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Abstract

The human endocannabinoid system (ECS) is a complex sig-

nalling network involved in many key physiological process-

es. The ECS includes the cannabinoid receptors, the endo-

cannabinoid ligands, and the enzymes related to their syn-

thesis and degradation. Other cannabinoids encompass the 

phytocannabinoids from Cannabis sativa L. (marijuana) and 

the synthetic cannabinoids. Alterations in the ECS are associ-

ated with different diseases, including inflammatory and im-

mune-mediated disorders such as allergy. Allergy is a global 

health problem of increasing prevalence with high socio-

economic impact. Different studies have convincingly dem-

onstrated that cannabinoids play a role in allergy, but their 

actual contribution is still controversial. It has been shown 

that cannabinoids exert anti-inflammatory properties in the 

airways and the skin of allergic patients. Other studies re-

ported that cannabinoids might exacerbate asthma and 

atopic dermatitis mainly depending on CB2-mediated sig-

nalling pathways. A better understanding of the molecular 

mechanisms involved in the mode of action of specific can-

nabinoids and cannabinoid receptors on relevant immune 

cells under different biological contexts might well contrib-

ute to the design of novel strategies for the prevention and 

treatment of allergic diseases. Future research in this promis-

ing emerging field in the context of allergy is warranted for 

the upcoming years. © 2020 S. Karger AG, Basel

Introduction

The cannabis plant Cannabis sativa L. (marijuana) has 
been used for both therapeutic and recreational effects for 
many centuries. However, the purification and the chem-
ical characterization of its unique active components, the 
so-called cannabinoids, were not carried out until the 
1960s [1]. In the early 1990s, specific cannabinoid recep-
tors (CBRs) were cloned and their endogenous ligands 
were characterized, uncovering the mechanism of action 
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of cannabinoids [2, 3]. These findings boosted basic and 
clinical research to better understand the molecular path-
ways involved in the mode of action of cannabinoids and 
to explore potential novel therapeutic applications. The 
human endocannabinoid system (ECS) encompasses the 
CBRs, the endocannabinoid ligands, and the group of en-
zymes responsible for their synthesis, transport, and deg-
radation [4]. The ECS is involved in a large number of 
vital physiological processes in the body, such as the con-
trol of neuronal activity, energy metabolism, cardiovas-
cular tone, and immunity. Alterations in the ECS have 
been associated with different diseases, including inflam-
matory and immune-mediated disorders, which suggests 
the ECS components as promising novel therapeutic tar-
gets [5, 6]. Cannabinoids regulate immune responses by 
promoting anti-inflammatory properties in brain injury, 
inflammatory bowel diseases, sepsis, multiple sclerosis, 
airway inflammation, and allergy [7].

Allergy represents a global health problem of increas-
ing prevalence, affecting almost one billion patients 
worldwide. The main clinical manifestations of allergy in-
clude allergic rhinitis, allergic asthma, atopic dermatitis 
(AD) and other skin diseases, food allergy, and anaphy-

laxis. Allergic diseases can be generally considered as type 
2-mediated diseases characterized by the production of 
high levels of IgE against innocuous substances called al-
lergens [8, 9]. Allergic disorders significantly affect pa-
tients’ quality of life, decrease productivity at work, and 
enhance sanitary costs of health care systems, thus repre-
senting a significant health problem with high socio-eco-
nomic impact [10, 11]. Therapeutic strategies that not 
only treat allergic symptoms but also might prevent or 
modify the course of the disease are highly demanded. 
Currently, allergen-specific immunotherapy (AIT) re-
mains as the only treatment with potential long-term dis-
ease-modifying capacity for allergic disorders [12, 13]. 
AIT consists of the administration of high doses of the 
causative allergens to induce a state of permanent toler-
ance upon treatment discontinuation. AIT is a successful 
treatment strategy for many patients, but it displays some 
important drawbacks related to efficacy, safety, and dura-
tion. Therefore, the design and development of novel 
therapeutic approaches for the prevention and treatment 
of allergic diseases is fully demanded. 

Several studies have demonstrated the participation of 
the ECS in the development and maintenance of allergic 
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Fig. 1. a Main components of the endocannabinoid system (ECS). 
Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are synthe-
sized on demand from membrane lipids by N-acyl-phosphatidyleth-
anolamine-hydrolysing phospholipase D (NAPE-PLD) and diacylg-
lycerol lipase (DAGL), respectively. AEA and 2-AG move across the 
cell membrane through a purported endocannabinoid membrane 
transporter (EMT). Cannabinoid receptor 1 (CB1), cannabinoid re-
ceptor 2 (CB2), transient receptor potential vanilloid 1 (TRPV1), G-
protein-coupled receptor 55 (GPR55), and PPARs are the main re-

ceptor targets of AEA and 2-AG. AEA and 2-AG are hydrolysed by 
fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase 
(MAGL), respectively, releasing arachidonic acid. b Cannabinoid re-
ceptor (CBR)-induced signalling. After cannabinoid binding, CBRs 
signal several cellular pathways including inhibition of protein kinase 
A (PKA) pathway, activation of mitogen-activated protein kinase 
cascades (p38, JNK, and ERK), activation of protein kinase B (Akt) 
pathway, inhibition of calcium channels, activation of protein kinase 
C (PKC), and generation of ceramides. 
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diseases, but the data related to the actual role of canna-
binoids in allergy are still controversial. The capacity of 
the ECS to suppress inflammation in mouse models of 
allergen-induced airway inflammation, AD, and contact 
allergy has been well documented [14, 15]. In contrast, 
other studies have shown that CBR 2 (CB2)-mediated sig-
nalling contributes to the exacerbation of asthma and AD 
[16, 17]. Future basic and clinical research will help to 
delineate the detailed molecular mechanisms by which 
cannabinoids might exert their functions on different im-
mune cells in the context of allergy as well as their poten-
tial clinical implications. The development of novel 
chemical probes is enabling a better understanding of 
these pathways, which will be of outmost value to firmly 
confirm how cannabinoids can modulate allergic re-
sponses. In this article, we will comprehensively review 
our current knowledge on the role played by the ECS and 
the potential therapeutic applications of cannabinoid-
based drugs in the context of the main allergic diseases.

The Human ECS

The human ECS is a complex and essential signalling 
pathway involved in many physiological processes. The 
ECS is involved in the control of many relevant physio-

logical processes such as neuronal development, brain 
plasticity, learning and memory, regulation of appetite, 
stress and emotions, proliferation, differentiation, cell 
survival, metabolism, and immunity. Alterations in the 
ECS have been associated with a plethora of diseases, and 
preclinical and clinical studies have indicated cannabi-
noids as novel potential therapeutic tools in cancer, neu-
rological, inflammatory, and immune-mediated diseases 
[6, 18, 19]. The main components of the ECS include the 
endocannabinoid ligands, the enzymes related to their 
synthesis and degradation, and the CBRs (Fig. 1). 

Endocannabinoids are lipid-derived signalling mole-
cules that are endogenously synthesized and can bind and 
activate CBRs. Anandamide (arachidonoylethanolamide, 
AEA) and 2-arachidonoylglycerol (2-AG) are the most 
widely investigated. However, other biochemically and 
structurally related endocannabinoids such as N-palmi-
toylethanolamine (PEA), 2-arachidonoylglyceryl ether 
(noladin ether, 2-AGE), O-arachidonoylethanolamine 
(virodhamine), and N-arachidonoyldopamine (NADA) 
have also been recognised [20]. AEA is a high-affinity 
partial agonist of the G-protein-coupled receptors (GP-
CRs) CBR 1 (CB1) and a low-affinity ligand of the GPCR 
CB2, whereas 2-AG acts as a full agonist with moderate 
affinity for both CBRs [20, 21]. AEA and 2-AG can also 
interact with other receptors or ion channels, including 

a b
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Fig. 2. Cannabinoid ligands. a Endocannabinoids. b Plant-derived cannabinoids or phytocannabinoids. c Syn-
thetic cannabinoid including non-selective agonists, CB1- and CB2-selective agonists, and CB1- and CB2-selec-
tive antagonists.
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different GPCRs, peroxisome proliferator-activated re-
ceptors (PPARs), and transient receptor potential chan-
nels (TRPVs) [22]. Other cannabinoid compounds en-
compass the phytocannabinoids derived from the plant 
Cannabis sativa L. (marijuana) and the synthetic canna-
binoids (Fig.  2). The most abundant and well-chara c-
terized phytocannabinoid is Δ9-tetrahydrocannabinol 
(THC), which was isolated and structurally characterized 
in the 1960s [1]. THC is the major psychoactive compo-
nent of marijuana and exerts a wide variety of biological 
effects by activation of CB1 and CB2 [23]. The potential 
therapeutic effects of THC have been studied in several 
diseases, including cancer, multiple sclerosis, epilepsy, 
Alzheimer disease, Parkinson disease, and pain treatment 
[23]. Currently, THC and its synthetic analogue nabilone 
(Marinol and Cesamet, respectively) are approved for in-
hibiting chemotherapy-induced nausea and vomiting [6]. 
Cannabidiol (CBD) and cannabinol (CBN) are other 
plant-derived cannabinoids produced in significant 
amounts. CBD is the main non-psychoactive phytocan-
nabinoid and its therapeutic interest is due to its analge-
sic, antipsychotic, antioxidant, and anti-inflammatory 
properties [24]. A mixture of equal doses of THC and 
CBD, known as Sativex, is marketed for the treatment of 
spasticity in patients with multiple sclerosis [6, 24]. Since 
the identification of the ECS, a large number of synthetic 
cannabinoids have been developed in order to mimic 
some of the beneficial properties of THC, while avoiding 
its negative effects. They include agonists with similar af-
finity for CB1 and CB2 but greater potency than THC, 
such as WIN55212-2 (from the aminoalkylindole family), 
HU210 (synthesized at the Hebrew University; HU se-
ries), and CP55940. Compounds with specific selectivity 
have also been described: R(+)-methanandamide (CB1-
selective agonist) and HU308 (CB2-selective agonist). In 
addition, selective antagonists have been generated such 
as Rimonabant and AM630, CB1- and CB2-selective an-
tagonists, respectively [25, 26] (Fig. 2). Numerous canna-
binoids, including phytocannabinoids and synthetic can-
nabinoids, have been included in clinical trials [5]. 

Endocannabinoids are synthesized and released on de-
mand from membrane precursors, but it is suggested that 
they could also be accumulated in storage organelles 
within the cell [27, 28]. As shown in Figure 1, synthesis of 
AEA starts with the hydrolysis of N-acyl-phosphatidyl-
ethanolamine (NAPE) by NAPE-hydrolysing phospholi-
pase D (NAPE-PLD). Alternative pathways involving 
other NAPE phospholipases and enzymes are also de-
scribed [4, 28]. The synthesis of 2-AG consists of the se-
quential hydrolysis of arachidonoyl-containing phospha-

tidylinositol 4,5-bisphosphate by phospholipase C (PLC) 
followed by hydrolysis of the resulting diacylglycerol by 
diacylglycerol lipase (DAGL) [4]. Endocannabinoids are 
rapidly inactivated by a two-step process: cellular uptake 
and intracellular hydrolysis. Cellular uptake of endocan-
nabinoids from extracellular space is mediated by puta-
tive endocannabinoid membrane transporters, the exis-
tence of which is only based on indirect evidence as it has 
not been cloned yet [29]. Degradation of AEA is medi-
ated by the fatty acid amide hydrolase (FAAH), whereas 
the degradation of 2-AG is primarily due to monoacylg-
lycerol lipase (MAGL). The resulting products of AEA 
and 2-AG degradation are arachidonic acid, which is re-
quired for prostaglandin synthesis, and ethanolamine 
and glycerol, respectively [4] (Fig. 1). FAAH and MAGL 
represent promising therapeutic targets for the treatment 
of different disorders, and pharmacological inhibitors 
have been developed. Pharmacological or genetic inhibi-
tion of FAAH and MAGL increases AEA and 2-AG levels, 
prolonging their anti-inflammatory and analgesic effects 
via CBRs [30]. Remarkably, FAAH and MAGL inhibition 
also reduces arachidonic acid, a key precursor of pro-in-
flammatory prostaglandins and thromboxanes. FAAH 
and MAGL inhibitors may have a large number of thera-
peutic applications, including pain, nausea, neurodegen-
erative pathologies, inflammation, metabolic disorders, 
and cancer [31, 32].

The effects of endocannabinoids are mainly mediated 
by CB1 and CB2 but other receptors acting as CBRs have 
been proposed. CB1 and CB2 share 44% sequence iden-
tity [3]. Both receptors consist of a single polypeptide 
chain with 7 transmembrane α-helices inserted in the cell 
membrane, as well as an extracellular N-terminus and in-
tracellular C-terminus domain. Their high-resolution 
crystal structure in humans has been recently reported 
[33–35]. CB1 and CB2 are generally coupled to inhibitory 
Gαi/o proteins, thus inhibiting adenylate cyclase and the 
conversion of ATP to cyclic AMP and protein kinase A 
activation, a positive regulatory signalling pathway of im-
mune response. CB1 can also activate adenylate cyclase 
through Gαs protein stimulation [36]. Gβγ subunits cou-
pled to CBRs activate mitogen-activated protein kinases 
(MAPKs) and protein kinase B (Akt) with important con-
sequences in the maintenance of cellular homeostasis. 
Other CBR-mediated signalling pathways include modu-
lation of ion channels, ceramide biosynthesis, and activa-
tion of PLCβ (Fig. 1) [37, 38]. CB1 is highly expressed in 
the central nervous system (CNS) where it regulates di-
verse neuronal functions and behaviours. Far from being 
restricted to the CNS, CB1 expression is also observed in 
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peripheral tissues including immune cells, liver, pancre-
as, skeletal muscle, and peripheral nervous system, where 
it has been implicated in other key physiologic processes 
such us control of immunity, metabolism, etc. [6]. For a 
long time it was thought that CB2 was only expressed in 
peripheral immune system cells, but it has been shown 
that CB2 is also expressed in different cell subsets in the 
CNS, muscle, pancreas, intestine, and testis [39, 40]. In-
terestingly, CB1 and CB2 expression can be increased in 
pathologic or injury conditions. CB1 is significantly in-
creased in murine models of colitis inflammation or lipo-
polysaccharide-stimulated macrophages [41, 42]. CB1 
gene expression is also increased in human immune sys-
tem cells from patients with allergic diseases [43]. CB2 
expression is upregulated in chronic inflammation of the 
immune system, as well as in brain injury [44, 45]. 

Other receptors including orphan GPCRs (GPR55, 
GPR19), TRPV1, and PPARs are also involved in the can-
nabinoid-induced signalling pathways. GPR55 was ini-
tially described as a putative “CB3,” but the low sequence 
similarity with conventional CBRs does not fully endorse 
this concept [46, 47]. GPR55 is widely expressed in the 
immune system, CNS, and peripheral tissues [47]. It is 
coupled to Gα12/13, signalling through RhoA and con-
trolling several physiological processes [48]. Unlike CB1 
and CB2 that mainly trigger inhibitory effects, GPR55 
mostly exerts excitatory and stimulatory effects [49, 50]. 
AEA, 2-AG, THC, and HU210 have been described as 
GPR55 ligands [51]. Other orphan GPCRs such as GPR18, 
GPR19, and GPR110 have also been described as canna-
binoid targets [5]. TRPV1, also known as capsaicin recep-
tor, is a non-selective channel expressed in the CNS and 
periphery tissues, including liver, skin, intestine, and im-
mune system cells. Upon activation, the pore allows the 
flux of ions across the membrane. TRPV1 can be activat-
ed by heat, capsaicin, arachidonic acid derivatives, pro-
tons, and cannabinoids [52]. AEA shows a similar affin-
ity for TRPV1 as capsaicin, but less potency [53]. CBD has 
also been described as TRPV1 activator, whereas THC 
does not modulate this channel [22, 54]. Some synthetic 
cannabinoids such as WIN55212-2 or AM1241 are also 
TRPV1 ligands [22]. Several studies demonstrated the ac-
tivation of PPARs by some cannabinoids [55, 56]. PPARs 
are nuclear hormone receptors with 3 isoforms (α, β, and 
γ) highly expressed on metabolically active tissues. Upon 
ligand binding, PPARs heterodimerize with retinoic acid 
receptor and bind to the PPAR response element DNA 
sequences, regulating the transcription of genes involved 
in metabolism, cell differentiation, and inflammation 
[57]. AEA and 2-AG bind and activate both PPARα and 

PPARγ, and phytocannabinoids can mainly bind to 
PPARγ. Although the detailed mechanisms of cannabi-
noid-PPAR interaction are not clear, activation of PPARs 
by cannabinoids exerts anti-inflammatory and neuropro-
tective effects in several disease models [58, 59].

The ECS and the Immune System

The ECS play an important role in the regulation of 
both innate and adaptive immune responses. Immune 
cells are not only influenced by cannabinoids, but also 
produce and secrete endocannabinoids themselves, 
which in turn modulates the functional features of im-
mune cells [60]. CB2 is the most expressed CBR in im-
mune cells and its activation usually mediates immuno-
suppressive responses, but other CBRs such as CB1, 
GPR55, and PPARs are also involved in immune cell reg-
ulation. In a broad perspective, the anti-inflammatory ef-
fects of cannabinoids are a consequence of some specific 
effects on immune cells such as their capacity to modulate 
cytokine production, cell migration, T-cell responses, cell 
proliferation, and apoptosis [7, 60]. 

Regulation of Immune Cells by Cannabinoids
AEA, 2-AG, THC, and CBD control macrophage 

function by inhibiting cytokine production, nitric oxide 
release, and phagocytosis [61–63]. In human monocyte-
derived dendritic cells (DCs), the expression of all the 
components of the ECS has been described [64] and sev-
eral inflammatory models showed the capacity of canna-
binoids to modulate DC function. AEA and THC inhibit 
pro-inflammatory cytokine production and the capacity 
of DCs to polarize Th1 and Th17 responses [65–67]. THC 
induces apoptosis in murine DCs, providing a potential 
immunosuppression mechanism of immune cells [68].

The contribution of ECS signalling in the regulation of 
neutrophils and natural killer (NK) cell function is still 
controversial. Neutrophils express low levels of CBRs, but 
the lack of CB2 enhances their migration [69, 70]. In con-
trast, 2-AG induces neutrophil activation and the release 
of antimicrobial mediators [71]. NK cells express high 
levels of CB1, CB2, and GPR55, but controversial results 
are reported. THC treatment impairs the cytolytic activ-
ity of NK cells [72], but GPR55 activation induces the re-
lease of cytokines and cytolytic activity [49]. Although 
there is scarce data about the effect of cannabinoids on 
eosinophils, AEA inhibits the activation, maturation, and 
degranulation of mast cells [73]. Mice lacking CB2 dis-
play a low number of type 2 innate lymphoid cells (ILC2s), 
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suggesting the role of CB2 signalling in the induction of 
ILC2s [74].

Cannabinoids mainly suppress adaptive T-cell re-
sponses by inhibiting proliferation and cytokine produc-
tion [75, 76]. CBD has been shown to induce tolerogenic 
responses by favouring the generation of regulatory T 
(Treg) cells [77]. B cells express the highest levels of CB2, 
which is essential for mouse B-cell subset formation and 
for retention of immature B cells in bone marrow and 
splenic marginal zones [78, 79]. A more detailed sum-
mary of the main effects of cannabinoids on the different 
immune cells is presented in Table 1.

Anti-Inflammatory Mechanisms of Cannabinoids
Compelling experimental evidence supports that can-

nabinoids exert powerful anti-inflammatory effects on 
immune cells, but the mechanisms by which they exert 
such effects need to be better understood [7]. Toll-like 

receptor (TLR) activation leads to NF-κB and MAPK sig-
nalling pathway activation, inducing the expression of 
pro-inflammatory genes [80]. Cannabinoids impair pro-
inflammatory cytokine and nitric oxide production by 
LPS-stimulated monocyte, macrophages, and microglia 
due to NF-κB signalling pathway inhibition [62, 81]. In 
vivo models of LPS-induced inflammation support the 
capacity of cannabinoids to interfere in TLR signalling 
[82, 83]. TLR activation enhances CBR expression and 
endocannabinoid production, suggesting an important 
role of the ECS in the modulation of TLR-mediated im-
mune responses [42, 82].

Novel findings indicate that cannabinoids might also 
mediate their anti-inflammatory effects by rewiring the 
metabolic pathways in immune cells [84]. Metabolic re-
programming can govern the function of T cells, macro-
phages, and DCs. Immune activation is mainly linked to 
a glycolysis-driven upregulation of anabolic processes, 

Table 1. Main effects of cannabinoids in immune cells

Cell type CBR expression Role of cannabinoid ligands

Monocytes/
macrophages

 CB1 and CB2
[184, 185]

AEA, 2-AG, THC, and CBD inhibit cytokine production [61, 81, 186, 187]
AEA and PEA stimulate phagocytosis [188, 189]
2-AG, THC, and WIN55212-2 modulate ROS production [187, 190]
CBD induces apoptosis [191]

Dendritic cells
(DCs)

CB1 and CB2
[43, 64]

AEA, THC, JWH-015, and JWH-133 inhibit inflammatory cytokine production [65, 66]
AEA and THC inhibit the capacity to induce Th1 and Th17 responses [65, 67]
THC induces apoptosis [68]
THC impairs human monocyte-derived DC differentiation [192]

Neutrophils CB1 and CB2
[70, 193]

AEA, CBD, and CB2 signalling reduce cell migration [69, 70]
AEA and 2-AG induce cell activation and the release of antimicrobial effectors [70, 71, 194]

NK cells CB1 and CB2
[60]

2-AG and THC inhibit cytolytic activity [72, 74]
CB2 signalling reduces cell migration [74]
O-1602 induces high cytolytic activity and cytokine production [49]

Eosinophils CB1 and CB2
[195]

2-AG increases cell recruitment [195, 196]
WIN55212-2 reduces cell recruitment [197]

Mast cells CB1 and CB2
[73, 103, 198]

AEA and AEA-derived compounds inhibit cell maturation and degranulation [73, 141, 199]
AM251 induces cell maturation and degranulation [103]

Innate lymphoid 
cells (ILCs)

CB2 
[200]

CBD promotes ILC2 induction [200] 
CB2 signalling induces high numbers of ILC2 [74]

T lymphocytes CB1 and CB2
[76, 201]

AEA, THC and JWH-133 inhibit T-cell proliferation [201–203]
AEA and THC supress T-cell responses [201]
CBD and JTE907 induce functional Treg generation [77, 204]
HU210 and HU308 inhibit cytokine production [76]

B cells CB1 and CB2
[76, 205]

THC and WI55212-2 increase B-cell proliferation [206]
CP55940 induces IgE class switching [207]
CB2 signalling promotes B-cell retention in bone marrow or splenic marginal zones [78, 79]
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whereas the tolerance state is characterized by increased 
catabolic processes [85–87]. AMP kinase (AMPK) is a 
master regulator of catabolism promoting mitochondrial 
biogenesis, oxidative phosphorylation, and autophagy. 
Simultaneously, AMPK also downregulates anabolic pro-
cesses, antagonising immune cell activation [88, 89]. In 
pancreatic cancer cells, cannabinoid agonists induce 
AMPK activation depending on ROS-mediated increase 
of AMP/ATP ratio [90]. Similarly, THC and JWH015 ac-
tivate AMPK through CB2 and inhibit energetic metabo-
lism [91]. In these studies, AMPK activation leads to au-
tophagy induction, a catabolic process involved in cellu-
lar homeostasis [88, 90, 91]. Autophagy has also been 
involved in immune system control by clearance of intra-
cellular bacteria, control of inflammatory cytokine secre-
tion and inflammation, antigen presentation, and lym-
phocyte development [92, 93]. CBD and AEA attenuate 
inflammation in an autophagy-dependent manner [94]. 
Considering all these aspects, cannabinoid-based treat-
ment demonstrated anti-inflammatory and beneficial ef-
fects in brain injury, inflammatory bowel diseases, vascu-
lar inflammation, sepsis, rheumatic disease, multiple scle-
rosis, airway inflammation, and allergy [7, 95].

Cannabinoids in Allergic Diseases

Allergy is a type 2 helper T cell (Th2)-mediated disease 
of increasing prevalence affecting around 30% of the pop-
ulation worldwide. Allergic diseases constitute a public 
health problem with a high socio-economic impact. The 
main allergic diseases include allergic rhinitis, allergic 
asthma, food allergy, AD, and anaphylaxis [9]. The im-
munological mechanisms underlying allergic diseases 
can be divided into two main phases: (i) sensitization and 
memory and (ii) effector phase. The sensitization phase 
occurs during the first contact with the allergen and leads 
to the generation of allergen-specific CD4+ Th2 cells and 
allergen-specific IgE antibodies that diffuse and bind to 
the IgE high-affinity receptor (FcεRI) on the surface of 
mast cells and basophils, thus leading to patient sensitiza-
tion. Upon new allergen encounters, allergen-dependent 
cross-linking of the IgE-FcεRI complexes on sensitized 
mast cells and basophils triggers the release of a plethora 
of anaphylactogenic mediators, responsible for the im-
mediate clinical symptoms. Late-phase reactions are ini-
tiated by the accumulation of mediators and by the acti-
vation of allergen-specific memory Th2 via mechanisms 
depending on IgE-facilitated presentation by DCs and B 
cells. Th2 cells in cooperation with ILC2s activated by ep-

ithelial cell-derived alarmins (TSLP, IL-33, or IL-25) pro-
duce large amounts of IL-4, IL-5, IL-9, and IL-13 that 
contribute to maintain allergen-specific IgE levels, eosin-
ophilia, mucus production, inflammatory cell recruit-
ment, and tissue inflammation, leading to chronicity and 
the most severe clinical manifestation of allergy [8, 9, 96]. 

Allergen-specific Treg and regulatory B (Breg) cell 
generation is essential in the induction and mainte-
nance of allergen tolerance in healthy responses and 
successful AIT [9, 97]. Although AIT, the single treat-
ment with the capacity to induce long-term modifying 
effects upon discontinuation, is effective in many cases, 
it displays several important drawbacks in terms of ef-
ficacy, safety, and duration. Therefore, the develop-
ment of novel prophylactic and therapeutic interven-
tions is highly demanded in the field of allergy. In this 
regard, a better understanding of the role of ECS in the 
context of allergy might well contribute to open new 
avenues for the design of novel preventive and curative 
strategies. To date, the data on the effect of cannabi-
noids in the context of allergic diseases are still a bit 
controversial. Some studies reported a potential protec-
tive role of ECS in allergen-induced airway inflamma-
tion and contact allergy [14, 15, 98, 99]. In contrast, 
other studies in mice showed that CB2 signalling con-
tributes to allergic exacerbation in OVA-asthma mod-
els or AD models [16, 17, 100]. Our group has previ-
ously shown that the gene expression of CB1 is signifi-
cantly increased in peripheral blood and tonsils of 
atopic patients, but the functional significance of these 
findings remains to be fully elucidated [43]. In the next 
sections, we will comprehensively review our current 
knowledge on the role of the ECS and cannabinoid-
based drugs in the context of different allergic diseases.

Allergic Rhinitis
Allergic rhinitis is a highly prevalent disorder in west-

ern countries, especially in children. It is defined by 
chronic inflammation of the nasal mucosa that promotes 
the appearance of its main clinical symptoms: sneezing, 
itch, nasal congestion, and rhinorrhoea [101, 102]. The 
pathophysiology of allergic rhinitis is mediated by a type 
2 immune response where Th2 cells, ILC2s, B cells, mast 
cells, basophils, and eosinophils together with structural 
cells from the nasal mucosa interact and release a range 
of mediators that end up in the development of classical 
features of rhinitis [8, 9]. Several pathophysiological 
mechanisms of allergic rhinitis are also present in the 
lower respiratory tract of asthmatic patients. In fact, both 
diseases coexist in many patients and the diagnosis of al-
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lergic rhinitis is an important risk factor for the future 
development of asthma [101, 102].

Studies addressing the role of the ECS in allergic rhi-
nitis are scarce. As mentioned above, we previously 
showed that the expression of CB1 was significantly up-
regulated in tonsils from allergic rhinitis patients com-
pared to non-atopic donors [43]. CB1 limits mucosal 
mast cell activation and maturation from nasal polyps 
[103], indicating a protective role in allergen-induced air-
way diseases. Conversely, in patients with allergic rhinitis, 
nasal stimulation of TRPV1 by capsaicin or olvanil dur-
ing the pollen season resulted in an increased perception 
of itch compared to placebo-treated controls [104]. In-
triguingly, no effects were found when TRPV1 was acti-
vated by AEA, possibly due to a high degradation rate of 
AEA in the nasal mucosa [104]. These findings suggest 
that the ECS may contribute to some extent to the patho-
physiology of allergic rhinitis, but future research is re-
quired. 

Allergic Asthma
Asthma is a heterogeneous syndrome characterized by 

chronic inflammation of the conducting airways affecting 
up to 358 million people worldwide. It encompasses sev-
eral phenotypes with different pathophysiological mech-
anisms that share common clinical symptoms such as 
bronchial hyperreactivity (BHR), reversible airflow ob-
struction, and intermittent periods of wheezing, cough, 
and chest tightness as well as airway remodelling and ex-
acerbations in the most severe manifestations [105–107]. 
Allergic asthma represents one of the most common and 
well-studied asthma phenotypes [108]. It is associated 
with an early age onset, increased levels of total and aller-
gen-specific serum IgE, and type 2 immune responses [8, 
108]. Corticosteroids and bronchodilators are the main-
stay treatment for asthma and many patients are prop-
erly controlled with them. However, in patients with se-
vere asthma, the treatment of the disease is still challeng-
ing [106, 107]. Over the last years, biologicals have 
significantly improved the asthma control and quality of 
life of many severe asthma patients, but novel safe and 
cost-effectiveness treatments are still demanded [109–
111]. 

First evidence on the therapeutic potential of cannabi-
noids in the airways dates back to the 1970s when several 
studies pointed out the bronchodilatory properties of 
marijuana smoke and oral administration of THC [112]. 
However, its therapeutic exploitation was hampered due 
to concerns of its psychotropic effects at the CNS and the 
paradoxical bronchoconstrictory responses reported in 

some asthmatic patients [113]. Since then, different stud-
ies have addressed the potential involvement of the ECS 
in asthma. Increased levels of AEA have been reported in 
the bronchoalveolar lavage fluid of allergic asthma pa-
tients upon allergen challenge and the mRNA levels of 
CB1 are increased in asthmatics [43, 114]. The expression 
of CB2 is enhanced in peripheral blood eosinophils from 
allergic patients with seasonal respiratory symptoms 
compared to healthy controls [16]. These data, together 
with findings in mice showing decreased levels of PEA 
and upregulation of CB2 and GPR55 receptors after OVA 
sensitization [115], suggest a potential role of the ECS in 
the pathophysiology of asthma. However, whether they 
are a cause or consequence of the ongoing disease needs 
to be considered carefully. 

AEA might play a dual role in the pathogenesis of asth-
ma as it promotes an increase in airway epithelial cell per-
meability while it also reduces prostaglandin D4-induced 
bronchospasm in guinea pigs [33, 116]. Besides, AEA 
controls capsaicin-induced BHR via CB1 in axon termi-
nals of airway nerves, but it also promotes bronchospasm 
when the vagus nerve constricting tone is removed [117]. 
This could explain the above-mentioned paradoxical 
bronchoconstriction in some asthmatic patients treated 
with cannabinoid compounds [113, 118]. PEA signifi-
cantly inhibited BHR as well as inflammatory cell recruit-
ment to the airways [115]. In addition to the role of CB1 
as a suppressor of mast cell degranulation in the airways, 
CB1 activation prevented BHR through a modulatory 
control of nerve-mediated cholinergic contractions in 
mice and humans, confirming a probable protective role 
in asthma [119, 120]. In contrast, CB2-mediated signal-
ling strongly potentiates eosinophil chemotaxis and re-
sponsiveness, leading to worsening of airway hyperreac-
tivity in mice [16]. Supporting this data, CB2 knockout 
animals developed a significantly attenuated allergic air-
way inflammation after house dust mite exposure com-
pared to wild-type mice [74]. This result correlated with 
increased levels of NK cells and reduced numbers of 
ILC2s in the lungs of mice lacking CB2, which led to the 
discovery that NK cells are key negative regulators of 
ILC2s. However, CB2 activation may also play a protec-
tive role in asthma since stimulation of CB2 inhibited an-
tigen-induced plasma extravasation and electrical field-
induced contraction of bronchial smooth cells by acting 
on C-fibres in guinea pig airways [121, 122].

The pleiotropic functions exerted by different ECS 
components highlight the complexity of the system and 
its therapeutic potential in the pathogenesis of asthma 
[123]. In mice, THC attenuated allergic inflammation 
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in the airways by reducing Th2 cytokine production, 
total cell infiltration, mucus secretion, and serum IgE 
levels in a CB1- and CB2-independent manner [14, 
124]. In an antigen-induced asthma model in guinea 
pigs, CP55940 decreased respiratory clinical abnormal-
ities, histological changes in the lung, mast cell degran-
ulation, and airway cell recruitment [125]. Further-
more, the non-psychotropic cannabinoid CBD im-
proved lung function and reduced airway inflammation 
in a murine model of LPS-induced acute lung injury 
[126]. Supporting these findings, CBD ameliorated the 
outcomes of a murine model of experimental allergic 
asthma by decreasing cytokine production, airway hy-
perresponsiveness and remodelling, and restoring lung 
function [99]. Finally, the potential application of ma-
nipulating endocannabinoid levels by using inhibitors 
of the cannabinoid degrading enzymes has also been 
assessed in the airways. Both MAGL and FAAH inhibi-
tors, after intraperitoneal administration, prevented 

BHR and lung inflammation in a murine model of LPS-
induced airway inflammation [127]. 

In summary, the ECS seems to be clearly involved in 
the pathophysiology of asthma by acting in structural 
cells and by regulating immune responses (Fig. 3). Differ-
ent strategies targeting immune cells with different types 
of immunomodulators have been previously shown as 
promising therapies for allergic diseases [128–130]. Thus, 
the rational design of novel immunomodulatory drugs 
targeting the ECS may be of potential interest for the de-
velopment of new therapies for allergic asthma treatment.

Allergic Skin Diseases
Despite their low mortality rates, allergic skin disor-

ders such as AD and allergic contact dermatitis (ACD) 
have a great impact on patients’ quality of life. Skin al-
lergies are complex diseases initiated by allergens and 
multiple environmental factors on genetically suscep-
tible individuals that rely on the communication be-

Fig. 3. Modulatory pathways of the ECS in asthma pathophysiol-
ogy. In allergen-sensitized patients, antigen exposure results in 
IgE-FcεRI cross-linking in the surface of mast cells and basophils 
that lead to the release of their anaphylactogenic mediators, caus-
ing increased vascular permeability, bronchoconstriction, and/or 
mucus production. Following this early process, APC-activated 
Th2 cells and alarmin-activated ILC2s produce large amounts of 

Th2 cytokines (IL-4, IL-13, IL-5, and IL-9) that contribute to the 
activation and recruitment of eosinophils and other inflammatory 
cells, contraction of smooth muscle, and bronchial hyperreactivity. 
If the inflammatory environment persists, it may trigger the re-
modelling of the airways. The contribution of the ECS to the dif-
ferent asthma pathways is highlighted with the corresponding ar-
row.
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tween immune cells and other cell types such as kerati-
nocytes and fibroblasts [8]. Regardless of the triggering 
factor, allergic skin disorders involve increased inter-
leukins and chemokines, leading to the expansion of 
different T-helper subsets and activation of effector 
cells that may cause the chronicity of the disease [131]. 
Nevertheless, the cells residing in the skin are also able 
to secrete anti-inflammatory cytokines and chemo-
kines, responsible for the regulation of local immune 
responses [9, 97, 132]. 

Different studies demonstrated that the ECS and en-
docannabinoids are expressed in the skin [15]. Cannabi-
noids have various effects over different skin cell types, 
ranging from activation or inhibition of keratinocyte pro-
liferation to anti-inflammatory and anti-pruritic proper-
ties [133, 134]. Topical cannabinoids have shown high 
safety profiles, and their local application as oils, emol-
lients, or creams have not been related to any adverse sys-
temic effects, rendering them as an attractive therapeutic 
option [135].

a b

Fig. 4. Modulatory pathways of the ECS in the pathogenesis of 
atopic dermatitis (AD) and allergic contact dermatitis (ACD). a In 
the early phase of AD, allergen encounter and presentation to na-
ïve T cells lead to a Th2 inflammatory response. In this context, 
cytokines and chemokines drive the infiltration of inflammatory 
cells to the skin. In the chronic phase of AD, bacterial colonization 
of the skin promotes a Th1, Th2, Th17, and Th22 effector response. 
Th2 and Th22 during the early and late phase of AD contribute to 
epithelial barrier impairment and transepithelial water loss 
(TEWL). b The sensitization phase of ACD is hallmarked by the 

hapten-induced secretion of pro-inflammatory mediators leading 
to vasodilation, recruitment, and infiltration of immune cells. 
During the effector phase, hapten-specific T cells are recruited into 
the skin, activating keratinocytes and endothelial cells that secrete 
pro-inflammatory mediators that further amplify the immune re-
sponse. The contribution of the ECS to every process in AD and 
ACD is highlighted with the corresponding arrow. TNFα, tumour 
necrosis factor α; GM-CSF, granulocyte macrophage colony stim-
ulating factor.
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AD is a chronic inflammatory skin disease where a 
number of polymorphisms associated with IL-4 secre-
tion/signalling and structural proteins such as claudin 
and filaggrin compromise epidermal integrity [136, 137]. 
Initial disruption of the epidermis caused by scratching, 
microbial toxins, or allergens triggers the release of in-
flammatory mediators, including alarmins (TSLP, IL33, 
or IL-25), GM-CSF, TNFα, or IL-1β, by epidermal kera-
tinocytes, mast cells, or DCs. These mediators play an im-
portant role in the infiltration of inflammatory cells into 
the skin, being Th2 cells and their secreted cytokines the 
cornerstones of the early phase of AD inflammation [8]. 
In the chronic phase, Th2 cells but also Th1, Th17, and 
Th22 predominate in the skin together with epidermal 
hyperplasia and bacterial colonization.

CB1 in keratinocytes is essential to preserve repair re-
sponses and membrane integrity, and prevent transepi-
thelial water loss as shown in AD-like CB1–/– mouse mod-
els [138, 139]. Mice with CB1–/– keratinocytes presented 
higher skin inflammation, eosinophil infiltration, and ex-
pression levels of IL-4, TSLP, and CCL8 when challenged 
with fluorescein isothiocyanate [138]. Topical adminis-
tration of AEA and α-oleoyl oleylamine serinol (α-OOS), 
a synthetic CB1 agonist, accelerated barrier recovery and 
reduced chemokines in both oxazolone- and tetradec-
anoylphorbol acetate-induced AD models [140, 141]. 
CB1 activation also showed anti-inflammatory functions, 
reduced mast cell recruitment, proliferation, and degran-
ulation, and decreased Th2 cytokines [73, 141, 142]. PEA, 
another CB1 agonist, reduced the secretion of pro-in-
flammatory chemokines in human keratinocytes in vitro 
and showed relieving effects in acute dermatitis and pru-
ritus in clinical studies [143, 144]. Supporting these find-
ings, FAAH and NAAA inhibitors decreased pro-inflam-
matory cytokine secretion in keratinocytes, reduced oe-
dema in AD mouse models, and also had an impact 
systemically, normalizing serum IL-4, IL-5, IFNγ, and 
IgE levels [145, 146]. CBD inhibited Th1, Th2, and Th17 
responses and suppressed B cells [147–150]. In clinical 
studies, CBD ameliorated transepithelial water loss and 
improved skin barrier by restoring the IFNγ-mediated 
inhibition of skin ceramide synthesis [151, 152]. Preclin-
ical studies have shown that the synthetic CB2 antagonist 
S-777469 suppressed swelling, epidermal thickness, and 
mast cell and eosinophil infiltration in 2,4-dinitrofluoro-
benzene (DNFB) and house dust mite-induced AD mod-
els [153]. The effects of cannabinoids in AD are summa-
rized in Figure 4.

ACD is an inflammatory response of the skin after 
contact with certain chemicals (haptens) whose charac-

teristics and low molecular weight render them as highly 
reactive and capable of penetrating the skin barrier. Dur-
ing sensitization, chemicals react with epidermal proteins 
generating hapten carrier complexes that stimulate in-
nate immune cells via TLRs [154–156]. The secretion of 
pro-inflammatory mediators (IL-1β, IL-18, TNFα) by in-
nate cells leads to the activation of DCs, which uptake 
encountered hapten complexes and migrate to lymph 
nodes where they prime antigen-specific naïve T cells to 
differentiate into Th1 and Th17 cells. During the effector 
phase, repeated hapten complex exposure induces the re-
cruitment of allergen-specific IFNγ- and IL-17-produc-
ing T-effector cells into the skin, which activate keratino-
cytes and endothelial cells to produce pro-inflammatory 
cytokines and mediators. This promotes vasodilation and 
the infiltration of macrophages and neutrophils, which in 
turn further amplify the recruitment of effector cells 
[157–159].

The protective role of CB1 in ACD has been exten-
sively studied. In a mouse model with CB1–/– keratino-
cytes, myeloid immune cell skin infiltration and CCL8 
expression were increased [98]. Moreover, CB1 agonists 
alone have proven strong anti-inflammatory effects in vi-
tro and in vivo. AEA pre-treatment of HaCaT keratino-
cytes prevented the secretion of Th1 and Th17 polarizing 
cytokines in an IFNγ-induced pro-inflammatory context 
[63]. AEA levels may be increased by other cannabinoids 
such as CBD, which suppressed the inflammation in po-
ly-(I:C)-induced ACD in human keratinocyte cells [160]. 
The systemic and local administration of THC signifi-
cantly reduced inflammation and myeloid immune cell 
infiltration in DNFB-induced contact hypersensitivity 
mouse models [15, 134]. THC not only decreased ear 
swelling in vivo, but also inhibited the production of 
IFNγ by T cells and the secretion of the pro-inflammato-
ry mediators CCL2, CCL8, and CXCL10 by keratinocytes 
in vitro. Other synthetic cannabinoids and endocannabi-
noids displayed potent CB2-mediated anti-inflammatory 
effects both in vitro and in vivo. PEA decreased ear swell-
ing, mast cell number, and the angiogenic factor VEGF in 
a contact dermatitis mouse model [161]. However, there 
is also conflicting evidence regarding the role of CB2, 
which might show either an exacerbation or suppression 
of inflammatory responses depending on the context and 
assayed conditions [15, 134]. The effects of cannabinoids 
in ACD are summarized in Figure 4.

The complexity of cannabinoids and the role of ECS in 
skin homeostasis and pathology are evident. Cannabi-
noids may play different roles depending on the origin of 
disease and pre-clinical studies have unveiled some of 
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their possible mechanisms of action. However, limita-
tions such as the low number of double-blinded clinical 
trials and the high variation of cannabinoids tested, as 
well as their delivery routes, hinder the interpretation of 
clinical data. Further investigation is needed to under-
stand the potential therapeutic role of cannabinoids in 
allergic skin diseases.

Food Allergy
The prevalence of food allergy is increasing in western-

ized countries, affecting up to 8% of children and 5% of 
adults. Even though oral tolerance is the physiological re-
sponse to ingested antigens, the breakdown of this toler-
ance triggers the development of allergic sensitization. 
Such sensitization can occur in the gastrointestinal tract, 
oral cavity, skin, and occasionally in the respiratory tract. 
Re-exposure to food allergens induces the release of the 
anaphylactogenic mediators responsible of the clinical 
symptoms, including anaphylaxis [162]. The current 
standard treatment for food allergy is the strict and caus-
ative avoidance of the causative food and the use of epi-
nephrine in the case of accidental ingestion. Although in-
creasing research studies focus on the study of oral (OIT), 
sublingual (SLIT) and epicutaneous (EPIT) immuno-
therapy for the treatment of food allergy, only an OIT 
product for peanut allergy has been recently approved by 
the FDA [163, 164]. Therefore, the development of novel 
therapeutic approaches that improve the current strate-
gies of immunotherapy for food allergy are needed. To 
date, there are no available data associated with the po-
tential role of cannabinoids in food allergy models. The 
role played by ECS in other allergic diseases suggests that 
cannabinoids could also modulate food allergic reactions, 
but further research is warranted. Interestingly, we previ-
ously reported that the mRNA levels of CB1 are signifi-
cantly higher in PBMCs from peanut-allergic children 
than healthy controls, suggesting that CB1 might well also 
play an immune regulatory role in food allergy [43].

Chemical Probes for ECS Research

The development of multiple cannabinoid agonists 
and antagonists has marked a milestone in the under-
standing of the effects of ECS signalling at the molecular 
level. However, the poor translational outcomes shown in 
clinical trials and their adverse side effects [165, 166] in-
dicate that further validation and characterization of the 
receptors triggering the observed effects is necessary. In 
this context, the lack of suitable antibodies due to draw-

backs in specificity and reliability [167, 168] prompted 
scientists to develop chemical probes to address the issue. 
In recent years, various probes have been validated for the 
assessment of CBR expression (Table 2). Biotinylated 
probes overcame the drawbacks shown in previous at-
tempts to design high-affinity CBR tools [169]. Their 
ability to bind different streptavidin tags made them suit-
able to study and visualize CBRs in native systems [170]. 
Moreover, several CB2-specific probes based on photoaf-
finity and fluorescent labelling have also been developed 
[171–175]. Their capacity to track CB2 in various cell 
types and settings may be of quite some interest in studies 
monitoring the expression of CB2 and its interactions in 
biological systems (Table 2). Regarding CB1, the conjuga-
tion of HU210, a dual agonist of CB1 and CB2, with the 
fluorescent tag Alexa Fluor 488 resulted in a high-affinity 
CB1-specific probe [76]. The probe was suitable for use 
in common biochemical and immunological techniques 
such as confocal microscopy and flow cytometry. It was 
also validated for the visualization of CB1 in different im-
mune cell subsets [76], suggesting it to be a promising 
implement for future ECS research in immune-related 
diseases such as allergy. Besides, novel probes that pro-
vide reliable information on the allosteric motifs of CB1 
have been designed. These probes could be useful for 
drug discovery, thus helping to overcome the limited 
translational potential of the orthosteric ligands [176]. 
These advances, together with the generation of com-
pounds such as the recently developed THC-based pho-
toaffinity probe allowing the identification of cannabi-
noid off-targets [173], might well contribute to widen the 
knowledge on the molecular mechanisms and receptors 
involved in cannabinoid-induced effects.

Other strategies to overcome the limitations displayed 
by drugs based on cannabinoid agonists and antagonists 
have focused on the manipulation of the enzymes in-
volved in endocannabinoid metabolism [5]. Consequent-
ly, various chemical probes have been developed and used 
for the discovery and validation of novel inhibitors of the 
ECS metabolic enzymes [177] (Table 2). In this way, the 
generation of a photoaffinity probe that binds to the en-
docannabinoid membrane transport has been a remark-
able finding that may help with the identification of the 
proteins involved in endocannabinoid membrane traf-
ficking and the investigation of novel modulators of this 
process [178]. Furthermore, activity-based protein profil-
ing (ABPP) probes have been used to evaluate the activ-
ity of hydrolase inhibitors and visualize additional targets 
in human leukocytes [179]. In fact, the use of tailored 
ABPP probes has provided important information on the 
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endogenous activity of MAGL in macrophages and DCs, 
leading to the identification of DAGLβ as a potential tar-
get for chronic inflammation [180, 181]. However, target-
ing the endocannabinoid metabolism has also shown rel-
evant side effects [5, 182]. Future perspectives in ECS re-
search include multitargeted therapies and a better 
clinical study of plant-derived cannabinoids and alloste-
ric modulators of CBRs [5]. The use of small molecules 
and probes has provided reliable information on CBR ex-
pression and imaging, the identification of novel off-tar-
gets, and the expression and activity assessment of the 
ECS enzymes in biological systems. Therefore, their 
thoughtful design may help in achieving future goals in 
this field of research. Particularly, in the context of aller-
gic diseases, it is of note that despite the huge amount of 

preclinical studies confirming a role for the ECS in aller-
gy, to our knowledge, only one drug for AD has reached 
clinical trials [183]. This information highlights the need 
of ECS research tools to improve the translational poten-
tial of preclinical studies in allergic diseases and under-
lines their relevance in the future of this area.

Conclusions and Future Perspectives

Our knowledge on the underlying molecular mecha-
nisms by which the ECS and cannabinoids regulate vital 
physiological processes in diverse biological contexts has 
significantly improved over the last years. These advanc-
es have led to the development of different cannabinoid-

Table 2. Main small molecules and probes developed and used for ECS research

Type of compound Targets Validated uses Potential use in ECS research Ref.

Fluorescent probe CB1 Identification and quantification of CB1 
expression in different human immune cell 
subsets

Monitoring CB1 expression and function in biological 
systems

[76]

Electrophilic/
photoaffinity probes

CB1 Covalent binding to CB1 allosteric site and 
negative allosteric modulation 

Characterization and mapping of CB1 ligand binding 
sites

[176]

Biotinylated probes CB1/CB2 Visualization of CBRs in native cell systems Functional and imaging studies of CBRs [170]

Photoaffinity probe CB2 Monitorization of CB2 expression in human 
immune cells

Monitoring CB2 expression and ligand occupancy [208]

Fluorescent probe CB2 Assessment of CB2 expression in mice immune 
cells

Monitoring CB2 expression and ligand interactions [171]

Fluorescent probe CB2 Visualization of CB2 in human cell line Monitoring CB2 expression [174]

Fluorescent probe CB2 High-affinity binding to CB2 Monitoring CB2 expression [172]

Fluorescent probe CB2 Imaging of CB2 in human tumour cell line Monitoring CB2 expression and function [175]

Photoaffinity probe – Identification of additional targets of THC in 
mouse neural cell line

Elucidation of novel THC off-targets as a tool for new 
drug discovery

[173]

ABPP probe DAGL Evaluation of inhibitor activity in biological 
systems

Development of novel inhibitors of endocannabinoid 
biosynthesis 

[209]

ABPP probe DAGL Development of selective inhibitors of DAGLα Development of novel inhibitors of endocannabinoid 
biosynthesis 

[210]

Fluorescent probe MAGL High-throughput assessment of MAGL activity 
in vitro

Studying MAGL activity and development of new 
MAGL inhibitors

[211]

ABPP probes Serine 
hydrolases

Tracking the dynamic expression and 
function of the serine hydrolases family

Monitoring serine hydrolase expression and 
development of novel inhibitors of endocannabinoid 
degradation pathways

[212]

ABPP Probe Serine 
hydrolases

Visualization of endocannabinoid hydrolases 
and assessment of compound inhibitor 
activities on biological systems

Monitoring serine hydrolase expression and 
development of novel inhibitors of endocannabinoid 
degradation pathways

[213]

Photoaffinity probe - Irreversible blockage of endocannabinoid 
membrane transport

Identification of membrane proteins involved in 
endocannabinoid trafficking and generation of 
pharmacological modulators of EC transport

[178]
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based strategies for therapeutic interventions in several 
pathologic conditions, such as cancer and neurological 
disorders. The participation of the ECS and cannabinoids 
in allergy is still controversial. Different studies have con-
vincingly demonstrated the anti-inflammatory proper-
ties exerted by cannabinoids in the airways and the skin 
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