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ABSTRACT. The classic sliding theories usually assume that the sliding motion 

occurs frictionlessly. However, basal ice is debris-laden and friction exists between 

the substratum and rock particles embedded in the basal ice. The influence of 

debris concentration on the sliding process is investigated. The actual conditions 

where certain types of friction apply are defined, the effect for the case of bed 

separation due to a subglacial water pressure is studied and consequences for the 

sliding law are formulated. The numerical modelling of the sliding of an ice mass 

over an undulating bed, including the effect of both the subglacial water pressure 

and the friction, is done by using the finite-element method. Friction, seen as a 

reduction of the driving shear stress due to gravity, can be included in existing 

sliding laws which should contain the critical pressure as an important variable. 

An approximate functional relationship between the sliding velocity, the effective 

basal shear stress and the subglacial water pressure is given. 

LIST OF SYMBOLS p' Debris concentration 

Normal stress 
General. Symbols which are explained where they oc
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Amplitude of normal stress 
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Bed-separation parameter 

Stress tensor 

Stress deviator 

Second invariant of stress deviator 

Velocity vector 

Velocity-vector component 

Basal sliding velocity 

Velocity due to internal deformation 

Surface velocity 

Basal sliding velocity in the case of friction 

Basal sliding velocity in the case of bed 

separation 

Basal sliding velocity in the case of bed 

separation and friction 

Velocity at the top of the modelled section 

Velocity component normal to the sliding 

interface 

Cartesian coordinates 

Transverse coordinate describing the base 

Mean inclination angle of basal surface 

Inclination angle of basal surface 

Kronecker delta 

Strain-rate tensor 

Viscosity 
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). Wavelength of bed undulation 

J.L Coefficient of friction 

v Poisson's ratio 

E Coefficient of bed geometry (Hallet, 1981) 

p Mass density 

T Shear stress 

Tb Effective basal shear stress 

Tf Frictional drag 

INTRODUCTION 

Observations in accessible subglacial cavities (e.g. Viv

ian and Bocquet, 1973) and borehole photography (En

gelhardt and others, 1978) suggest that the classic sliding 

theories, based on the assumption of clean ice, should be 

modified to allow for the effect of basal debris. 

Detailed measurements of velocity and subglacial 

water pressure at Findelengletscher (Swiss Alps) were 

done by Iken and Bindschadler (1986). Their results 

agree qualitatively with current sliding theories. How

ever, the measured water-pressure values are too large 

compared to the observed sliding velocities. According 

to theory, the glacier should in some cases have reached 

the state of accelerated motion (Fig.l). This, in fact, is 

not the case. It was supposed that friction between the 

dirty basal ice and the glacier bed prevents the glacier 

from slipping off. 

Only a few attempts have been made to include fric

tion in the sliding law. Morland (1976b) studied some 

sort of Coulomb friction, but without regard to the ac

tual physical processes at the sole. Bindschadler (1983) 

implicitly made the same assumption by defining a bed

separation index I rv T / N which is equivalent to the 

friction coefficient. BQulton (e.g. 1974) has dealt in full 

with the problem of friction in connection with abrasion 

and erosion, especially in the case of sediment beds. He 

argued that the normal load of ice is the relevant vari

able, an assumption probably true if the debris concen

tration is very large. Hallet (1981) developed a physical 

model based on what really could happen at the ice- rock 

interface if the debris concentration is small. 

This study investigates the influence of debris concen

tration in the basal ice on the sliding velocity of a glacier 

for various debris concentrations. The actual conditions 

where certain types of friction apply are defined and the 

consequences for the sliding law are formulated. The 

classic Coulomb friction is modified in accordance with 

the notion that a glacier is rubbing over its bed like a 

piece of sandpaper (Drewry, 1986). The main objective 

then is to extend Hallet's concept to the general case 

of sliding on an undeformable bed, including both debris 

friction and the effect of subglacial water pressure. Hallet 

assumed that friction occurs due to rock particles which, 

embedded in the basal ice, are pressed against the rigid, 

impermeable rock bed and dragged along. This process 

acts on the upstream side of bed undulations. As the 

frictional force depends on the local velocity field, a num

erical approach is required. The numerical modelling of 

the sliding of an ice mass over an undulating bed, in

cluding the effect of both the subglacial water pressure 

and the friction, is done by solving the problem by the 

finite-element method. It is not possible to give a simple 

sliding law, but the present study can provide an idea 
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of which variables are relevant a nd how they could be 

included in a realistic relation. 

BASIC MODEL 

All considerations, analytical as well as numerical, are 

based on the following glacier model with correspond

ing assumptions and boundary conditions (e.g. Hutter, 

1983). 

Considering ice as an impermeable, viscous, isotropic, 

incompressible fluid at constant temperature results in 

the following set of equations for a mathematical ice-flow 

model: . 

Ui ,i = 0 

PUi,t = tij ,j + pgi 

f.ij = f(t;j) 

(1) 

(2) 

(3) 

expressing the mass conservation (1), the balance of 

momentum (2), and the constitutive relation between 

strain-rate tensor and deviatoric stress tensor (3). The 
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Einstein convention for vectors , tensors and deviations 

was used in the above. Stated in more detail: 

Uj Velocity vector 

p Density of ice 

tij Stress tensor 

gj Vector of external forces (gravity) 

Eij Strain-rate tensor Eij = ~(uij + Uj,i) 

t:j Deviatoric stress tensor t: j = tij + p8ij 

p Hydrostatic pressure p = -!tii 

8ij Kronecker symbol. 

The upper boundary condition (stress-free surface) is 

(4) 

The basal boundary condition for the case of no ice

bedrock separation is either the no-slip condition 

Uj =0 (5a) 

or the perfect-slip condition 

(5b) 

where os are unit normal vectors. For the case of non

vanishing tangential stress, this means if there is friction 

between the ice and the bed, Equation (5b) becomes 

(5c) 

where Tfi is the vector of the tangential traction or the 

frictional drag. Furthermore, no ice- bed separation and 

neglecting the process of melting and refreezing of basal 

ice implies 

Ujnj = O. (5d) 

For the case of bed separation, the boundary condition 

in the separated area is 

(5e) 

where Pw is the water pressure in the subglacial hydraulic 

system. 

A general solution to the above equations for 'any 

given glacier geometry has not yet been found because 

of the non-linearity of the constitutive relation and the 

complexity of the boundary conditions, and is probably 

not worth seeking. There are some analytical solutions 

for special conditions of the two-dimensional flow (e.g. 

Nye, 1959) and the sliding problem (e.g. Lliboutry, 1968; 

Nye, 1969; Kamb, 1970; Fowler, 1981), and a great num

ber of numerical solutions for specific situations, some 

of which solve the sliding problem by the finite-element 

method: Iken (1981), Sikonia (1982) and Meysonnier 

(1983). 

SLIDING WITH BED SEPARATION - A 

BRIEF REVIEW 

In the classic sliding theories (Weertman, 1957; Nye, 

1969; Kamb, 1970), the sliding velocity Ub is a function of 

the basal shear stress Tb, a fixed value for a given glacier 

geometry. Effects of variable water pressure are not in-

cluded. Hence, it is impossible to interpret seasonal or 

short-term variations in the surface velocity which, as a 

matter of fact, do exist (e.g. Aellen and Iken, 1979). 

Increased velocity after heavy melting or rain suggests 

that water at the base influences the sliding velocity. 

This occurs mainly from surface meltwater penetrating 

through the glacier to the bed, and not by means of 

water originating from internal heat sources. Dye-tracer 

experiments have often shown that the water flows to the 

terminus much slower than it would be expected for flow 

through large cylindrical channels. One may therefore 

conclude that a more complex system of passageways, 

channels and connected cavities exists. Thus the water 

pressure Pw in this complex subglacial hydraulic system 

can be chosen as a further relevant variable in a realis

tic sliding law. Since the cavities are interconnected, the 

water pressure is the same in all cavities, neglecting dif

ferences in altitude, described by Lliboutry (1976) as an 

interconnected hydraulic regime. However, n~e hydraulic 

system itself varies, for instance, at the beginning of the 

melt season: the cavities grow, passageways between cav

ities form and tunnels re-open. Iken (1981) and Iken and 

others (1983) calculated and observed that the sliding 

velocity is at a maximum when the cavities are growing. 

Both the water pressure and the state of the subglacial 

hydraulic system influence the sliding velocity (Kamb, 

1987). 

Lliboutry (1958) was the first to point out that, in 

addition to the two processes introduced by Weertman 

(1957), i.e. regelation and enhanced deformation, a third 

one, that is, flow with cavity formation, should be con

sidered. Extensive studies on this problem (Lliboutry, 

1968, 1979, 1987a, b) have not yet resulted in a definitive 

sliding law. As a new variable, the effective pressure N 

given by the difference between the ice-overburden pres

sure Po and the subglacial pressure Pw was introduced. 

The smaller the effective pressure, the more extended 

is the bed separation. Cavities in the lee of bedrock 

bumps reduce the roughness and so increase the sliding 

velocity. By introducing the effective pressure N into 

the sliding law, it seems possible to explain velocity fluc

tuations. Kamb (1970) has already discussed important 

aspects of bed separation. Fowler (1986, 1987) reform

ulated the problem of sliding with bed separation as a 

Hilbert problem and presented a solution for the case of 

a periodic bedrock (Fowler, 1986) and of a more gen

eral bedrock (Fowler, 1987). He introduced the idea of 

matched asymptotic expansions, a well-known method in 

fluid-dynamic boundary-layer theory. Thus, the problem 

is split into the flow in a basal boundary layer and the 

outer large-scale or bulk glacial flow. The so-called slid

ing law is therefore the boundary condition of the outer 

flow at the smoothed bed, and the somewhat ill-defined 

terms basal shear stress and basal velocity become clear 

when seen from this point of view. Ill-defined, because 

the real boundary condition at the ice- rock interface is 

the perfect-slip condition, thus the shear stress immed

iately at the base equals zero. Fowler corroborated Lli

boutry's (1979) observation that the sliding law strongly 

depends on the bedrock topography. For the particular 

case of a sinusoidal bedrock, he found the sliding law to 

be multi-valued, as the surge behaviour suggests. How

ever, in the case of a more general bedrock the sliding law 
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is no longer multi-valued and therefore the surge phen

omenon may be explained by the different state of the 

subglacial hydraulic system, an assumption which agrees 

with recent results of the 1982- 83 surge of Variegated 

Glacier (Kamb and others, 1985; Kamb, 1987). 

RE-CALCULATION OF BED SEPARATION 

FOR A SINUSOIDAL BED 

The sliding over a perfectly lubricated sinusoidal bed is 

a well-studied particular case of the sliding problem (e.g. 

Lliboutry, 1968). In the section below only the process 

of enhanced creep is considered; regelation is neglected. 

On a sinusoidal bed, the stress distribution normal 

to the bed can be calculated from the force balance 

(e.g. Raymond, 1980, equations 46a, 46b). The pres

sure which the sliding ice mass exerts vertically on the 

bed is on average equal to the ice-overburden pressure 

Po = pgh cos et, but due to the undulating bed, it os

cillates: larger than the ice-overburden pressure on the 

upstream faces of bed undulations and smaller on the 

downstream faces. In the down-glacier direction, the 

force balance requires that the sum of components in 

the x-direction of the normal stress Pn (x) is equivalent 

to the average shear stress T = pgh sin et. In detail, for a 

two-dimensional model (Fig. 2) with bed topography 

. (27rX) Yb(X) = a Sill T (6) 

The force balance requires 

_ ~ (. ()OYb(x)d 
T - A lo Pn X ox X 

(7) 

and 

1 fA ( (OYb(X))2)! 
Po = ~ lo Pn(x) 1 - a;;- dx. (8) 

With the approximation of small bed roughness (usually 

tacitly assumed), the oscillating normal stress can be 

given 

AT (2nx) Pn(x) = Po + na cos T . (9) 

The minimum normal stress is the separation pressure 

Ps which is well established and has been introduced in 

the classic sliding theories (Lliboutry, 1958; Nye, 1969; 

Kamb, 1970; Morland, 1976a): 

AT 
Ps=Po--· 

an 
(10) 

The water pressure at which the sliding ice mass attains 

the state of unstable motion is called critical pressure 

Pc. In general, the critical pressure is below the ice

overburden pressure. Independent of the kind of bed pro

file, the critical pressure can be written as (Iken, 1981) 

T 

Pc= Po--
tan IJ 

(11) 

where IJ is the angle which the stoss faces make with 
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Fig. 2. Geomet7'Y of the model: ice-mass slid

ing over an undulating bed. 

the mean downstream slope. For the special case of a 

sinusoidal bed, the steepest tangent of the stoss face is 

27ra 
(tanjJ)max = T 

and thus 
AT 

Pc=Po - -. 
2na 

(lla) 

This means that the critical pressure is always half-way 

between the ice-overburden and the separation pressures 

(12) 

The stress distribution (Equation (9)) which determines 

the bed separation is changes itself by the bed separation. 

Hence, the formation of water-filled cavities is distinctly 

a dynamic process. The subsequent balance consider

ations, following partly a similar derivation by Lliboutry 

(1968), describe only a singular transient state and can 

help to understand the process of bed separation, but 

cannot fully describe the dynamics. 

It is assumed that bed separation occurs symmet

rically around the inflection point (x = A/2) on the lee 

side of a rock bump. Real cavities are probably asym

metrical. The length of the separated zone is 21 (see 

Fig. 3). The bed separation is described by the bed

separation parameter s = 2l/ A, i.e. generally s gives the 
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Fig. 3. Bed geometry and stress distribution 

before Pn(x} and after P;Jx} bed separation. 
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proportion of bed separation. In contrast to the deriv

ation by Lliboutry (1968) which assumes that the mean 

pressure over the separated area is unchanged by the 

bed separation, the separation length is determined by 

considering that the force balance has to be fulfilled in 

both directions, normal and parallel to the mean bed 

slope. With these assumptions, the stress distribution 

along one wavelength of the sinusoidal bed can be given 

as follows: 

p~(x) = pi + L1pl cos (2:X) 

p:,(x) = Pw 

A A 
for -- + l < x < - ·-l 

2 --2 

A A 
for - - l < x < - + l. 

2 - - 2 

The continuity at the end of the cavity requires 

I I (27r (A )) Pw = p + L1p cos >: '2 + I . 

Hence, the constant contribution pi is 

I I (27r1) P = Pw + !lp cos T 

and thus 

I ( I [(27r1) (27rX)] Pn x) = Pw+!lp cos T +cos T . (13) 

This expression reduces to Equation (9) when bed separ

ation ceases. The amplitude of the fluctuating contrib

ution can be determined by considering the force balance. 

In the y-direction, the mean stress perpendicular to the 

bed has to be equal to the ice-overburden pressure Po. 

As the stress distribution is symmetrical about the in

flection point in the lee of the bed undulation, only half 

a wavelength is considered. 

PoA/2 = t, p:,(x) dx 
}>./2 

= Pw l + 1:2+1 (Pw + !lpl [cos (2~1) 

+ cos (2:X)]) dx. 

It follows that 

Po = Pw + !lpl [:; sin 7rS + cos7rs(l - S)] 

or 

!lpl = 7r(Po - Pw ) 

7r (1 - s) cos 7r S + sin 7r S • 
(14) 

An additional relation follows from the force balance in 

the x-direction 

Evaluation of the integrals gives 

T = ~ !lpl[COS 7rS sin 7rS + 7r(1 - s)]. (15) 

By combining Equations (14) and (15), one gets a func

tional relationship between the subglacial water pressure 

and the bed separation 

_ AT (sin7rS+7r(l- S)COS7rS) 
Pw - Po - - ( ). 7r a sin 7r S cos 7r S + 7r 1 - s 

(16) 

Figure 4 shows the bed separation as a function of the 

subglacial water pressure. In contrast to the theories of 

Lliboutry (1968), Fowler (1986) and Kamb (1987), the 

ice is practically fully separated from the bed at the crit

ical pressure which seems to be the crucial variable. Neg

lecting the force balance in the x-direction, and assuming 

instead that the mean stress on the separated area is the 

same as before separation (an assumption which may 

hold for small separation only), leads to a much smaller 

bed separation, indicated in Figure 4 by a broken line. 

In that case, at the critical pressure the bed separation 

parameter is not S = 1 but S = 0.6 and reaches S = 1 

at the ice-overburden pressure. This misunderstanding 

may have given rise to an overrating of the effective pres

sure N which in the authors' opinion should not appear 

in a realistic sliding law. 

A POSSIBLE SLIDING LAW 

A realistic, easy-to-use boundary condition for large

scale motion of temperate glaciers and particularly 

warm-based ice sheets is still not in sight. Nevertheless, 

simple sliding laws are frequently used by the modellers 

(Bentley, 1987) without regard to the physical processes. 

s 
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Fig. 4. Bed separation as a f1mction of the 

subglacial water pressure for a sinusoidal bed: 

(a) without friction , (b) with sandpaper fric

tion (J.L = 0.03, Eqnation (26)). Broken line 

indicates e7Toneons sol1dion assuming that the 

mean press1£re over the separated area is un

changed. Normalized representation [Fw] = 
( Pw - Ps) / ( Po - Ps). 
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Commonly, they use the "generalized Weertman law" of 

the form 

'Tb = kugNfi . 

Budd and others (1979) and Bindschadler (1983) fitted 

their data to such a relation and proposed a = f3 = ~. 

Thus, the sliding law can be given in the popular form 

(17) 

Hence, no sophisticated law but a very crude relation 

between some of the relevant parameters is used. 

From the theoretical treatment of the sliding over a 

sinusoidal bed, it seems clear that one of the pertinent 

variables to introduce in a sliding law is the critical pres

sure, more precisely the difference between the acting 

water pressure and the critical pressure. The expres

sions proposed below are intended to give an idea how a 

possible sliding law could look 

rUb] + (Pc ~ Ps) n 

rUb] + (Pc ~ P
w 

) n for Pw > Ps 

where rUb] is a dimensionless sliding velocity. 

(18) 

Equation (18) differs substantially from Equation (17) 

particularly where Alpine valley glaciers are considered. 

In the case of ice sheets where the basal shear stress is 

small, the difference between Equations (17) and (18) 

may be small. 

ROCK-TO-ROCK FRICTION AT THE 

SLIDING INTERFACE 

In most of the theoretical work, frictionless sliding is 

assumed (Weertman, 1957; Lliboutry, 1968; Nye, 1969, 

1970; Kamb, 1970; Morland 1976a; Fowler, 1981). In re

ality, friction plays an important role and its effects can 

be seen via erosive patterns such as grooves and striae on 

rock bumps in the forefield of glaciers. Basal ice gener

ally contains debris in varying concentrations and sizes. 

When a glacier slides over a bed of rigid or deformable 

substrata, there is some rock-to-rock friction which slows 

down the sliding motion. There is no uniform theory of 

friction. Many findings seem to be preliminary and ex

tremely dependent on the actual circumstances in play 

(Szeri, 1987). The experimental "laws" governing fric

tion, namely (1) friction is proportional to the normal 

load, and (2) friction is independent of the apparent area 

of contact, are known as Coulomb friction. In the case 

of glaciers, this concept applies under special circum

stances only. Since the basal ice is an ice- rock mixture, 

the kind of friction should depend on the concentrations 

of the components. The more rock particles there are in 

the ice, the stiffer the basal ice layer. The proportion 

of debris in the basal layer determines the kind of fric

tion concept which applies: Coulomb, "sandpaper" or 

"Hallet" friction. 

Coulomb friction 

Coulomb friction is friction between rigid bodies. There 

is no motion at the sliding interface except if the shear 
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stress due to the weight driving the sliding mass is large 

enough to overcome the frictional drag. In general, this 

is not an appropriate model for glaciers. It may apply in 

the extreme case where a thick layer of heavily debris

laden ice at the glacier sole is essentially undeformable. 

A rigid body with a rough surface is not entirely in 

contact with the bed, but is so only at a limited number 

of asperities. In the case where water exists at the bed, 

the pressure the ice exerts on the bed is reduced by the 

water pressure Pw and the mean normal stress is approx

imately equal to the effective pressure N. Therefore, the 

friction law can simply be written (Boulton, 1974) as: 

Tr = p.N (19) 

where jJ, is the coefficient of friction. For realistic values 

of the friction coefficient, sliding is only possible at very 

high values of water pressure (close to the ice-overburden 

pressure) or on a steep surface slope (Fig. 5). 

Sandpaper friction 

The concept that will be referred to as sandpaper fric

tion is based on a two-layer model consisting of a thin 

sediment layer poor in ice and a very thick layer of more 

or less clean ice. In the sediment layer, the rock part

icles are close together; the ice can no longer flow around 

them and is simply the glue holding the clasts together, 

yet due to the ice the basal layer is deformable. Between 

the rock particles in the layer and the rock bed there is 

Coulomb friction. Hence, the basal layer rubs over the 

bedrock like a piece of sandpaper (Drewry, 1986). The 

difference between "sandpaper" and Coulomb friction is 

that the ice mass is really everywhere in contact with 

the bed, since the basal layer is deformable and adapts 

to the contours of the bed. The principal difference is 

visible and decisive if a subglacial water pressure is in 

operation. In this case, water-filled cavities form and 

cover a proportion s of the bed; friction is restricted to 

the contact area, a proportion 1 - s of the bed. If the 

bed roughness is small and bed separation not too large, 

-------. Jl 

Fig. 5. C01domb friction: dependence of slid

ing on dimensionless water pressure [Pwj = 

Pw / Po and friction coefficient jJ,. Three cases 

are considered with different mean bed slopes: 

tana = 0.05, 0.1, 0.2. Above a line, sliding 

(for a given 1nean bed slope) is poss ible, since 

[Pwj is large eno1£gh or p. is small enough. 
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the projections of the contact areas on a plane parallel to 

the mean bed slope do not differ significantly from the 

actual contact areas. Therefore, the mean pressure Pn 

on the contact areas can be calculated readily from the 

force balance perpendicular to the mean bed slope: 

The critical pressure P: in the case of friction can be 

calculated from the force balance in the direction of the 

steepest tangent 

PO =Pn (1-s)+sPw • (20) inserting the expression for the frictional stress (Equat

ion (23)) yields 

The frictional stress on the contact areas is 

(21) 

and hence the frictional drag, related to the whole 

glacier-bed area, is 

(22) 

The frictional drag gets smaller if water pressure is in 

operation, but is not, as usually assumed, proportional 

to the effective pressure N . The friction is not reduced 

as a consequence of a smaller effective pressure, but as 

a result of the smaller contact area. Since, in general 

s < I, the sandpaper friction is larger than the Coulomb 

friction for a given water-pressure value 

Friction along the sliding interface causes higher lim

iting values for both the separation and the critical pres

sure. An additional force is required to move the ice 

mass upward along the steepest tangent of the undul

ating glacier bed. In the following derivation, a water

pressure value near to the critical pressure is considered 

where the friction is restricted to a small contact area 

around the inflection point (Iken, 1981, fig. 1). This 

contact area does not differ significantly from its projec

tion on to a plane parallel to the steepest tangent (cf. 
Fig. 2). The force balance normal to this plane is given 

by 

Po 
-->. cos ({3 - a) = P.,>.(1 - s) cos 13 + Pw>'s cos 13 . 
cos a 

The frictional force Fr opposing the motion upward along 

the steepest tangent follows as 

Fr = J.LP.,A(l - s) cos {3 

= J.L (~>. cos ({3 - a) - PwAS cos {3) 
cos a 

and hence the frictional stress is 

(23) 

Since near the critical pressure S = 1 the second term 

(T tan 13) is by far the smallest and can be neglected, 

the frictional drag can be given by Equation (22) as in 

the case of small bed roughness and not too large bed 

separation. Thus, for two extreme conditions, namely 

S ~ 0, and s ~ I, the same expression was derived. One 

may therefore suspect that Equation (22) also holds for 

intermediate values of s. 

I Tr 
Pc =Pc +-{3' 

tan 
(24) 

Neglecting again the smallest term in Equation (23), the 

critical pressure in the case of friction can be given as 

I T - Tf 
Pc = Po - --{3- . 

tan 
(24a) 

Replacing the driving shear stress by its effective value, 

T - Tf, the separation pressure P; in the case of friction 

can be given accordingly as 

pi _ R T - Tf 
s- 0--;:;:-' (2S) 

Before the ice separates from the bed (s = 0), the fric

tional drag is Tf = J.LPo and hence 

(2Sa) 

The expressions for the separation and critical pressure 

(Equations (24) and (2S)) could also have been derived 

from the relation describing the dependence of the bed 

separation on the subglacial water pressure (Equation 

(16)) replacing again the driving shear stress by its ef~ 

fective value 

(R P
,)sin7rscos7l's+7r(1-S) 

T - Tr = trr 0-
w sin 7r S + 7l' (1 - s) cos 7r S 

(26) 

and evaluating the two extreme cases where S = 0 and 

S = I, respectively. The effect of friction on the bed

separation process is shown in Figure 4 (line b) by an 

example where the friction coefficient is J.L = 0.03. That 

the friction slightly changes the stress distribution has 

been neglected. 

As can be seen in Figure 4 and by comparing the 

expressions for the separation and the critical pressure 

(Equations (24) and (2S)), the effect of friction on the 

separation pressure is much more pronounced than on 

the critical pressure since the frictional drag is reduced 

by increasing water pressure. Thus, the separation pres

sure approaches the critical pressure for already small 

values of the friction coefficient, e.g. for a sinusoidal bed 

with rather large roughness r = 0.16; this is the case 

for J.L = 0.2 (for smaller roughness values, e.g. r = O.OS, 

the separation pressure is equal to the critical pressure 

at a friction coefficient J.L = 0.06). This means, for larger 

values of the friction coefficient, the sliding motion of an 

ice mass is constant (probably equal to zero), indepen

dent of the water pressure, unless the critical pressure is 

exceeded. In that case, the glacier switches to the state 

of unstable motion (see Fig. 6, line c). 
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Influence on the sliding motion 

We again assume that the friction leads to a reduction 

of the driving shear stress. The resultant effective shear 

stress is called basal shear stress T~ = T - Tf. 

Accordingly, the proposed functional relationship bet

ween su bglacial water pressure and (dimension less) slid

ing velocity (Equation (18)) is modified 

[u~l "-J (p~ ~ P
w 

) n for Pw > P: (27) 

where primes denote variables depending on friction. 

Figure 6 shows qualitatively the effect of sandpaper fric

tion on the sliding motion. Line (a) gives the relation 

for debris-free ice; lines (b) and (c) indicate a possible 

relation between subglacial water pressure and sliding 

velocity for debris-rich basal ice. In case (b), the sep

aration pressure is below the critical pressure. Line (c) 

illustrates the above-mentioned "stick- slip" motion for 

large values of the friction coefficient. 

Hallet friction 

When the basal debris is rather sparse, the contact force 

F pressing the rock particles to the bed no longer dep

ends on the ice-overburden pressure. According to Hallet 

(1979, 1981), the contact force F is proportional to the 

ice velocity Vn normal to the bed. Friction only occurs on 

surfaces along which ice converges with the bed, which 
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Fig. 6. Functional relationship between the 

water preSS1tre and the s liding velocity with

out (aJ and with sandpaper friction (b), (c) 

(values with apostrophes). Line (c) reflects 

the f eature that for large friction the separ

ation pressure can exceed the critical pressure. 

Thus, as long as the water pressure is below 

the critical pres.mre, the s liding motion is uni

form. At the critical pressure the ice mass 

switches at once to the state of 1Lnstable mot

ion. 

corresponds to positive values of vn • On the lee side of 

the bumps, Vn is negative and hence there is no friction. 

If again it is assumed that the driving shear stress 

is partly used for deformational motion and partly for 

overcoming the frictional drag, the sliding velocity Ub is 

(according to a linear sliding law): 

(28) 

where Ub is basal sliding velocity; () is a constant des

cribing bedrock roughness and ice viscosity; T is average 

shear stress at the base (due to gravity); Tf is frictional 

drag. 

In Hallet's notation, the above equation is written as 

follows: 
1 

Ub = -(T - /1cF) 
~ry 

(29) 

where ~ is coefficient of bed geometry; T] is ice viscosity; 

/1 is coefficient of friction; c is areal concentration of rock 

particles in contact with the bed; F is contact force bet

ween rock fragments and the bed (proportional to the 

ice velocity Vn normal to the bed). 

A weak point in Hallet's theory is that he tacitly as

sumed that there are always rock particles available on 

the upstream side of rock bumps. Shoemaker (1988) has 

shown, based on the fundamental work of Rothlisberger 

(1968), that a rock particle embedded in the basal ice 

is able to contribute only once to friction and then is 

absorbed, if, as Hallet assumed, the melting rate is 

neglected. However, in large-scale strained areas (e.g. 

where the glacier flows over a step or a riegel) sufficient 

rock particles are transported to the bed, so that the 

Hallet friction concept applies. Since the frictional term 

in the sliding law depends itself on the sliding velocity, 

an iterative solution procedure is necessary. 

NUMERICAL SIMULATION OF SLIDING 

WITH BED SEPARATION AND FRICTION 

The problem of glacier sliding defined by Equations (1)

(5) is solved numerically for the special case of a sin

usoidal bed by the finite-element method using the ex

isting two-dimensional FE-code RHEO-STAUB. The in

fluence on the basal sliding velocity of bed topography, 

of constitutive relation, of water pressure and of friction 

(of the Hallet type) at the ice-rock interface was stud

ied. The FE-code used in this study is based on a hybrid 

stress model for the linear elasticity equations. It was de

veloped for rock mechanics problems at the Institut fur 

Bauplanung und Baubetrieb der ETH Zurich (IBETH) 

(Fritz, 1981; Fritz and Am, 1983) . 

General assumptions of the numerical model 

The standard assumptions are made: constant density, 

constant temperature and incompressibility of the ice. 

Two kinds of constitutive relations are considered: a 

Newtonian and a non-Newtonian called Glen's flow law. 

In terms of second deviatoric stress and strain-rate in

variants, T{, and En, the linear relation can be given as 

. 1 I 

En = -tn 
2ry 

(30) 

where T] is the viscosity and accordingly the non-linear 
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flow law 

Ell = At;! n 

where A and n are the flow-law parameters. From a 

compilation of different flow-law parameters by Pater

son (1986), numerical values were chosen: n = 3 and 

A = 3.5 X 10-15 kPa-3 s-1 = 0.11 bar-3 a-I correspond

ing to a temperature close to the melting point of ice at 

atmospheric pressure. For n = 1 and T = 1.18 bar = 
118 kPa, a value for the viscosity 'T/ can be determined by 

2'T/ = 1/AT2 to 'T/ = 2.06 x 10 13 Pas. 

The glacier-sliding problem over an undulating bed 

is studied in a longitudina l section along the flow dir

ection. The whole glacier is assumed to be 200 m thick 

and the average slope is 0.1, corresponding to an angle of 

5.7°. Our focus is on the bottom boundary condition and 

therefore on the lowest meters of a glacier or ice sheet. 

Hence, only a section of 25 m x 60 m is chosen for simul

ation of the flow and not the entire ice mass. The bound

ary conditions around the small section are adapted ac

cordingly. Wavelengths of 6, 10, 20 and 30 m were con

sidered. In addition to the wavelength, the roughness 

is varied: 0.02, 0.05, 0.10. For comparison, actual val

ues, measured at Findelengletscher (Monte Rosa, Swiss 

Alps), are a wavelength of 20- 50 m and a bed roughness 

of about 0.02 (Schweizer, 1989). 

Three cases of bottom boundary conditions are con

sidered: no slip (for testing), perfect slip and sliding with 

friction. It is always assumed that the ice mass rests on 

an impermeable and undeformable bed: a classic "hard 

bed" (Paterson, 1986). 

Sliding with friction between the rock bed and par

ticles embedded in the basal ice is simulated using the 

friction model of Hallet (1981), appropriate in the case 

of sparse debris. In general, the dimensions and concen

tration of the rock particles and the sliding velocity nor

mal to the bed are the pertinent variables. The frictional 

drag is (Hallet, 1981, equations (1) and (2)), for R. = R: 

(31) 

where f is the factor of the viscous drag of a sphere near 

the bed, R is the radius of rock particle and R. is the 

transition radius analogous to the transition wavelength. 

The velocity Vn normal to the bed will be determined 

by the computation. The other variables are constants 

for a particular case in the numerical simulation. The 

following values are chosen: 

- -2 
J1 = 1.0, f = 2.4, C = 2.5 ... 7.5 m ,R = 0.1 m. 

c = 2.5 m-2 corresponds to an areal concentration of one

tenth of a close packing of spherical particles, i.e. in an 

area of 1 m2
, 2.5 particles of 10 cm radius are in con

tact with the bed. Hallet defined a debris concentration 

p' = 4R2 c, where P' is the part of the bed effectively 

covered by debris. The maximum possible concentration 

(P' = 1) represents a close cube packing of spherical 

particles all in contact with the bed. The model Hal

let developed is applicable for debris concentrations P' 

smaller than about 30%. Assuming identical layers, one 

upon another, with twice the particle radius thickness, 

the areal concentration can be related to the more usual 

concentration per volume Cv = ~7rR2C, e.g. C = 2.5m-2 

(R = 0.1 m) corresponds to Cv = 0.05. Since not all 

particles contribute with the whole cross-sectional area 

to the areal concentration, the concentration per volume 

Cv, calculated above, is a lower boundary. More realistic 

for the case considered would be Cv = 0.1, which means 

Cv = ~7rR2C. Hence, we assume that an areal concen

tration of c = 2.5 m-2 corresponds to about 10% debris 

per volume of basal ice. 

The normal velocity Vn is determined at the centre of 

the spherical particle. As the FE-mesh is not fine enough, 

the velocity 10 cm above the bed is interpolated from 

the velocity value in the first node about the bed (about 

60 cm above). At the bottom, the normal velocity is of 

course zero, since the ice slides along the bed. Vn is partly 

positive (on the upstream side of rock bumps where the 

ice flows towards the bed), about zero (at the top of the 

bumps) and partly negative (on the leeward side where 

the ice flows away from the bed). For instance, the ver

tical veloci ty 1 m above the bed is 50 cm a-I, if the basal 

sliding velocity is 17.3 m a-I. It is assumed that the nor

mal velocity decreases linearly with depth. Thus, at the 

centre of the spherical rock particles (R = 10 cm), the 

normal velocity is about 5cma- 1
. Figure 7 shows some 

velocity values normal to the bed above a bump. 

By varying the amount of friction, different values of 

the concentration c are selected. In principle, the par

ticle radius R or the friction coefficient J1 could also be 

changed with a similar effect. The friction varies as the 

y [m] 

3 

2 

1 

normal velocity [cm/a] 

-400-200 0 200 400 

+180 +270 
-210 -130 +30 

+ 

o 20 

-----~ x [m] 
Fig. 7. Distribtdion of the s liding velocity nor

mal to the bed some meters above a 1'Ock bump 

(for compa1'ison: Ub = 17.3 m a-I). Flow dir

ection from right to left. "+" sign denotes 

positive values of the normal velocity (which 

means the ice flows towards the bed), "-" sign 

denotes negative valttes, respectively. 
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friction coefficient and as the square of the particle rad

ius. This follows from Equation (31) and the assump

tion of linearly decreasing normal velocity. Therefore, 

assuming R. = R, it does not really matter which of the 

variables, debris concentration, particle size or friction 

coefficient, are changed; the effect on the sliding can be 

the same. 

Bed separation occurs if the subglacial water pressure 

is larger than the minimal normal stress the ice exerts 

on the glacier bed. The effect of the water pressure is 

simulated by introducing a force normal to the local bed 

slope. The force corresponding to a certain given water 

pressure is basically active in all nodes where the nor

mal stress is smaller than the water pressure. However, 

the separation area is larger than the area where the 

normal stress is smaller than the water pressure. This 

fact is known (e.g. Iken, 1981) and the separation area 

was chosen according to the relationship between water 

pressure and cavity length given above (Equation (16)). 

Test computations 

To test the model and the solution method described, 

the results of the numerical computation were compared 

with the closed-form solution of the laminar glacier-flow 

problem and the solutions of Nye (1969) and Kamb 

(1970) for sliding over a sinusoidal bed. 

For the flow of a parallel-sided slab of ice on an in

clined plane, the calculated velocity vectors and stress 

components generally agree within 1% with theoretical 

values. Inaccuracies up to 3% exist only at the edges due 

to the fact that the nodal values are mean values. The 

typical bulging velocity profile of laminar non-Newtonian 

flow can be perfectly reproduced. In agreement with 

Glen's flow law (with n = 3), a change of the basal shear 

stress leads to a three times larger change in the surface 

velocity. 

The results of simulations of the sliding with a linear 

flow law are compared with the solution of Nye (1969). 

Nye's solution which considers a bed geometry with only 

one wavelength substantially larger than the transition 

wavelength (thus regelation can be neglected), can be 

given as 
).7), 

Ub = ---
87r3TJr 2 • 

(32) 

With the values of the model defined above (called prin

cipal model): ). = 20m, T = 1.75 bar, r = 0.05, 

TJ = 1 X 1013 Pas, one obtains a sliding velocity of 

Ub = 17.2ma- l
. 

The numerically calculated velocity is Ub = 17.3 m a -I. 

At the top of the modelled section, the velocity is Ut = 

28.4 m a -I; thus, the deformational part of the motion is 

Ud = 11.1ma- l
. 

The properties of ice as an incompressible, linear vis

cous fluid are reflected in the feature of the flow or vel

ocity field (Fig. 8). Figure 9 shows the stress field rep

resented by principal stresses. At first sight, it can eas

ily be seen that the modelled section is well balanced, 

that more or less laminar-flow conditions prevail at the 

top and that large compressive stresses exist on the up

hill side of the bumps. A number of pertinent variables 

along the ice- rock interface are compiled in Figure 10. As 

shown above (Equation (9)), the pressure that the ice ex

erts on the bed oscillates between 6.35 and 28.6 bar. Nye 

(1969) suggested that the basal sliding velocity varies as 

the wavelength and as the inverse of the second power 

of the roughness. This dependence and also the velocity 

values could be reproduced by the numerical comput

ations. 

The results of the simulations of the sliding of an ice 

mass over an undulating bed, considering non-linear vis

cous ice rheology, can be compared with the treatment 

of Kamb (1970). The numerically calculated sliding vel

ocities were substantially smaller compared to the ones 

------------------
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lo west 25 m of a 200 m thick i ce mass . Thin lin es are contour lines of constant velocity. Numbers 

are velocity Val1LeS in m a- 1
. 

https://doi.org/10.3189/S0022143000009618 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009618


Schweizer and Iken: Bed separation and friction in sliding over an undeformable bed 

>--< 
20 bar 

o 10 20m 

Fig. 9. StTess fi eld of the pTincipal model TepTesented by pTincipal stTesses . All stTesses aTe 

compTessive. Thin lines aTe contour' lines of constant effective stTess Teff = ~ IUl - u21. N1LmbeTs 

indicate effective stTess values in t enths of baTs (1 bar = 10 5 Pa). 

determined by Kamb's solution. Since his derivation is 

based on several idealizations and approximations, we do 

not disregard our numerical model. 

Choosing the same numerical values as above, one 

arrives at a numerically calculated sliding velocity of 

Ub = 47.4 m a -I. At the top of the modelled section 

(25 m above the bed), the total motion in 1 year is Ut = 

86.2ma- l
. Hence, the creep velocity is Ud = 38.8ma-1

. 

Theoretically, the creep velocity in the lowest 25 m of a 

200m thick slab of ice should be 24.3ma- l
. The ad-

.. 
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nOT1nal s t7'ess Pal nOT1nal component of stress 

deviatoT t;" nOT1nal velocity ~l I sliding vel

ocity Ub and bed topogmphy Yb. 

ditional contribution, 18.3 m a-I, is an effect of strain 

softening. 

Table 1 provides an overview of sliding velocities cal

culated for some models wi th different geometry. The 

sliding velocity does not vary as the inverse of the fourth 

power of the roughness. The dependence on the rough

ness is stronger than in the linear viscous case but not 

as strong as Kamb (1970) proposed (Fig. 11). For dif

ferent roughness values and wavelength A = 20 m, the 

effect of enhanced creep due to strain softening is stud-

Table 1. Compilation of numerically calculated velocity 

values (in ma-') compared to exact values from the Nye 

solution. To each pair of roughness and wavelength two 

values are given: the upper one originates from the closed

form solution of Nye and the lower one is numerically 

computed 

m 

6 

10 

20 

30 

0.02 0.04 0.05 

32.33 8.08 5.17 

5.28 

53.89 13.47 8.62 

53.52 13.11 8 .76 

107.77 

112.56 

302.36 

26.94 17.24 

27.09 17 .25 

75.59 48.38 

46.36 

0.06 

3.59 

5.99 

5.79 

11.97 

11.69 

33.59 

0.08 

2.02 

3.37 

3.27 

6.74 

6.43 

18.90 

0.10 

1.29 

2.16 

2.10 

4.31 

4.06 

12.09 
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ied (Table 2). The larger the roughness, the higher the 

stress concentrations, and creep is enforced accordingly. 

Sliding with friction 

The next step in simulating the sliding of an ice mass over 

an undulating, rigid bed is to introduce a friction at the 

sliding interface due to a dirty, debris-rich basal ice layer. 

Thus, a frictional force parallel to the bedrock slowing 

down the motion is introduced, specified in accordance 

with Hallet's friction model (Equation (31)). 

For three different geometries, the effect of increasing 

debris concentration on the sliding velocity is studied. 

The results are given in Figure 12. The computed slid

ing velocities are generally too small since the frictional 

force, proportional to the normal velocity, is calculated 

from the model without friction. Thus, to get an approp

riate result, one is forced to use an iterative procedure. 

Convergence within three digits is reached after about 

ten steps. The iterations are done for the principal model 

(A = 20 m, r = 0.05) for two different debris concent

rations: c = 3.75 and 6.25 m -2. The calculated sliding 

velocities are Ubf = 13.6 and 11.8ma- 1
, respectively, as 

indicated in Figure 12 by a broken line. Compared to 

the frictionless sliding, the velocities are reduced to 78 

and 67%, respectively. 

For the principal model with a debris concentration 

88 

Table 2. Sliding and deformational part of the motion (in 

ma-I) for varying roughness (wavelength A. = 20m). 

There are: Uu velociD' at the top of the modelled section; 

UbJ velocity at the bed; Ud, velociD' due to deformation; USSJ 

velocity due to strain softening. It follows: Ul = 

Ub + Ud + Uss • Ud is taken from the results of the 

model simulating the flow of the whole ice mass: 

Ud = 21.7ma- 1 

u l Ub Ud + U" u" u,,/ Ub 

0.04 135 .0 86.8 48.2 26.5 0.31 

0.05 86 .2 47.4 38.8 17.1 0.36 

0.06 62.5 29.2 33.3 11.6 0.40 

0.08 41.6 13 .8 27.7 6.0 0.44 

0.10 33.1 7.9 25.2 3.5 0.45 

of c = 3.75 m -2, the normal stress along the sliding in

terface oscillates substantially less than in the case of 

no friction. Varying between 26.5 and 9.1 bar, the amp

litude of the stress oscillations is only Llpmax = 8.66 bar. 

The normal stress amplitude can be given (Equation (9)) 

as 
A'Tb 

Llpmax = ~ (33) 

and, inserting the shear stress T = pgh sin a = 1.75 bar, 

leads to a stress amplitude of 11.1 bar, thus larger than 

numerically calculated. The minimal normal stress, giv

ing the onset of cavity formation, is increased from 6.4 to 

9.1 bar. As wavelength and amplitude of bed undulation 

are constant, the smaller amplitude of the normal stress 

must be due to a smaller driving shear stress reduced by 

friction . Inserting the stress amplitude of the numerical 

computation (8.66 bar) into Equation (33), a basal shear 

stress 'Tb = 1.36 bar results , only 78% of the shear stress 

due to gravity (T = pgh sin a = 1.75 bar). This reduc

tion of the shear stress is in perfect agreement with the 
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reduction of the sliding velocity. The shear stress used 

to overcome the friction is T - Tb = Tr = 0.39 bar. 

There are some computations done for the case of a 

non-linear flow law of ice (Fig. 13). The sliding velocity 

is much more reduced than in the case of the linear flow 

law. Without iterative procedure, a debris concentration 

of c = 3.75m-2 prevents any sliding motion. Applying 

the iterative procedure to determine the frictional force, 

the large effect of friction on the sliding velocity would 

be attenuated. An estimation for that is given in Figure 

13 based on the computation for the case of a linear 

flow law. There it is shown that the reduction of the 

sliding velocity corresponds to a reduction of the driving 

shear stress, in particular for a debris concentration of 

c = 3.75 m -2 a reduction to 78% was found. Using a 

non-linear flow law such as Glen's flow law with exponent 

n = 3, it seems obvious that the sliding velocity would 

be reduced to (0.78)3 = 0.48. 

Sliding with bed separation 

Frictionless sliding with bed separation as an effect of 

subglacial water pressure has been studied in detail by 

Iken (1981). In particular, the transient stages of grow

ing and shrinking of water-filled cavities at the ice

bedrock interface were analysed. The introduction of 

a frictional drag at the sliding interface is the innovation 

of the present study. In this context, the effect on the 

separation and the critical pressure is of main interest. 

The present work does not extend to the point where the 

cavities reach a steady-state shape. Except for one, all 

computations are done using a linear-flow law. 

Bed separation, and hence the onset of cavity form

ation, starts when the subglacial water pressure reaches 

the minimal normal stress, known as separation pres

sure. In the case of the principal model (.\ = 20 m, 

r = 0.05), the separation pressure (Equation (10)) is 

given as Ps = 6.35 bar and the critical pressure (Equat

ion (11)) as Pc = 11.91 bar. For studying the effect of the 

subglacial water pressure on the sliding velocity, eight 

different models with increasing water-pressure values 

between 6.35 and 11.64 bar were chosen. Figure 14 (up

per left curve) contains the results of the numerical com

putations of the corresponding sliding velocities showing 
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ocity which was calculated without friction and 

without bed separation. Upper left line gives 

the case of fr ictionless s liding. Two cases with 

c = 2 .5 m - 2 and c = 5.0 m - 2 are consid

ered. H 07'izontal lines at left side represent the 

state before bed separation star·ts . Dashed ver

tical lines (asymptotes) give the critical pres 

sure, rising with increasing debris concentrat

ion. L inem' flow law is used. 

-

-

-

-

the very typical relationship between the sliding velocity 

and the subglacial water pressure. For a given shear 

stress, the sliding velocity is a constant, as long as the 

water pressure is below the separation pressure. Then, 

the velocity increases progressively with increasing water 

pressure tending to infinity at the critical pressure. 

Up to this point, the two effects of bed separation 

and of friction due to debris in the basal ice were stud

ied separately. Combining the two important variables, 

subglacial water pressure and areal basal debris concen

tration will show, for instance, whether the friction is 

enforced if the ice is separating from the rock bed. 

Figure 15 shows that the reduction of the sliding vel

ocity due to friction is more pronounced in the case of 

bed separation. Again, the iterative solution indicated in 

Figure 15 by the lower broken line is estimated from the 

results of the computation for the case of no bed separ

ation. Comparing the iterative solutions, computed for 

the case of no bed separation and estimated for the case 

of separation (Pw = 10.8 bar), the friction increased by 

about 50% if a water pressure is in operation. 
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Fig. 15. Dependence of basal sliding velocity 

(nor1nalized to the corresponding case of no 

friction) on the areal debris concentration. 

Solid line gives the results in the case of bed 

separation for a water pressure Pw = 10.8 bar. 

Dashed lines show iterative solutions in the 

case of no bed separation (Pw = O) and in 

the case of bed separation (Pw = 10.8 bar) . 

Linear flow law is used. 

How the sliding velocity in the case of fricti.on is dep

endent on the water pressure is studied for two different 

debris concentrations: c = 2.5 and 5.0 m -2. Hence, in 

contrast to the computation above, the amount of fric

tion is constant but the separation area increases with 

increasing water pressure. The larger the debris concen

tration, the later the separation starts. Figure 14 shows 

the results of the numerical computations of sliding with 

friction in the case of bed separation for both, varying 

debris concentration and varying water pressure. The 

typical relationship between sliding velocity and sub

glacial water pressure remains valid , also in the case of 

friction . However, the curves are shifted to the right, to 

larger water-pressure values. This simply means separ

ation and critical pressure are larger in the case of fric

tion. 

The critical and the separation pressures depend on 

the normal stress amplitude .dpmax which is as shown 

above smaller in the case of friction than without. For a 

debris concentration of c = 3.75m- 2 (and the geometry 

of the principal model), a stress amplitude of .dpmax = 
8.66 bar has been calculated numerically. Based on this 

result and the fact that the normal stress amplitude 

varies as t he effective value of the driving shear stress, 

the stress amplitude for the debris concentrations c = 2.5 

and 5.0 m - 2 can be determined by a linear interpolation 

to 9.48 and 7.84 bar, respectively. These calculated val

ues of the normal stress amplitude can be used to calcul

ate the separation and the critical pressure in the case 

of friction. Table 3 is a compilation of calculated values 

of the separation and the criticial pressure based on the 

numerical computation of the normal stress amplitude. 

Figure 14 shows clearly that the pressure values calcul

ated in the way described above coincide with the values 

which can be drawn from the illustration. In contrast 

to the theoretical considerations on the effect of "sand

paper" friction, the numerical calculations showed that 
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Table 3. Separation (Ps) and critical pressure ( Pc) (in bar) 

of the principal model for different debris concentrations (c in 

m·2); ice-overburden pressure Po = 17.5 bar 

0.0 

6.35 

11.91 

2.5 

7.99 

12 .74 

5.0 

9.64 

13.56 

in the case of "Ballet" friction the critical pressure stays 

half-way between the separation and the ice-overburden 

pressure, i.e. Equation (12) remains valid. 

DISCUSSION OF ACTUAL CONDITIONS 

Based on the Ballet friction model and on the assump

tion of a sinusoidal bedrock with unrestricted access of 

the subglacial water to all low-pressure zones at the 

glacier bed, the measured relation between water pres

sure and sliding velocity could be qualitatively reprod

uced. However, while this model predicts the critical 

pressure to be the arithmetic mean of separ ation pres

sure and the overburden pressure (Equation (12)), no 

instability of the glacier was observed at water pressures 

significantly below the overburden pressure (Fig. 1). 

Several reasons for this discrepancy are conceivable: on 

a more general bed, different values of maximum slope 

of stoss faces exist. It is the obstacles with the steep

est stoss faces which determine the critical pressure and, 

in particular, if obstacles with vertical stoss faces are 

present , the critical pressure approaches the overburden 

pressure. Steep stoss faces are, however, typically ab

sent in the gently undulating, polished bedrock, now ex

posed in the forefield of Findelengletscher. This bedrock 

might be more adequately described as a series of roches 

moutonnees. Obviously, Equation (12) does not hold for 

roches moutonnees which typically have steep lee faces. 

In that case, the separation pressure is much lower (Iken, 

1981), whereas, assuming that the undulations have the 

same maximum slopes of the stoss faces as the modelled 

sinusoids, the critical pressure is unchanged. Further

more, the assumption of unrestricted access of the sub

glacial water to all low-pressure zones is not realistic. If 

zones with insufficient water supply do exist, the growth 

of cavities and the increase in water storage, an indis

pensible prerequisite to an acceleration at the critical 

pressure, is prohibited. Hence, these zones s low down 

the speed-up of the glacier. 

In the models considered, the debris concentration 

has been assumed as given. Actually, it is the result 

of a bal ance (or imbalance) of processes which increase 

or diminish the debris concentration at the base: large

scale ice deformation, basal melting and plucking versus 

flushing by subglacial streams and wear-off of the abrad

ing particles. For instance, the basal debris concentrat

ion increases continually in a zone of large-scale vertical 

compression, e .g . the accumulation zone, where particles 

move from the surface to the base of the glacier. On the 

other hand, where an overall vertical compression is ab-
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sent, the abrading particles finally loose contact with the 

bed, in spite of local vertical compression at stoss faces of 

small-scale bed undulations. Thus, even Hallet's friction 

mechanism can only be maintained with some kind of 

particle resupply, for instance, plucking as pointed out 

by Shoemaker (1988). Where plucking occurs, simple 

Coulomb friction between newly plucked particles and 

the bed can also operate temporarily. After a certain 

time, the particles will be incorporated into the ice and 

the Coulomb friction will be replaced by Hallet friction. 

However, in zones of intensive plucking, this type of tran

sient Coulomb friction may contribute significantly to 

abrasion as Boulton (1974) assumed without regard to 

the limited duration of the process. 

The type of frict ion acting influences the surface vel

ocity and its variations. A few measurements of the sur

face velocity may therefore give a hint to the actual con

ditions at the glacier bed. This is illustrated by two ex

amples: Findelengletscher and Unteraargletscher, both 

of which are large valley glaciers in the Swiss Alps. The 

first one is sliding all the time and a small debris concen

tration will cause friction of the Hallet type. Unter

aargletscher, on the other hand, is rather slow-moving 

and debris-covered in the lower part. An examination 

of the particular seasonal velocity variations shows that 

the sliding velocity is negligible, except during the melt 

season. The basal debris concentration seems to be high 

and hence sandpaper friction is acting. These two ex

amples may be seen as representatives of two types of 

glaciers: fast-sliding, actively eroding glaciers with small 

debris concentration, and debris-rich glaciers where sub

glacial rock deposition is a dominant process. This dis

tinction may supplement a classification of glaciers sug

gested by Haeberli (1986). 

CONCLUSIONS 

Based on the theory of frictionless sliding over a sin

usoidal bed (Lliboutry, 1968; Nye, 1969; Kamb, 1970), a 

relation is developed between the subglacial water pres

sure and the bed separation in which the critical pressure 

is a pertinent variable. This relation is of crucial impor

tance for stud ying the effect of friction in the case of b ed 

separation . 

Two friction processes have been examined in detail: 

"sandpaper friction» and "Hallet friction». The former 

applies to large debris concentrations (>50% per vol

ume) with particles being in close contact and is a sort of 

Coulomb friction adapted to the case of glaciers. "Hal

let friction» is only active at small debris concentrat

ions when particles do not contact each other. "Sand

paper friction» decreases with increasing water pressure, 

whereas "Hallet friction» was found to be independent of 

water pressure. Both types of friction give rise to larger 

values of both the separation and the critical pressure. 

However, since the dependence of the friction on the sub

glacial water pressure is different, the effect on the separ

ation and the cri tical pressure also differs. In the case of 

"Hallet friction» , the critical pressure is the arithemetic 

mean of separation pressure and ice-overburden pressure, 

no matter how large the debris concentration or t he fric

tion coefficient. In the case of "sandpaper friction», the 

separation pressure increases more strongly with the fric-

tion coefficient than the cr itical pressure and therefore 

may approach the critical pressure. 

The typical relation between sliding velocity and sub

glacial water pressure found by Iken and Bindschadler 

(1986) could be reproduced qualitatively with the "Hal·· 

let friction» model. However, a quantitative agreement 

could not be achieved for the particular idealizations this 

study was based on. 

An approximate sliding law which makes allowance 

for the effect of friction and includes the critical pressure 

has been formulated (Equat ion (27)). 

Sliding with sandpaper friction can only take place in 

times of high subglacial water pressure; at other times 

the friction prevents any sliding motion. Therefore, 

glaciers with a sandpaper sole will only slide in the melt 

season, as long as sufficient subglacial water storage can 

be maintained. During other seasons, rock deposition 

rather than erosion occurs. In contrast, glaciers with 

small · basal debris concentration, where Hallet friction 

applies, s lide and abrade throughout the year. 
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