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G
lioblastoma (GBM) is the most common primary 
malignant brain tumor. It is extremely aggressive, 
with a median overall survival (OS) of less than 

15 months after diagnosis even with maximal therapy.95 
Survival rates are dismal, ranging from 26% to 33% for 
2-year survival and less than 5% for 5-year survival.49,53,96 
The standard first-line treatment includes resection, if 
possible, followed by concurrent radio- and chemo-
therapy, typically temozolomide (TMZ), and then 6–12 
months of adjuvant TMZ.38,68 Despite treatment, recur-
rence is nearly universal.96 Glioblastoma demonstrates 
a great deal of phenotypic, morphological, and cellular 
heterogeneity and is thought to contain a population of 
self-renewing cancer stem cells (CSCs) that contributes 
to tumorigenesis and treatment resistance. Both intratu-
moral heterogeneity and the presence of these CSCs may 
contribute to the treatment-resistant nature of GBM and 
its propensity to recur in patients.15,70

History and Definition
The concept of CSCs originated in 1994 with the 

observation that a fraction of cells in human acute my-
eloid leukemia can self-renew and reconstitute both the 
leukemic cell hierarchy and the clinical disease state in 
vivo after xenotransplantation.1,11,49,99 These self-renewing 
cells were later discovered to exist in various solid tumors 
as well, including those of the breast, colon, lung, brain, 
and liver.1,20,71,81,92 The CSC hypothesis proposes that in-
dividual tumors comprise a cellular hierarchy. Cancer 
stem cells reside at the apex of the hierarchy and possess 
the ability to self-renew and to divide to give rise to the 
variety of cells that populate a tumor. As tumor cells dif-
ferentiate, their ability to self-renew is reduced and they 
lose their “stemness.” The hierarchy is dynamic with re-
spect to cell type (CSCs, non-CSCs) and is maintained by 
the balance between self-renewal and differentiation.43,107 
Viewed in this light, tumors can be thought of as aber-
rant organs comprising heterogeneous cell types derived 
from CSCs rather than simply an accumulation of diverse 
neoplastic clones.

Researchers who made the initial attempts to de-
fine CSCs described a qualitatively distinct population 
of pathological cells that was able to self-renew and ir-
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reversibly and deterministically differentiate, resulting 
in the constitution of a tumor composed of phenotypi-
cally diverse cells. However, although physiological dif-
ferentiation is thought to be an irreversible process, cells 
have been known to dedifferentiate in pathological con-
ditions.22,90 Complicating the CSC paradigm, it has also 
been demonstrated that the differentiation of CSCs is not 
unidirectional. Stimuli such as hypoxia and acidic stress, 
as well as therapeutic agents such as TMZ, can induce 
some non-CSCs to adopt a CSC phenotype.5,16,39,60

Furthermore, research on CSCs has failed thus far to 
discover universally informative biomarkers, mutations, 
or gene-expression patterns.3 Biomarkers used to iden-
tify and enrich CSCs have been shown to exhibit vari-
able cell cycle–dependent expression.45,97 Initially CSCs 
were thought to be rare, but their frequency has been 
reported to vary among different cancers, and they may 
be quite common in some tumors.79 Given the apparent 
ability of tumor cells to move in either direction along 
the tumor hierarchy (toward both differentiation and de-
differentiation), the highly variable molecular character-
istics of CSCs, and their potential to change phenotype in 
response to internal and external signals, it is important 
to view CSCs as dynamic entities shifting fluidly among 
different molecular and functional states. It is also impor-
tant to recognize that CSCs need not originate from aber-
rant stem cells and that different tumors may arise from 
stem cells or restricted-lineage multipotent precursors, 
whereas others may arise from nonstem cells or more 
than one cell type.

The current definition of CSCs is not universally 
agreed upon by researchers, but the working definition 
encompasses characteristics that CSCs are generally be-
lieved to possess: CSCs are oncogenic in their host or 
immunosuppressed xenograft recipients, they proliferate, 
they self-renew, and they are able to differentiate to give 
rise to heterogeneous populations of cells that make up 
the bulk of solid tumors.3,80

The concept of CSCs and intratumoral hierarchy 
seems, at first glance, to be in opposition to the stochas-
tic model of tumor growth, which suggests that tumor 
expansion is driven by the clonal evolution of acquired 
genetic mutations. In the CSC model, a dynamic popu-
lation of cells (CSCs) is primarily responsible for tumor 
initiation, propagation, and maintenance, whereas in the 
stochastic model, many clones possess relatively equal 
levels of tumorigenicity. In 1988, Cavenee and cowork-
ers, in the paper James et al.,46 proposed dual models 
of GBM development, in which most GBMs represent 
the common final end point for progression from a va-
riety of subtypes of lower-grade gliomas, whereas some 
GBMs arise spontaneously from single critical mutations 
(such as the loss of heterozygosity of chromosome 10q). 
However, it is important to note that these models are 
not mutually exclusive. For instance, CSC populations 
have demonstrated enhanced chromosomal instability, 
possibly highlighting a role for clonal evolution in their 
propagation.72 Conversely, the critical ability of CSCs to 
initiate and propagate tumors indicates the possibility 
of spontaneous formation of GBM through the acquisi-
tion of critical mutations leading to the development of 

a CSC phenotype. The authors of another recent study 
suggested that interactions between multiple clones, in-
cluding a subpopulation of cells that drove tumor growth 
by inducing microenvironmental changes, were critical to 
the tumor phenotype.65 In reality, neither the CSC model 
nor the stochastic model is likely to exist in isolation, and 
the true mechanism of tumor formation lies somewhere 
between them.80 These 2 models should not be thought of 
as necessarily exclusive but, instead, as complementary 
forces in tumorigenesis (Fig. 1).

Culture Conditions
Multiple difficulties exist when researchers at-

tempt to analyze CSCs, among which is the unsuitabil-
ity of standard culture conditions for CSC maintenance. 
Experiments on CSCs must demonstrate the cells’ abil-
ity to establish a cellular hierarchy of both tumorigenic 
and nontumorigenic cells. However, standard culture 
conditions incorporating serum induce irreversible dif-
ferentiation and loss of tumorigenicity in CSCs, as well 
as gene-expression patterns that diverge from those of the 
original tumor.23,25,57,85 The derivation of free-floating tu-
morspheres in stem-cell cultures57,91,92 without serum al-
lows for the enrichment and study of CSCs but precludes 
side-by-side comparison with nontumorigenic cells and 
establishment of the cellular hierarchy. Furthermore, 
CSCs and nonstem tumor cells do not exist in isolation in 
vivo but, rather, are informed by the tumor microenviron-
ment and cross-talk between cell types.13,39,52,64

The establishment of tumorigenicity and cellular 
hierarchy is best assessed through the use of patient-
derived xenografts, preferably after as few cell passages 
and as little time in culture as possible. Immunodeficient 
animal recipients are used most often, and xenograft as-
says putatively allow for recapitulation of the tumor mi-
croenvironment and cell-cell signaling found in human 
conditions.57 However, xenografts typically require an 
immunocompromised host, which fails to replicate the 
immune system component present in native human pa-
tients. The xenograft condition may alter tumorigenicity, 
possibly artificially depressing the measured number of 
tumor-propagating cells by the introduction of a non-
native environment or possibly inflating the number of 
tumor-propagating cells or altering the cellular hierarchy 
as a result of the absence of immune interactions with the 
tumor xenograft.52,103

Glioblastoma and Cancer Stem Cells
Glioma cells were first grown under CSC conditions 

by Ignatova et al. in 2002,114 and further investigations 
subsequently demonstrated that GBM CSCs contributed 
to tumor maintenance and propagation,29,92,108 as well 
as treatment resistance.7,18,62 In vitro, GBM CSCs form 
neurospheres and demonstrate self-renewal capabilities, 
and when grown as in vivo xenografts, GBM CSCs form 
heterogeneous tumors that resemble the original parent 
tumor.29,92

In addition to meeting this functional definition, 
GBM CSCs share much in common with neural stem 
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cells (NSCs), although questions still exist about the true 
origin of CSCs.27,61 The similarity of the gene-expression 
profiles of GBM CSCs and NSCs provides support to the 
idea that CSCs are malignant variants of NSCs.43,113 There 
are many common pathways between CSCs and NSCs 
that are involved in neural development, including Notch, 
Wnt, and transforming growth factor–b (TGF-b) signal-
ing.32,89 Oligodendrogenesis relies on platelet-derived 
growth factor (PDGF); increased PDGF signaling has 
been demonstrated to cause abnormal NSC proliferation 
and glioma formation.40,44,56 Putative CSCs selected using 
common NSC markers have demonstrated  the ability to 
form orthotopic tumors in nude mice that more closely 
resemble human GBM than could isolated cells lacking 
these markers.22,91,92 Compared with the remaining tumor 
cells, CSCs are thought to be metabolically unique be-
cause of data demonstrating epigenetic DNA changes and 
a role for microRNAs in regulating gene expression.32,89 
Despite evidence for shared signaling pathways, gene ex-
pression, and biomarkers between NSCs and CSCs, it still 
is not clear whether GBM CSCs originate from NSCs that 
mutated to acquire tumorigenicity or if they stem from 
mature cells that dedifferentiated and acquired the ability 
to self-renew.

CD133 is the best-studied CSC biomarker and is often 
used experimentally to identify and enrich tumor-propa-

gating and -initiating cells. Also known as prominin 1, 
CD133 is associated with normal NSCs and is expressed 
during embryonic development.21,76,109 In seminal experi-
ments, tumor cells isolated from GBM that grew neuro-
spheres in serum-free medium (indicating self-renewal 
capabilities) and grew tumors phenotypically similar to 
GBM were found to be CD133-positive, whereas tumor 
cells that lacked CD133 expression did not demonstrate 
self-renewal or tumorigenicity in xenotransplantation 
studies.22,50,91,92 Short hairpin RNA (shRNA)  knockdown 
of CD133 in putative CSCs resulted in the loss of both of 
these properties, and after reexpression of CD133 in the 
same cells, the CSCs’ maintenance ability and tumorige-
nicity returned.4 Despite the evidence outlining its crucial 
relationship with CSCs, CD133 is not a universal marker 
for identifying CSCs. Several studies have demonstrated 
that GBM cells that are CD133 negative are still capable 
of tumor initiation, and some GBM tumors do not contain 
any CD133-positive cells.9,14,30,63,95,101,105,111 It has been pro-
posed that tumor-initiating CD133-negative cells may, in 
fact, actually express CD133 at low levels below experi-
mental thresholds. In one study, CD133 demonstrated cell 
cycle–dependent expression, in which CD133-negative 
cells were found mostly to reside in the Go/G1 stage.45 The 
subtleties of this relationship remain unclear, and the es-
sential role of CD133 in CSC maintenance remains an 

Fig. 1. Upper: The stochastic model suggests that tumor growth is driven by the clonal evolution of acquired genetic mutations 
and that many clones possess comparable levels of tumorigenicity. Lower: The CSC model suggests that there exists a self-
renewing population of cells (CSCs) responsible for tumor initiation, propagation, and maintenance. These CSCs may originate 
from a mutated progenitor stem cell or from a more differentiated cell in the lineage that dedifferentiated to acquire stem-like 
properties.
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area of investigation. Microenvironmental interactions, 
such as those mediated by CD15 and local growth factors, 
may complement the function of CD133 in CSC mainte-
nance and preserve stemness in CSC populations express-
ing very low or cell cycle–dependent levels of CD133.9,50

CSCs show increased expression of SOX2, a tran-
scription factor associated with multipotency via the 
TGF-b signaling pathway, which also promotes the self-
renewal of CSCs.12,31,42 CSCs also typically have increased 
expression of Nestin, an intermediate filament seen in 
NSCs, although it is a better marker in mouse tumors 
than in human GBM.41,42 Integrin a6 is another biomarker 
that is highly expressed in CSCs, and silencing it through 
shRNA knockdown renders CSCs unable to self-renew or 
grow tumors.51 Epidermal growth factor receptor is ex-
pressed in more than 50% of patients with GBM and may 
increase tumorigenicity and activate the characteristics of 
CSCs that promote treatment resistance.47,66

Additional biomarkers that have been studied in 
GBM include CD15, CD36, A2B5, L1CAM, CD44, and 
CXCR4.2,6,24,35,47,51,73,78,95Although these markers are use-
ful in furthering our understanding of CSC function and 
regulation and may be involved in targets for therapies 
against CSCs, no single marker can definitively identify 
or define CSCs (Table 1).

Tumor Niches/Microenvironments
Normal NSCs reside in particular anatomical regions 

known as niches, a microenvironment comprising so-
matic cells and the extracellular matrix.87 The relation-
ship between stem cells and these niches is not passive, 
and stem cells do not exist in a vacuum. Rather, NSCs in-
teract dynamically with their microenvironment.86 They 
actively influence their microenvironments and, in turn, 
are regulated by signaling from that same microenviron-
ment.86 Similarly, CSCs also exist in specific niches that 
play a role in the regulation of tumorigenicity. The mi-
croenvironment not only plays a role in helping to main-
tain CSCs and the tumor but can also affect response to 

therapy. The tumor microenvironment and the CSC niche 
is an active area of investigation, and CSCs are thought to 
occupy, among others, perivascular, hypoxic, and necrotic 
niches, as well as tumor border regions, which affects the 
invasive properties of GBM.17,34,98,102

Perivascular Niche

Perhaps the best established tumor niche for GBM 
stem cells is the perivascular niche.14 Many stem cells tend 
to be located close to the endothelial cells that line capillar-
ies, particularly in the subventricular zone and the hippo-
campus.28,48,69,74,82,84,88 These niches contain vascular factors 
that seem to regulate stem cells. These endothelial vascular 
factors have not precisely been elucidated; however, stud-
ies suggest the involvement of vascular endothelial growth 
factor C (VEGFC) and brain-derived neurotrophic factor 
(BDNF).54,58 NSCs are not just influenced by the surround-
ing environment; they also actively regulate it by secreting 
VEGF and BDNF to promote angiogenesis and contribute 
to this dynamic, cyclical relationship.59,86

Studies have shown that GBM contains abnor-
mal perivascular niches, and histologically, highly dis-
organized vasculature is characteristic of this tumor. 
Abnormal vascularity was thought to occur in response to 
a rapidly growing tumor; however, the truth may be that 
these aberrant vascular niches are critical for maintaining 
the CSC population.7,13,26 It has been shown that the vas-
cular density of GBM correlates with the amount of CSCs 
and even the patient’s prognosis.13,87 Bevacizumab, an an-
ti-VEGF antibody, is often used as part of salvage therapy 
for patients with GBM.100 The interaction of CSCs with 
endothelial cells promotes activity in critical stem path-
ways such as Notch signaling, which contributes to their 
self-renewal abilities.112 The CD133-positive CSCs are 
shown to express greater levels of VEGF, which leads to 
increased tumor vascularity over that of CD133-negative 
cells.8 CSCs may even be capable of differentiating into 
cells that functionally resemble pericytes, supplying the 
raw material necessary to continue supporting the peri-
vascular niche.17

Hypoxic/Necrotic Niche

In addition to aberrant vasculature, GBM is histologi-
cally known to contain areas of intratumor necrosis that are 
surrounded by a rim of densely packed tumor cells, known 
as pseudopalisading necrosis.83 These areas are believed to 
be another niche for CSCs to demonstrate increased self-
renewal and differentiation that result from the hypoxia 
in the environment.67 Oxygen levels drop further from 
vessels because of rapid uptake,75 and hypoxia-inducible 
factors (HIFs) play an important role in embryonic stem 
cells and NSCs for promoting proliferation.34,67 Hypoxia 
has also been demonstrated to upregulate VEGF in CSCs 
and increase angiogenesis.36 Hypoxia-induced activation 
of hypoxia-inducible factor 1a (HIF-1a) promotes self-
renewal in CD133-positive glioma-derived CSCs, resulting 
in expansion of the CSC population, whereas the knock-
down of HIF-1a, or inhibition of the phosphoinositol 3-ki-
nase (PI3K)-Akt or extracellular signal–regulated kinase 
1/2 (ERK1/2) pathways, reduced this effect.94 Hypoxia-

TABLE 1: Selection of molecular markers significant in the study 
of GBM CSCs

Authors & Year Marker*

Singh et al., 200391 CD133 (prominin 1)

Ogden et al., 200873 A2B5

Bao et al., 20086 L1CAM

Gangemi et al., 200931 SOX2

Ehtesham et al., 200924 CXCR4

Son et al., 200995 CD15 (SSEA-1, Lewis X)

Anido et al., 20102 CD44

Lathia et al., 201051 Integrin a6

Hale et al., 201435 CD36

* Markers are presented in chronological order of their discovery. Be-

cause of space limitations, we are unable to discuss all the significant 
markers or all the early studies in which the selected markers were 

identified.
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inducible factor 2a and its target genes were also found 
to be preferentially expressed in GBM CSCs, and HIF-2a 
has been found to colocalize with CSC markers.60 Studies 
suggest that hypoxia may have the ability to induce CD133 
expression and Notch signaling in CSCs, both of which are 
important for self-renewal. The pseudopalisading regions 
have shown CD133-positive immunoreactivity as well, fur-
ther supporting the theory that these hypoxic and necrotic 
niches are involved in supporting CSCs.37

Invasion/Tumor Edge Niche

The tumors seen in GBM are aggressive and highly 
invasive of surrounding brain tissue, forming large ne-
crotic and hemorrhagic cavitations that can be several 
centimeters wide. The outer edge of the tumor and its in-
vasive properties are believed to constitute another niche 
for CSCs. At the tumor boundary, TGF-b secreted from 
tumor macrophages may stimulate CSCs to expand the 
tumor by invasion of surrounding normal parenchyma.106 
Astrocytes also may play a role in GBM invasion through 
the activation of matrix metalloproteinases (MMPs) 
and initiating the sonic hedgehog (SHH) signaling path-
way.19,55 MMPs may help impair the integrity of the sur-
rounding normal parenchyma and its matrix, whereas 
SHH is known to promote the self-renewal of stem cells.19 
GBM invasion is also regulated by the chemokine recep-
tor type 4 (CXCR4), which is increased in CSCs.24,110 
CXCR4 can help attract CSCs to nearby endothelial cells, 
reinitiating the cycle of invasion, tumor growth, and en-
dothelium proliferation.24,36

Cancer Stem Cells as a Therapeutic Target
That GBM recurrence is nearly universal with little 

improvement over 3 decades suggests that the approach 
to treatment needs to be fundamentally reevaluated. To 
develop effective treatments for this lethal tumor, there 
needs to be greater understanding of the CSC drivers of 
hierarchical GBM cell populations and how these cells 

survive, proliferate, differentiate, and regulate their local 
environment. Such knowledge will likely lead to thera-
pies targeting GBM CSCs.

CSCs are intriguing targets for GBM therapy, be-
cause they tend to be resistant to therapy and their cellu-
lar properties give them the ability to overcome our cur-
rent treatment strategies. Recurrence is thought to occur 
when CSCs are left behind or not killed during treatment, 
because they are able to reinitiate tumor formation.16 An 
ideal GBM treatment that targets CSCs would distinguish 
between NSCs and CSCs and selectively eliminate only 
the CSCs.

Resistance of GBM to chemotherapy has been well 
studied, and there are several mechanisms by which treat-
ment resistance may occur.103–105 CSCs are postulated to 
have intrinsic resistance to chemotherapy, and CD133-
positive CSCs have demonstrated increased transcription 
of several antiapoptotic genes.62 There can be active trans-
porters on cell membranes that will pump the chemo-
therapy drugs out of the cell, which reduces the medica-
tion’s effectiveness.10 Parada and coworkers, in the paper 
Chen et al.,16 showed that Nestin-positive CSCs survived 
TMZ treatment and maintained the ability to regenerate 
tumors. Only when these Nestin-positive CSCs were spe-
cifically targeted did the tumor reformation cease.16 CSCs 
may also possess an increased ability to repair DNA, be-
cause CD133-positive CSCs were observed to activate ki-
nases that made them resistant to apoptosis.8

Ongoing and Previous Clinical Trials
Given their critical role in tumor initiation, propaga-

tion, and maintenance, CSCs offer an attractive therapeu-
tic target (see Table 2 for a summary of clinical trials). 
Immunotherapy with dendritic cells has been studied as 
treatment for many types of cancers, including gliomas. 
In an animal study conducted by Xu et al.104 in 2009, a 
dendritic cell vaccine was created against tumor-associat-
ed antigens specific to CSCs. The results showed that such 

TABLE 2: Selected clinical trials targeting CSCs for the treatment of GBM

Authors & Year or  

Clinicaltrials.gov Identifier Trial Design Agent (target) Outcomes

Phuphanich et al., 201377 Phase I, single arm ICT-107, an autologous dendritic cell–

pulsed vaccine (tumor-associated 

antigens overexpressed on CSCs)

21 total patients; nontoxic; 33% immunological response 

rate; nonsignificant trend toward increased PFS, but 
not OS, for vaccine responders

Sloan et al., 201493 Phase 0/II, random-

ized

vismodegib (SHH pathway) 40 total patients; well tolerated; no difference in 6-mo 

PFS or OS time as single agent; achieved therapeu-

tic intratumoral concentration; decreased SHH sig-

naling; decreased CSC proliferation & self-renewal

NCT01280552 Phase II, randomized ICT-107 (tumor-associated antigens) in progress

NCT01122901 Phase II, nonrandom-

ized

RO4929097 (g-secretase, Notch signal-

ing pathway)

in progress

NCT01119599 Phase I, single arm R04929097 in combination w/ TMZ & 

radiotherapy (g-secretase, Notch 

signaling pathway)

in progress

NCT01189240 Phase I/II, random-

ized

R04929097 w/ bevacizumab (g-secre-

tase, Notch signaling pathway)

in progress
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a vaccination induced cytotoxic T lymphocytes against 
CSC antigens, and in the 9L rat glioma model, survival 
was increased.104 In 2012, a Phase I vaccination study of 
GBM treatment in humans was completed by Phuphanich 
et al.,77 who used vaccines that targeted tumor antigens 
highly specific to CSCs. The vaccine developed was non-
toxic, and for the 16 patients who received it, the median 
progression-free survival (PFS) time was 16.9 months 
and the median OS time was 38.4 months. A Phase II 
randomized clinical trial for this vaccine is currently on-
going (Clinicaltrials.gov identifier NCT01280552).

Another approach to GBM therapy may be to tar-
get signaling pathways critical to CSC renewal and pro-
liferation (such as SHH or Notch) with small-molecule 
inhibitors.92 GDC-0449, known as vismodegib, can in-
hibit SHH signaling, and a recently completed Phase II 
clinical trial (Clinicaltrials.gov identifier NCT00980343) 
demonstrated that the drug reached the tumor, inhibited 
stemness, and downregulated the SHH signaling path-
way, although there was little improvement in PFS or OS 
time with its use as a single agent.93 A new trial targeting 
both the SHH and another metabolic target is currently 
in development (A. E. Sloan, L. Rogers, D. Peerboom, J. 
Barnholtz-Sloan, and M. Couce, Ohio Neuro-Oncology 
Collaborative, unpublished data, 2014). Similarly, Notch 
signaling is important for CSC self-renewal, and there 
are Phase I and II clinical trials currently investigating 
whether small-molecule inhibitors against this path-
way can help treat GBM (Clinicaltrials.gov identifiers 
NCT01122901, NCT01119599, and NCT01189240). It has 
been demonstrated that the SHH and phosphatase and 
tensin homolog (PTEN) signaling pathways have a syner-
gistic relationship in tumor proliferation, and there is in-
terest in targeting both of these pathways simultaneously 
with small-molecular inhibitors. In vitro and in vivo tests 
have already demonstrated reduced GBM growth, so this 
may be a viable option for treating humans.33

Conclusions
In conclusion, CSCs are dynamic entities with fluid 

molecular characteristics, functionally defined by self-
renewal, differentiation, and tumorigenicity. Cancer stem 
cells contribute to GBM propagation and have inherent 
properties that render them resistant to current treatment 
options. Given their importance in these processes, novel 
investigation of targeted anti-CSC agents is a therapeutic 
priority for treating this deadly tumor.
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