day/4 weeks Rat sciatic nerve avulsion Functional Recovery Tam et al., 2001

100 hz 10 pulses/2min Cultured rat retinal ganglion cell Neurite outgrowth Goldberg et al., 2002

20Hz 1 h Rat femoral nerve transection Axonal growth Brushart et al., 2002

20Hz 1 h Rat femoral nerve transection Axonal growth Brushart et al., 2005

20Hz 1 h Thy1-H-YFP mouse fibular nerve

transection

Axonal growth English et al., 2007

20Hz 1 h, 3 h, 24 h, 1

week, 2 weeks

Rat femoral nerve transection 1hr-Axonal growth Others—no

change

Geremia et al., 2007

20Hz 1 h Mouse femoral nerve transection Functional recovery Ahlborn et al., 2007

? 30 min/day until

recovery

Rat facial nerve transection Functional recovery Lal et al., 2008

20Hz 1 h Rat sciatic nerve transection Functional Recovery Axonal

growth

Vivo et al., 2008

20 hz 1 h Human carpal tunnel syndrome

release surgery

Functional recovery Gordon et al., 2010

20Hz 3 days Rat adult cultured DRG neurons Neurite outgrowth Enes et al., 2010

20Hz 1 h Rat sciatic nerve crush Myelination and myelin thickness Wan et al., 2010

20Hz 1 h Thy1-H-YFP mouse sciatic nerve

transection

Axonal growth Singh et al., 2012

20Hz 1 h Rat cultured DRG neurons Neurite outgrowth Singh et al., 2012

20Hz 30 min/day

1–7days

Rat facial nerve crush Functional recovery Foecking et al., 2012

20Hz 20min Rat sciatic nerve

Delayed repair 2 h−24 weeks

Axonal growth Functional

recovery

Huang et al., 2013

20Hz 1 h Human digital nerve transection Functional sensory recovery Wong et al., 2015

20Hz 1 h Rat common peroneal nerve

transection

Delayed repair 3 months

Axonal growth Elzinga et al., 2015

Regimen specifies stimulation paradigm. Model specifies which animal and injury model was used. Result specifies what outcome measure was analyzed. Denotes improvement in

outcome measured, denotes worse outcome.

misdirection of regenerating motor axons to functionally
inappropriate targets by over 500% (English, 2005). This
misdirection resulted in motoneurons previously innervating
extensor muscles reinnervating antagonistic flexor muscles.

Appropriate pathway innervation may rely on Schwann cells
secreting specific growth factors for motor and sensory tubes.
Schwann cells in the cutaneous nerves express high levels of
NGF after injury, whereas Schwann cells in ventral roots express

high levels of glial cell line-derived neurotrophic factor (GDNF)
(Hoke et al., 2006; Brushart et al., 2013). This difference in
growth factor expression has been proposed to be the mechanism
through which preferential motor reinnervation occurs, with
DRG neurons choosing paths with high NGF, and motoneurons
entering paths with high GDNF. With no treatment, in rodents,
neurotrophin expression peaks 15 days after injury and declines
back to baseline by day 30. The day 15 peak coincides with the
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TABLE 2 | Effects of treadmill training on peripheral nerve regeneration.

Regimen Duration Delay Model Result References

6.5–27 m/min

10–40 min/day

1-2/day 2-3 weeks Rat sciatic nerve crush ♀ Functional recovery Herbison et al., 1980a

27 m/min

1–2/day

5 days/week

3–4 weeks 2–3 weeks Rat sciatic nerve crush ♀ No change Herbison et al., 1980b

1 h/day

26.8 m/min

10 weeks Prior to injury Rat L4 root transection ♀ Increased sprouting Gardiner et al., 1984

10 m/min

30 min/twice/day

21 days None Rat sciatic nerve crush ♂ Functional recovery van Meeteren et al., 1998

10 m/min

1.5 h/twice/day

5 days/week

10 weeks 1 week Rat peroneal nerve transection ♀ Functional recovery Marqueste et al., 2004

18 m/min

30 min/twice/day

2 weeks 12 h Rat sciatic nerve crush ♂ Axonal growth Seo et al., 2006

10 m/min*1 h/day

20 m/min

Or

2 min*4/day

5 days/week

2 weeks 3 days Thy1-H-YFP mouse sciatic nerve

transection

Axonal growth Sabatier et al., 2008

8 m/min

30 min/twice/day

2 weeks 12 h Rat sciatic nerve crush ♂ DRG

culture ♂

Axonal growth

Neurite length

Seo et al., 2009

10 m/min*1 h/day

20 m/min

2 min*4/day

5 days/week

2 weeks 3 days Mouse sciatic nerve transection Axonal growth English et al., 2009

20Hz 1 h ES + 5

m/min

2h/day

4 weeks 5 days Rat sciatic nerve transection ♀ Axonal growth Asensio-Pinilla et al., 2009

20 cm/s-54 cm/s

60 min/day

5 days/week

5 or 52 days 3 days Mouse sciatic nerve chronic

constriction injury ♂

Functional recovery Cobianchi et al., 2010

4.6 m/min

30min/twice/day

4 weeks 5 days Rat sciatic nerve transection ♀ Functional Recovery

Axonal growth

Udina et al., 2011b

1.8–3 m/min

20 min/day

3 weeks 7 days Rat ulnar nerve crush ♂ Functional recovery Pagnussat et al., 2012

10 m/min

1 h/5 days/week

2 weeks 3 days Rat sciatic nerve transection ♀ Functional recovery Boeltz et al., 2013

10 m/min

1 h/5 days/week

2 weeks 3 days Mouse sciatic nerve transection ♀ ♂ Synaptic stripping Liu et al., 2014

10 m/min

1 h/5 days/week

6 weeks 3 days Mouse median nerve transection ♂ Functional recovery Park and Höke, 2014

20 m/min

2 min*4/day

5 days/week

2 weeks 3 days SLICK::BDNFf/f mouse sciatic

nerve transection ♀

Synaptic stripping Krakowiak et al., 2015

Regimen is the speed of running and for how long each day. Duration is how many days TT was performed. Delay refers to how long after injury before exercise was performed. Model

specifies what type of injury and in what animal. Sex of animals is specified by ♀ or ♂. If this is not listed, it was not specified. Result specifies what outcome measure was analyzed.

Denotes improvement in outcome measured, denotes worse outcome. No arrow denotes no effect.

onset of pathway preference for regenerating axons (Gordon,
2015). ES, however, dramatically increases NGF secretion from
Schwann cells for 3 days following stimulation (Koppes et al.,

2014), possibly providing an earlier signal to regenerating sensory
axons as to which pathways to take, and thus improving pathway
targeting.
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TABLE 3 | Effect of swimming exercise on peripheral nerve regeneration.

Regimen Delay Model Result References

1 h/day Unspecified Rat tibial nerve transection Functional recovery Hines, 1942

10 min/day

10 days

4, 11, 18 days Rabbit sciatic nerve crush Myelination Sarikcioglu and Oguz, 2001

30 min/day

2 weeks

None

2 weeks

Rat sciatic nerve crush ♂ Decreased sprouting Teodori et al., 2011

10–30 min/day

3 days/week

3 weeks

7 days Rat sciatic nerve transection No change Liao et al., 2017

Regimen specifies how long swimming exercise lasted each day and how many days swimming was performed. Delay refers to how long after injury before exercise was performed.

Model specifies what type of injury and in what animal. Sex of animals is specified by ♀ or ♂. If this is not listed, it was not specified. Result specifies what outcome measure was

analyzed. Denotes improvement in outcome measured, denotes worse outcome. No arrow denotes no effect.

Exercise Treatment
For years, the evidence for exercise enhancing regeneration
was not as clear as the evidence for ES. Many different types
of exercise with varying intensities applied at different times
prior to or after injury have resulted in conflicting results.
It was hypothesized that increased neuronal activity through
exercise would enhance regeneration as early as 1979, but early
studies utilizing treadmill training, voluntary wheel running,
and swimming found unfavorable results (Hoffer et al., 1979;
Herbison et al., 1980a; Gardiner et al., 1984; Badke et al., 1989;
van Meeteren et al., 1998; Tam et al., 2001). These experiments
largely focused on the effect of exercise onmuscle fiber alterations
and muscle function, and did not probe the effect of exercise on
axon regeneration.

The change in emphasis from the effect of exercise on
denervated muscle to the effect of exercise on injured spinal
motoneurons and DRG neurons encouraged scientists to
continue researching exercise, despite previous underwhelming
results. In 2008, English and colleagues tested the efficacy of
interval training (short high-speed sprints followed by periods of
rest) in enhancing regeneration as a model that resembles how
mice voluntarily run (De Bono et al., 2006; Sabatier et al., 2008).
They found the surprising result that this regimen was effective
only in femalemice, and in fact themore commonly used training
regimen of slow continuous treadmill walking was effective only
in males (Wood et al., 2012). This previously unknown sex
difference could have affected outcomes in numerous exercise
experiments. For example, Seo et al. treated intact male rats with
either high or low intensity treadmill training before culturing
their DRGs and found only low intensity treadmill training
increased neurite outgrowth (Seo et al., 2009). Their treadmill
training regimen was very similar to the one used by Wood et al.
that proved effective only in male mice, and the results of this
experiment could have been different had females been included.
Many of the prior experiments mentioned used animals of only
one sex, and this could explain some of the variability in the
effects of exercise (Tables 2–4).

There are a few advantages to exercise over ES. For
example, while ES may increase misdirection of motoneurons
reaching targetmuscles, treadmill training enhancesmotoneuron
regeneration without decreasing topographic specificity (English

et al., 2009). The mechanism of ES is to accelerate crossing the
site of injury by regenerative sprouts; exercise does the same
but also sustains pro-growth signaling throughout the process of
regeneration (Gordon and English, 2016). There is also evidence
that the enhancing effects of 2 weeks of exercise are more robust
than that of a single bout of ES (Sabatier et al., 2008; Wood
et al., 2012; Gordon and English, 2016). In 2009; Asensio-Pinilla
et al. combined treadmill training with a single bout of ES
given at the time of injury, and found greater enhancement
of muscle reinnervation in the initial phase of recovery
compared to either treatment alone (Asensio-Pinilla et al.,
2009). Thus, after inauspicious beginnings, exercise has shown
great promise as a treatment in the field of peripheral nerve
regeneration.

Optogenetic Stimulation
The advent of optogenetics enabled cell-specific neuronal
activation with the use of the light-sensitive cation channel,
Channelrhodopsin (ChR2) (Krook-Magnuson et al., 2014).
Whereas ES stimulates all cells within the nerve (including
Schwann cells and various immune cells) and exercise likely
affects cells throughout the entire body, specific neuronal
activation can be achieved using optogenetics by expressing
ChR2 only in neurons. Park et al. were the first to demonstrate
the efficacy of light stimulation in enhancing regeneration by
replicating the common ES protocol using light stimulation of
20Hz for 1 h on explanted neonatal DRGs (Park et al., 2015).
Although they tested a number of different stimulation regimens,
the 1 h of 20Hz stimulation provided the largest effect on neurite
outgrowth. Ward et al. recapitulated this in vivo, finding that 1 h
of 20Hz light stimulation of light-sensitive neurons enhanced
axon regeneration only in the light-sensitive cells (Ward et al.,
2016, 2018).

MECHANISMS

Neurotrophins
Activity-dependent treatments require neuronal neurotrophin
production. ES increases neurotrophin expression in Schwann
cells, DRG neurons, and motoneurons (Al Majed et al., 2000a;
English et al., 2007; Wan et al., 2010; Koppes et al., 2014).
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TABLE 4 | Effect of other exercise paradigms on peripheral nerve regeneration.

Exercise Regimen Delay Model Result References

Forced Wheel Running 2 h/day Unspecified Rat tibial nerve transection Functional Recovery Hines, 1942

Overwork Chronic None Rat sciatic nerve crush ♀ Functional recovery Herbison et al., 1973

Voluntary wheel running 4 weeks None Mouse tibial nerve transection Functional recovery

Axonal growth

Badke et al., 1989

Axonal growth

Stretch Training 24 days None Rat sciatic nerve crush ♀ Functional recovery van Meeteren et al., 1997

Voluntary wheel running 8 h/day None L4 and L5 avulsion ♀ Axonal growth

Functional Recovery

Tam et al., 2001

Functional Recovery

Voluntary wheel running 3 or 7 days Prior to injury Rat DRG culture Rat sciatic

nerve crush

Neurite outgrowth

Axonal growth

Molteni et al., 2004

Manual Whisker

Stimulation

5 min/day

5 days/week

2 months

1 day Rat facial nerve transection ♀ Functional Recovery Angelov et al., 2007

Manual Muscle

Stimulation

5 min/day

5 days/week

2 months

1 day Rat hypoglossal transection ♀ Functional Recovery Guntinas-Lichius et al.,

2007

Manual Whisker

Stimulation

5 min/day

5 days/week

2 months

1 day Rat hypoglossal transection ♀ Functional Recovery Evgenieva et al., 2008

Manual Muscle

Stimulation

5 min/day

5 days/week

2 months

1 day Rat facial nerve transection ♀ Functional Recovery Bischoff et al., 2009

Manual Whisker

Stimulation

5 min/day

5 days/week

2 months

1 day BDNF+/− or trkB+/− rat facial

nerve transection ♀

Functional Recovery Sohnchen et al., 2010

Passive bicycle training 45 rpm 30

min/twice/day 4

weeks

5 days Rat sciatic nerve transection ♀ Functional Recovery

Axonal growth

Udina et al., 2011b

Skilled Motor Task 20 min/day 3

weeks

7 days Rat ulnar nerve crush ♂ Functional recovery Pagnussat et al., 2012

Exercise refers to what type of paradigm was used. Regimen specifies how long exercise lasted each day and how many days exercise was performed. Delay refers to how long after

injury before exercise was performed. Model specifies what type of injury and in what animal. Sex of animals is specified by ♀ or ♂. If this is not listed, it was not specified. Result specifies

what outcome measure was analyzed. Denotes improvement in outcome measured, denotes worse outcome. No arrow denotes no effect.

Electrically stimulating Schwann cells increases their secretion
of NGF specifically, and not BDNF (Koppes et al., 2014). While
Schwann cell NGF is sufficient to promote axon growth, the study
of axon regeneration through nerve grafts made acellular by
repeated freezing and thawing has demonstrated that stimulation
of Schwann cells (and other cell types) is not required for the
efficacy of ES to enhance axon regeneration (English et al.,
2007; Koppes et al., 2014). Moreover, the use of optogenetics to
stimulate neurons selectively has shown that specific neuronal
activation is sufficient to enhance regeneration (Ward et al.,
2016). ES is also effective in promoting regeneration in nerves
that have been repaired months after injury, when Schwann cells
have stopped secreting neurotrophins and have started to die

off (Sulaiman and Gordon, 2000; Hoke et al., 2006; Brushart
et al., 2013; Huang et al., 2013; Elzinga et al., 2015). Thus,
while activity-dependent treatments may increase Schwann cell
neurotrophin secretion, this is not required for their enhancing
effects.

Unlike non-neuronal cells, neuronal neurotrophin secretion
is required for the efficacy of activity-dependent treatments.
Genetically deleting NT4/5 or BDNF from Schwann cells does
not alter the efficacy of ES or treadmill training in enhancing
axon growth, but deleting these neurotrophins from neurons
abolishes the effectiveness of these activity-dependent treatments
(English et al., 2007; Wilhelm et al., 2012). Both exercise and ES
have been shown to increase neuronal BDNF and its receptor,

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 January 2019 | Volume 12 | Article 522

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


McGregor and English BDNF and Peripheral Nerve Regeneration

TABLE 5 | Effect of optogenetic stimulation on peripheral nerve regeneration.

Regimen Mouse Model Result References

1 h

20 Hz

5ms pulse

Thy1ChR2 Neonate DRG explant Neurite outgrowth Park et al., 2015

1 h

20 Hz

1ms pulse

Thy1ChR2 Sciatic nerve transection Axonal outgrowth Ward et al., 2016

1–2 h

10–20Hz (72 k

pulse total)

1ms pulse

Avil-Cre::ChR2-YFPf/f

Chat-ChR2-YFP

Sciatic nerve transection Axonal outgrowth Ward et al., 2018

Regimen specifies stimulation paradigm. Mouse specifies what transgenic mouse model was used. Result specifies what outcome measure was analyzed. Denotes improvement

in outcome measured, denotes worse outcome.

trkB (Al Majed et al., 2000a; Gomez-Pinilla et al., 2002; English
et al., 2007; Park and Höke, 2014; Park et al., 2015). Through co-
culturing light-sensitive DRG explants with wild type DRGs, Park
et al. demonstrated that the BDNF secreted in response to light
stimulation was sufficient to increase neurite outgrowth not only
from cells in a light-sensitive (ChR2-expressing) DRG, but also in
neighboring ganglia derived fromwild typemice. Protein analysis
of the media revealed increased BDNF and NGF secretion in
response to optical stimulation from the light-sensitive DRGs
only (Park et al., 2015).

There is a dose-dependence in activity-dependent treatments
for enhancing nerve regeneration. Whereas 1 h of 20Hz
stimulation has been shown to enhance DRG regeneration
after injury, an increase to just 3 h of ES decreased sensory
neuron regeneration, and was associated with a downregulation
in expression of the regeneration associated gene, GAP-43
(Geremia et al., 2007). In vitro, neurites from DRG explants
containing ChR2 had higher rates of growth with stimulation
paradigms resulting in 72k pulses of light (1 h 20Hz, 2 h
10Hz, 4 h 5Hz) than stimulation paradigms that resulted in
a higher number of pulses (20Hz for 1–3 days) or much
lower number of pulses (20Hz for 15min) (Park et al.,
2015). Three days of continuous depolarization through ES
or high concentrations of KCl results in complete failure of
dissociated DRG neurons to grow neurites in culture (Enes
et al., 2010). For motoneurons, high intensity exercise or
repeated bouts of ES result in decreased sprouting and fewer
synaptic contacts at neuromuscular junctions (Tam et al., 2001).
Application of 1 h of 20Hz ES every third day for 2 weeks
after sciatic nerve transection and repair did not enhance the
regeneration of motor axons in mice (Park et al., under review).
Interestingly, exogenous application of BDNF resulted in a dose-
dependent enhancement of axon regeneration as well (Boyd
and Gordon, 2002). Low to modest doses produced enhanced
axon regeneration, but higher doses inhibited regeneration.
Treatments with high doses of BDNF caused p75NTR activation,
which prevented DRG neurite outgrowth (Boyd and Gordon,
2002).

Neuronal Activity
The success of activity-dependent treatments in promoting
axon regeneration requires activation of the injured neurons.
Treating the neurons proximal to the stimulation site with
tetrodotoxin (TTX) to block their ability to conduct antidromic
action potentials abolishes the effect of ES, despite the continued
orthodromic firing of distal axons and muscle fibers (Al Majed
et al., 2000b). Similarly, inhibition of motoneuron activity during
treadmill training, using bioluminescent optogenetics (BL-OG),
abolishes the enhancing effect of exercise on motoneuron
regeneration (Jaiswal et al., 2017). Whether the increased
activation needed to promote axon regeneration requires action
potential generation is not entirely clear. Enhancement of
regeneration of axons of many more motoneurons than are
likely to be brought into full activity is found after treatments
with exercise at a slow treadmill speed (Gordon and English,
2016). Simply increasing the excitability of injured neurons
using chemogenetics could be sufficient to enhance regeneration
(Jaiswal et al., 2018).

Although Park et al. found that BDNF secretion from
neighbors can stimulate regeneration in neurons that were
not activated in vitro, optogenetic stimulation in vivo of only
motoneuron axons did not enhance DRG axon regeneration, nor
vice versa (Ward et al., 2018). When BDNF is knocked out in
only a subset of neurons, those specific neurons do not benefit
from exercise treatment (Wilhelm et al., 2012). Thus, it appears
neuronal BDNF is acting as an autocrine signal facilitating
enhanced regeneration (English et al., 2014; Gordon, 2016).

Androgens
The sex difference found in response to different exercise
regimens led to the hypothesis that androgen receptor signaling
was involved in activity-dependent treatments. The effect of
androgens in enhancing peripheral nerve regeneration had
already been thoroughly explored several years prior (Fargo et al.,
2009). All motoneurons contain androgen receptors, though
testosterone is not required for spontaneous regeneration—
treating animals of both sexes with the androgen receptor
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blocker flutamide does not inhibit regeneration, nor does
castration of males (Freeman et al., 1995; Thompson et al.,
2013). Application of exogenous androgens in males and females,
however, enhances axon regeneration in both cranial and spinal
nerve injuries (Kujawa et al., 1989, 1991; Jones, 1993; Freeman
et al., 1995; Tanzer and Jones, 1997; Brown et al., 1999).
This effect is androgen receptor-dependent, and blocking the
androgen receptor with flutamide prevents testosterone-induced
enhanced regeneration (Kujawa et al., 1995). In females, treating
mice with anastrazole, an aromatase inhibitor which blocks
the conversion of testosterone into estradiol, also dramatically
enhanced axon regeneration, without increasing serum androgen
levels (Thompson et al., 2013).

The sex difference in response to exercise regimens was
evidence that androgen receptor signaling and activity-
dependent treatments were linked. Slow, continuous treadmill
training resulted in an increase in serum testosterone levels
in males, though no similar increase was found for females
with interval training (Wood et al., 2012). Castrating males
prior to treadmill training abolishes its enhancing effect,
which cannot be rescued with interval training (Wood et al.,
2012). Treating both sexes with flutamide before appropriate
exercise regimens abolishes the effectiveness of this treatment
in enhancing peripheral nerve regeneration (Thompson et al.,
2013). Testosterone is also necessary for the beneficial effects
of ES—castrated rats treated with ES have poorer regeneration
compared to littermates who are treated with exogenous
testosterone (Hetzler et al., 2008; Sharma et al., 2009). As
with exercise, flutamide blocks the enhancing effects of ES in
both males and females (Thompson et al., 2013). Conversely,
combined exogenous androgen treatment with ES enhances
facial nerve regeneration in gonadally intact rats (Sharma et al.,
2010b).

Androgens regulate BDNF and its receptor, trkB, in
motoneurons (Osborne et al., 2007; Ottem et al., 2010; Sharma
et al., 2010a; Verhovshek et al., 2010). Exercise elicits an
upregulation of testosterone that is sustained and could result in
an increased duration of BDNF and trkB expression (Thompson
et al., 2013; English et al., 2014). ES elicits an early increase
in BDNF expression, whereas exogenous androgen application
results in a later and longer-duration increase in expression.
Combining the two treatments results in an additive upregulation
of BDNF and could explain the improved recovery over either
treatment alone (Sharma et al., 2010a).

SYNAPTIC REARRANGEMENTS

After peripheral nerve injury both excitatory and inhibitory
synaptic inputs onto injured motoneurons are withdrawn
(Blinzinger and Kreutzberg, 1968; Brannstrom and Kellerth,
1998; Linda et al., 2000; Oliveira et al., 2004). If motor axons
regenerate and reinnervate muscle targets, many of these inputs
are restored but, for those expressing the vesicular glutamate
transporter 1 (VGLUT1) and arising from muscle spindles, a
gradual withdrawal of their central axonal processes from the
ventral horn follows, resulting in a permanent loss of these

synaptic inputs (Alvarez et al., 2011; Rotterman et al., 2014). In
animals treated with exercise during the first few days following
sciatic nerve transection and repair, the extent of synaptic
contacts between these important sources of proprioceptive
feedback and motoneurons is not reduced (English et al., 2011;
Liu et al., 2014; Krakowiak et al., 2015). This robust connectivity
by VGLUT1+ inputs is retained at least 12 weeks later. No similar
effect is found if the onset of the exercise treatment is delayed
(Brandt et al., 2015). Application of 1 h of 20Hz ES had no effect
on synaptic coverage after nerve injury, but repeated applications
every third day for 2 weeks resulted in an effect similar to that
observed using exercise (Park et al., under review). It is not clear
whether this effect of these activity-dependent therapies is the
prevention of the original synaptic withdrawal, a stimulation of
new synapse formation to replace the withdrawn inputs, or some
combination of both. More studies are needed.

It is clear that BDNF plays a role in maintaining and
preserving synaptic inputs on motoneurons. Without exercise,
axotomizedmotoneurons lose approximately 35% of their overall
synaptic coverage (Krakowiak et al., 2015). This effect is BDNF-
dependent—knocking out BDNF in a subset of motoneurons
reduces synaptic coverage in those specific cells in intact animals,
and this synapse loss cannot be rescued with exercise (Krakowiak
et al., 2015). Wild-type motoneurons within an animal maintain
their synaptic contacts after nerve injury with exercise, but those
in which BDNF has been knocked out do not (Krakowiak et al.,
2015).

BDNF VAL66MET POLYMORPHISM

Given the relationship between activity-dependent treatments
and BDNF, any genetic mutations altering BDNF signaling
among the human population could affect the success of these
treatments. Such a mutation exists—a common single nucleotide
polymorphism in the BDNF gene. The G to Amutation at site 196
results in a Valine to Methionine substitution in the 66th codon
(Figure 1). This polymorphism was first described by Egan et al.
in 2003 and was quickly identified as incredibly common—the
met allele of the BDNF gene is present in 25% of the American
population and up to 50% of East Asian populations (Egan
et al., 2003; Shimizu et al., 2004). Carrying the met allele was
originally described as a risk factor for schizophrenia (Egan et al.,
2003). It has since been linked to numerous other disorders
and diseases, including Alzheimer’s disease, obsessive compulsive
disorder, anorexia nervosa, and bipolar disorder (Neves-Pereira
et al., 2002; Sklar et al., 2002; Egan et al., 2003; Hall et al.,
2003; Ribases et al., 2003; Notaras et al., 2015). Physiologically,
Met-carriers have been found to have decreased hippocampal
volume, and cells transfected with the Met allele have altered
activity-dependent secretion of BDNF (Egan et al., 2003).

Testing for deficient activity-dependent secretion of BDNF in
humans can be tricky. Generally, BDNF secretion is measured
through serum as an indirect measure of neuronal BDNF, and
exercise is a reliable method to increase serum BDNF levels
(Berchtold et al., 2005; Elfving et al., 2010; Klein et al., 2011;
Szuhany et al., 2015). Although one study has found that healthy
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adult Met-carriers did have increased serum BDNF after exercise
(Helm et al., 2017), others have found serum levels of BDNF did
not increase after high intensity exercise in elderly (Nascimento
et al., 2015), spinal cord injured (Leech and Hornby, 2017), or
healthy Met-carriers (Lemos et al., 2015). In mice expressing the
met allele, exercise results in deficient mRNA production as well
as decreased protein expression of BDNF (Ieraci et al., 2016).
These deficiencies in exercise-induced BDNF secretion mirror
the findings in cultured neurons expressing the Met allele, and
the use of cells transfected with the met allele in vitro as well as
the development of a transgenic mouse have allowed researchers
to elucidate the mechanism behind this deficient secretion (Egan
et al., 2003; Chen et al., 2004, 2006).

The valine to methionine substitution in this SNP occurs
in the prodomain of the BDNF protein (Egan et al., 2003).
Although it does not affect the ability of mBDNF to bind its
receptor, this substitution results in disorganized folding of the
prodomain, resulting in abnormal interactions with sortilin (see
above) (Chen et al., 2004; Anastasia et al., 2013). BDNFMet is thus
packaged inefficiently into calcium-sensitive secretory vesicles,
accounting for the deficient activity-dependent secretion that has
been reported (Chen et al., 2004). Being heterozygous for the
met allele does not protect from this deficient BDNF secretion—
BDNF forms homodimers, and in cells heterozygous for the
met allele, BDNFMet dimerizes with BDNFVal and prevents its
packaging into Ca2+-regulated secretory vesicles (Kolbeck et al.,
1994; Chen et al., 2004). Analysis of activity-induced BDNF
secretion from cultured hippocampal cells bears this out—those
cells heterozygous for the Met allele have deficient activity-
dependent secretion despite the presence of one copy of the
BDNFVal allele (Chen et al., 2006). Furthermore, once secreted,
BDNF availability may be affected by binding with the cleaved
prodomain. The prodomain binds BDNF with high affinity, and
the met allele results in enhanced BDNF binding and slower
dissociation once bound (Uegaki et al., 2017). This could limit
the availability of BDNF to bind its receptors.

Activity-dependent secretion of BDNF relies not only on
packaging into calcium-sensitive vesicles, but also on the spatial
targeting of mRNA into distal processes where BDNF can be
locally translated (Chiaruttini et al., 2008). This targeting is
achieved through binding of BDNF mRNA with translin, a
DNA/RNA binding protein involved in dendritic trafficking
of mRNAs (Li et al., 2008). The G to A mutation at site
196 disrupts translin binding of BDNF mRNA, and thus Met-
carriers have deficient trafficking of BDNF mRNA to distal
processes (Chiaruttini et al., 2009). Moreover, the transcripts
containing exon VI, which is upregulated by exercise, and exon
IV, which is calcium-sensitive, are found in reduced levels in the
hippocampus of mice homozygous for the met allele (Tao et al.,
1998; Baj et al., 2012; Mallei et al., 2015). These transcripts, along
with those containing exon II, are generally trafficked to distal
processes (Baj et al., 2011).

In addition to deficient activity-dependent BDNF secretion,
the met allele may result in increased p75NTR activation. Unlike
BDNFVal, when the prodomain is cleaved from BDNFMet, it is
bioactive and able to activate p75NTR with the help of SorCS2,
a member of the sortilin family of receptors (Deinhardt et al.,

2011; Anastasia et al., 2013). In vitro, application of exogenous
prodomain protein results in growth cone collapse and dendritic
spine disassembly (Anastasia et al., 2013; Giza et al., 2018).
Stimulating cells with high KCl concentration results in activity-
dependent secretion of both Val and Met prodomains, though
secretion is deficient in Met-carriers (Anastasia et al., 2013).
Although endogenous secretion of the Met prodomain has yet
to be linked to alterations in dendrites, decreased arborization
has been found in hippocampal and cortical neurons (Chen et al.,
2006; Liu et al., 2012).

The deficit in activity-dependent release of BDNF led to the
hypothesis that activity-dependent treatments to enhance axon
regeneration after peripheral nerve injury would be ineffective
in this population. Using a mouse model of this polymorphism
which recapitulates certain phenotypic aspects of the human
population such as decreased hippocampal volume and increased
anxiety-like behavior (Chen et al., 2006), we tested the efficacy
of treadmill training on motor axon regeneration 4 weeks after
complete sciatic nerve transection and repair in mice both
heterozygous and homozygous for the met allele of the Bdnf
gene (McGregor et al., under review). Exercise was completely
ineffective in enhancing axon regeneration in the Met-carriers.
However, peripheral axon regeneration in Met-carriers was
surprisingly enhanced without any treatment (McGregor et al.,
under review). One possibility for the failure of exercise
to enhance regeneration in Met-carriers is a ceiling effect—
exercise was not able to further enhance an already accelerated
regeneration. The question of why regeneration is accelerated
remains to be explored. The enhanced regeneration was found
both in vivo and in cultured DRG neurons, indicating that
enhanced axon outgrowth is a neuronal trait inMet-carriers. This
unanticipated result is some of the first good news regarding
what is a maligned SNP, although others have reported the met
allele may also be protective in stroke and traumatic brain injury
(Krueger et al., 2011; Rostami et al., 2011; Qin et al., 2014; Failla
et al., 2015). Thus, in human populations there may be striking
differences in response to peripheral nerve injury dependent on
individual gene expression. Enhanced regeneration associated
with the Val66Met polymorphism may explain the persistence of
the mutation within the human population.

CONCLUSION

The suboptimal regeneration of peripheral nerves presents a
challenge in medical care. Neurotrophins, particularly BDNF,
have been studied for their pro-growth properties, and
treatments that stimulate endogenous release of neurotrophins
have been successful in enhancing regeneration in animal
models. These treatments are currently being tested to enhance
peripheral nerve regeneration in patients with some success
(Gordon et al., 2010; Wong et al., 2015). The existence of
genetic polymorphisms in the bdnf gene, however, will affect the
outcome of these experiments, and preliminary investigations as
to the efficacy of activity-dependent treatments in individuals
with the met allele will hopefully spur the field toward
personalized medicine. Activity-dependent treatments can be a
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powerful tool for those responsive to them, and for the rest, new
therapies that do not rely on endogenous BDNF-signaling must
be developed.
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