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Abstract

Bone is a composite material, in which collagen fibrils form a scaffold for a highly organized

arrangement of uniaxially oriented apatite crystals1,2. In the periodic 67 nm cross-striated pattern

of the collagen fibril3–5, the less dense 40-nm-long gap zone has been implicated as the place

where apatite crystals nucleate from an amorphous phase, and subsequently grow6–9. This process

is believed to be directed by highly acidic non-collagenous proteins6,7,9–11; however, the role of

the collagen matrix12–14 during bone apatite mineralization remains unknown. Here, combining

nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron

tomography15 with molecular modelling, we show that collagen functions in synergy with

inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge

close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with

amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in

gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel

array of oriented apatite crystals. We developed a model describing the mechanisms through

which the structure, supramolecular assembly and charge distribution of collagen can control

mineralization in the presence of inhibitors of hydroxyapatite nucleation.

The role of the collagen matrix12–14 during the infiltration of the fibrils with amorphous

calcium phosphate (ACP) and its subsequent transformation into oriented crystals of apatite

is still unknown. Although crystal nucleation is believed to be directed by non-collagenous

proteins6,7,9–11 (NCPs), collagen has also been proposed to nucleate apatite13,14. So far,

however, this hypothesis could not be experimentally substantiated, and collagen is

generally considered a passive scaffold and template for mineral formation16,17. Providing
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experimental evidence for the role of collagen in guiding mineral formation requires

monitoring the mineralization of the collagen matrix at the molecular level. Investigating

details of collagen mineralization using in vivo models has been proved very challenging

owing to the complexity of the biological systems6,7,9. Recently, in vitro collagen

mineralization was achieved by substituting the NCPs with either polyaspartic acid (pAsp)

or fetuin, both inhibitors of hydroxyapatite crystallization18–20. These additives were shown

to be instrumental in the intrafibrillar formation of oriented apatite crystals, exhibiting X-ray

and electron diffraction patterns similar to those of bone apatite. Combining these in vitro

systems with cryogenic transmission electron microscopy (cryoTEM), cryogenic electron

tomography and low-dose selected-area electron diffraction (LDSAED) we studied collagen

mineralization with nanometre-scale resolution, applying plunge-freeze vitrification to

ensure the close-to-native preservation of the molecular structures15.

Type I collagen from horse tendon was reconstituted into isolated fibrils on TEM grids and

incubated in buffered mineralization solutions containing CaCl2, K2HPO4 and pAsp, as

described previously19 (Supplementary S1 and S2, Fig. S1). After 72 h, cryogenic electron

tomography of mineralized collagen showed the presence of plate-shaped crystals (2–5 nm

thick, 15–55 nm long and 5–25 nm wide) inside the collagen fibril (Fig. 1 and

Supplementary S3 and S4, Fig. S2), consistent with what is found in bone19. Control

experiments without additives resulted in apatite crystals randomly formed in solution and

on the surface of the fibrils (Supplementary S5, Fig. S3).

To investigate how the apatite crystals form inside the fibril, we carried out a time-resolved

study starting from the earliest stages of mineral formation. After 24 h of mineralization

calcium phosphate particles were found outside the fibril, associated with the overlap region,

in close proximity to the gap zone (Fig. 2a). Cryogenic energy-dispersive X-ray

spectroscopy confirmed that these precipitates are indeed composed of calcium phosphate,

and LDSAED showed a diffuse band characteristic of ACP (Supplementary S6, Fig. S4).

After 48 h, apatite crystals started to develop within a bed of ACP (Fig. 2b, Supplementary

S6, Fig. S5) and after 72 h, elongated electron-dense crystals were abundant within the

fibril, in many cases still embedded within a less dense matrix (Fig. 2c). LDSAED

demonstrated that the mineral phase consisted of both ACP and oriented apatite, the latter

identical to bone apatite19 (Supplementary S6, Fig. S5). As observed previously21, the

collagen fibrils expanded in the direction perpendicular to its long axis, becoming deformed

by the developing mineral (Supplementary S7, Fig. S6).

To understand the role of collagen in controlling mineral formation at the molecular level,

we correlated our observations with the ultrastructure of the collagen fibril. For this we

combined cryoTEM with uranyl acetate staining22, where uranyl acetate binds to both the

negatively and positively charged amino acids in the fibrils, thus significantly increasing the

local mass density, and hence the image contrast23,24. The resulting staining pattern was

consistent with previous studies using conventional TEM; that is, the banding pattern along

the 67 nm repeat matched with the positions of the charged amino acids in the crystal

structure of collagen5,24 (Fig. 3a,b, Supplementary S8, Fig. S7). Furthermore, the staining

did not affect the mineral phase, because the same degree of mineralization was observed as

for unstained samples (Fig. 2).

After 24 h of mineralization, ACP was observed surrounding and entering the fibril,

associated to the a-bands (Fig. 1b, black circle and Fig. 3b–e). These bands are ~9 nm wide

and span both the overlap and gap zones at the C-terminal region of the collagen

molecules14. Analysis of the intensity profile shows the increase and the broadening of the

peaks corresponding to the a-bands, such that the a1 to a3 bands fused and became almost

indistinguishable (Fig. 3e).
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The infiltration of mineral into the fibril through the a-band region is not dependent on the

availability of space. Gaps within the microfibril are present throughout the whole 67 nm

repeat, both in the gap and overlap regions13 (Fig. 4a), and could provide entry sites for the

mineral phase into the fibril. Therefore, the site-specific localization of mineral infiltration

must result from a specific interaction between the amorphous mineral phase and the

collagen at this location. Indeed, whereas ACP-polyasp forms a negatively charged complex

(Fig. 4c), the gaps within the a-band region that serve as entry sites for the ACP into the

fibril are located within a 6 nm domain of high positive net charge (Supplementary S8, Fig.

S8). This site possesses the lowest electrostatic potential energy in the microfibril for

interaction with the negatively charged complex (Fig. 4b) and is therefore the most

favourable region for an attractive interaction with the negatively charged complex. This

suggests that the attraction between these positively charged sites and the negatively charged

calcium phosphate–pAsp complex plays a critical role in mediating the entry of the ACP

into the collagen.

Uranyl acetate staining was also used to identify the crystal nucleation sites within the

collagen fibril. Apatite nanocrystals in their early stages were always observed on a staining

band (Fig. 3c). Analysis of cryoTEM images showed that these nanocrystals were

distributed evenly between the gap and overlap regions, with a small preference for the d-

band in the gap zone (Fig. 3f). These results show that once ACP enters the fibril, the

collagen is controlling nucleation either directly, with the charged amino acids acting as

nucleation sites for apatite formation, or indirectly. As it has been shown that pAsp

infiltrates the fibril25, it is possible that the bands of charged amino acids provide locations

to which the polymer–ACP complex binds and subsequently induce nucleation.

To investigate this, collagen was mineralized in the presence of fetuin. This protein induces

collagen mineralization by inhibiting calcium phosphate precipitation in solution and thus

allowing the mineral phase to penetrate into the fibril (Supplementary S9, Fig. S9; refs

20,26). The protein itself cannot diffuse into the fibril owing to its large molecular weight

(48 kDa; ref. 27); however, zeta-potential measurements show that it forms a negatively

charged complex with calcium phosphate, with a net charge of −14.5 ± 11.2 mV. In the

presence of fetuin, oriented apatite crystals were formed inside the fibril with morphologies

and orientation similar to the ones observed in the presence of pAsp (Supplementary S9,

Fig. S10) and the nucleation of the intrafibrillar crystals again occurred exclusively on the

staining bands, although no ACP formation could be detected. Our observations now show

that collagen indeed induces the oriented nucleation of apatite, without the involvement of

NCPs or other control agents, as previously proposed13,14. This further experimentally

confirms computer simulations that showed how specific regions in collagen induce the

formation of oriented ion aggregates with motifs corresponding to the apatite structure28.

Our results therefore support the notion that the spatial arrangement of the charged groups in

the collagen fibril provides a structural template that induces oriented apatite nucleation14,

with the c axis of the crystals aligned parallel to the long axis of the fibril (for a more

detailed discussion see Supplementary S10). This also implies that in the present system, the

main function of pAsp and fetuin is to form a stable complex with calcium phosphate,

allowing it to enter the collagen fibril.

It seems, however, unlikely that in biology the function of the complex mixture of NCPs

would be limited to just inhibiting extrafibrillar mineralization. This point was further

investigated by carrying out the mineralization in the presence of the C-terminal fragment of

the dentin matrix protein 1 (C-DMP1) which has been demonstrated to promote apatite

nucleation in the presence of collagen29 (Supplementary S11, Fig. S11). In the absence of

pAsp this protein fragment induced formation of crystals only in solution and on the surface

of the fibrils (Supplementary S11, Figs. S12a,b). When combined with pAsp, mineralization
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occurred exclusively inside the fibrils, with apatite crystals forming from an ACP precursor

phase, similar to what was observed for pAsp alone (Supplementary S11, Figs. S12c–f).

However, the addition of C-DMP1 significantly accelerated mineralization, such that after

24 h the fibril already contained large amounts of apatite crystals, which again nucleated

exclusively on the staining bands, equally in the gap and overlap regions (Supplementary

S11, Figs S12 and S13). The absence of site-specific nucleation is surprising, as C-DMP1

also contains a site that specifically binds to the N-terminal end of collagen29. Hence, even

in the presence of C-DMP1 crystal nucleation is controlled by collagen itself. We tentatively

attribute this to the reported formation of large assemblies of this 17 kDa protein fragment in

the presence of Ca2+ ions30, which would be too large to penetrate the collagen fibril. How

the nucleation of apatite is promoted by C-DMP1 in the present system remains unexplained

for the moment.

As the formation of ACP has been proposed to proceed through the assembly of nanometre-

sized clusters31, and polymer-induced liquid-precursor phases have been described as during

the precipitation of calcium phosphate in the presence of pAsp (ref. 19), we investigated the

effect of this polymer on mineral formation in more detail. In control experiments without

the addition of pAsp, dynamic light scattering measurements showed the rapid formation

and growth of calcium phosphate particles, reaching hydrodynamic diameters (Dh) of 1,000

nm after 30 min and 5,000 nm after 2 h (Supplementary S12, Fig. S15a). At this time point,

sedimentation occurred quickly, as evidenced by the decrease in count rate. CryoTEM

images of samples collected after 10 min of reaction showed the presence of calcium

phosphate aggregates 500 nm in size that consisted of densely packed clusters (Fig. 5a,b) of

about 1 nm in size. Samples at longer reaction times could not be observed because the

particles were too large and not suitable for cryoTEM analysis. In contrast, when pAsp was

present in the solution, stable complexes with a Dh of 30–70 nm were formed

(Supplementary S12, Fig. S15b). CryoTEM analysis revealed the presence of loosely packed

assemblies of calcium phosphate clusters also of approximately 1 nm after 10 min of

reaction (Fig. 5c). After 6 h, larger and denser structures were present (Fig. 5d), similar to

the ones formed after 10 min without pAsp (Fig. 5b). These results show that at the early

stages of mineralization, pAsp binds to and stabilizes the pre-nucleation clusters, forming

loosely packed, diffuse structures that slowly aggregate and densify. The aggregates present

after 6 h are similar to the ones we observed infiltrating the collagen fibril after 24 h (Fig.

2a), suggesting that these are the structures that enter the fibril.

The net negative surface charge of the pAsp–ACP complex together with the presence of

positively charged regions in the collagen fibril may be essential for the mineral infiltration

(Fig. 4b). Hence, in vivo, negatively charged NCPs may not only stabilize the amorphous

phase, but may also be needed to form similar negatively charged mineral complexes, that

allow the mineral to enter the collagen (for a more detailed discussion see Supplementary

S13). Moreover, our studies, carried out using soft-tissue collagen, imply that the ability to

mediate mineralization is not related to bone collagen but is intrinsic to type I collagen

fibrils. Our results will have implications for the understanding of the process of bone

biomineralization, in particular the interplay between collagen, the NCPs and the developing

mineral.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cryo-electron tomography of a collagen fibril mineralized in the presence of 10 µg
ml−1 of pAsp for 72 h and stained with uranyl acetate

a, Two-dimensional cryoTEM image. b, Slice from a section of the three-dimensional

volume along the xy plane (top-most inset), where crystals are visible edge-on (insets 1 and

2, white arrows). Black circle: ACP infiltrating the fibril (see below). c, Computer-generated

three-dimensional visualization of mineralized collagen. The fibril is sectioned through the

xy plane, revealing plate-shaped apatite crystals (coloured in pink) embedded in the collagen

matrix. Scale bars: 100 nm.
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Figure 2. CryoTEM images of collagen at different stages of mineralization in the presence of 10
µg ml−1 of pAsp

a, Mineralization for 24 h. b, Mineralization for 48 h. c, Mineralization for 72 h. Scale bars:

100 nm.
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Figure 3. Uranyl acetate map of the different stages of collagen mineralization in the presence of
10 µg ml−1 of pAsp

a, CryoTEM image of stained, non-mineralized collagen. Staining bands are labelled

according to ref. 24. White circle: 10 nm gold marker for electron tomography. b, CryoTEM

image of stained collagen, mineralized for 24 h. Calcium phosphate is associated to the fibril

in a regular pattern, following the staining bands (black arrows). Peaks are labelled

corresponding to their respective staining band. c, CryoTEM image of a stained fibril

mineralized for 48 h. Apatite crystals are found within an amorphous calcium phosphate

bed, which can still be seen infiltrating into the fibril through the a-band (inset 1, black

arrow). Insets 2–5 show crystals nucleating on the staining bands. d, Intensity profile of a,

non-mineralized collagen. e, Intensity profile of b, collagen mineralized for 24 h. f,

Histogram of the distribution of the number of nucleating crystals per staining band. Scale

bars: 50 nm.
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Figure 4. Analysis of the mass density and electrostatic potential energy of a microfibril, based
on the crystal structure5

a, Mass density map of a microfibril, depicting slices through the b axis of the crystal unit

cell. Grey areas demonstrate the space within the microfibril through which the mineral

phase could potentially diffuse. b, Electrostatic potential energy of the empty voxels along

the microfibril. The blue-shaded area indicates the region where the potential energy is

lowest, meaning that it is the most favourable for interaction with negative charges. This

region is close to the C-terminus (dashed line) and corresponds to the mineral infiltration

site, that is, the a-bands c, Zeta-potential measurements of the mineral phase and the other

solution components, illustrating the negative charge of the pAsp–mineral complex. The

high zeta-deviation and low count rate of pure HEPES buffer and pure pAsp show that they

are not contributing to the measurements of the calcium phosphate and calcium phosphate–

pAsp complexes.
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Figure 5. Analysis of calcium phosphate precipitation in the absence and presence of pAsp

a, CryoTEM image of calcium phosphate aggregates formed after 10 min of reaction

without pAsp. Scale bar: 100 nm. b, Higher magnification of the area marked in a. Scale

bar: 50 nm. c, CryoTEM image of calcium phosphate aggregates formed after 10 min of

reaction in the presence of pAsp. Scale bar: 50 nm. d, CryoTEM image of calcium

phosphate aggregates formed after 6 h of reaction in the presence of pAsp. Scale bar: 50 nm.
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