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ABSTRACT
In many settings, competing technologies — for example, oper-
ating systems, instant messenger systems, or document formats —
can be seenadopting a limited amount of compatibility with one an-
other; in other words, the difficulty in using multiple technologies
is balanced somewhere between the two extremes of impossibility
and effortless interoperability. There are a range of reasons why
this phenomenon occurs, many of which — based on legal, social,
or business considerations — seem to defy concise mathematical
models. Despite this, we show that the advantages of limited com-
patibility can arise in a very simple model of diffusion in social
networks, thus offering a basic explanation for this phenomenon in
purely strategic terms.

Our approach builds on work on the diffusion of innovations in
the economics literature, which seeks to model how a new technol-
ogy A might spread through a social network of individuals who
are currently users of technology B. We consider several ways of
capturing the compatibility of A and B, focusing primarily on a
model in which users can choose to adopt A, adopt B, or — at an
extra cost — adopt both A and B. We characterize how the abil-
ity of A to spread depends on both its quality relative to B, and
also this additional cost of adopting both, and find some surprising
non-monotonicity properties in the dependence on these parame-
ters: in some cases, for one technology to survive the introduction
of another, the cost of adopting both technologies must be balanced
within a narrow, intermediate range. We also extend the framework
to the case of multiple technologies, where we find that a simple
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model captures the phenomenon of two firms adopting a limited
“strategic alliance” to defend against a new, third technology.
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1. INTRODUCTION

Diffusion and Networked Coordination Games. A fundamental
question in the social sciences is to understand the ways in which
new ideas, behaviors, and practices diffuse through populations.
Such issues arise, for example, in the adoption of new technologies,
the emergence of new social norms or organizational conventions,
or the spread of human languages [2, 14, 15, 16, 17]. An active line
of research in economics and mathematical sociology is concerned
with modeling these types of diffusion processes as a coordination
game played on a social network [1, 5, 7, 13, 19].

We begin by discussing one of the most basic game-theoretic
diffusion models, proposed in an influential paper of Morris [13],
which will form the starting point for our work here. We describe
it in terms of the following technology adoption scenario, though
there are many other examples that would serve the same purpose.
Suppose there are two instant messenger (IM) systemsA andB,
which are not interoperable — users must be on the same system
in order to communicate. There is a social networkG on the users,
indicating who wants to talk to whom, and the endpoints of each
edge(v,w) play a coordination game with possible strategiesA
or B: if v andw each choose IM systemB, then they they each
receive a payoff ofq (since they can talk to each other using system
B); if they each choose IM systemA, then they they each receive
a payoff of1 − q; and if they choose opposite systems, then they
each receive a payoff of0 (reflecting the lack of interoperability).
Note thatA is the “better” technology ifq < 1

2 , in the sense that
A-A payoffs would then exceedB-B payoffs, whileA is the worse
technology ifq > 1

2 .



A number of qualitative insights can be derived from a diffusion
model even at this level of simplicity. Specifically, consider a net-
work G, and let all nodes initially playB. Now suppose a small
number of nodes begin adopting strategyA instead. If we apply
best-response updates to nodes in the network, then nodes in effect
will be repeatedly applying the following simple rule: switch toA
if enough of your network neighbors have already adoptedA. (E.g.
you begin using a particular IM system — or social-networking
site, or electronic document format — if enough of your friends
are users of it.) As this unfolds, there can be a cascading sequence
of nodes switching toA, such that a network-wide equilibrium is
reached in the limit: this equilibrium may involve uniformity, with
all nodes adoptingA; or it may involve coexistence, with the nodes
partitioned into a set adoptingA and a set adoptingB, and edges
yielding zero payoff connecting the two sets. Morris [13] provides
a set of elegant graph-theoretic characterizations for when these
qualitatively different types of equilibria arise, in terms of the un-
derlying network topology and the quality ofA relative toB (i.e.
the relative sizes of1 − q andq).

Compatibility, Interoperability, and Bilinguality . In most of the
settings that form the motivation for diffusion models, coexistence
(however unbalanced) is the typical outcome: for example, human
languages and social conventions coexist along geographic bound-
aries; it is a stable outcome for the financial industry to use Win-
dows while the entertainment industry uses Mac OS. An important
piece that is arguably missing from the basic game-theoretic mod-
els of diffusion, however, is a more detailed picture of what is hap-
pening at the coexistence boundary, where the basic form of the
model posits nodes that adoptA linked to nodes that adoptB.

In these motivating settings for the models, of course, one very
often sees interface regions in which individuals essentially become
“bilingual.” In the case of human languagediffusion, this bilingual-
ity is meant literally: geographic regions where there is substantial
interaction with speakers of two different languages tend to have
inhabitants who speak both. But bilinguality is also an essential
feature of technological interaction: in the end, many people have
accounts on multiple IM systems, for example, and more gener-
ally many maintain the ability to work within multiple computer
systems so as to collaborate with people embedded in each.

Taking this view, it is natural to ask how diffusion models be-
have when extended so that certain nodes can be bilingual in this
very general sense, adopting both strategies at some cost to them-
selves. What might we learn from such an extension? To begin
with, it has the potential to provide a valuable perspective on the
question of compatibility and incompatibility that underpins com-
petition among technology companies. There is a large literature
on how compatibility among technologies affects competition be-
tween firms, and in particular how incompatibility may be a benefi-
cial strategic decision for certain participants in a market [3, 4, 8, 9,
12]. Whinston [18] provides an interesting taxonomy of different
kinds of strategic incompatibility; and specific industry case studies
(including theoretical perspectives) have recently been carried out
for commercial banks [10], copying and imaging technology [11]
and instant messenger systems [6].

While these existing models of compatibility capture network
effects in the sense that the users in the market prefer to use tech-
nology that is more widespread, they do not capture the more fine-
grained network phenomenonrepresented by diffusion — that each
user is including its local view in the decision, based on what its
own social network neighbors are doing. A diffusion model that in-
corporated such extensions could provide insight into the structure
of boundaries in the network between technologies; it could po-

tentially offer a graph-theoretic basis for how incompatibility may
benefit an existing technology, by strengthening these boundaries
and preventing the incursion of a new, better technology.

The present work: Diffusion with bilingual behavior . In this
paper, we develop a set of diffusion models that incorporate notions
of compatibility and bilinguality, and we find that some unexpected
phenomena emerge even from very simple versions of the models.

We begin with perhaps the simplest way of extending Morris’s
model discussed above to incorporate bilingual behavior. Consider
again the example of IM systemsA andB, with the payoff struc-
ture as before, but now suppose that each node can adopt a third
strategy, denotedAB, in which it decides to use bothA andB. An
adopter ofAB gets to use, on an edge-by-edge basis, whichever
of A or B yields higher payoffs in each interaction, and the payoff
structure is defined according to this principle: if an adopter ofAB
interacts with an adopter ofB, both receiveq; with an adopter of
A, both receive1 − q; and with another adopter ofAB, both re-
ceivemax(q, 1 − q). Finally, an adopter ofAB pays a fixed-cost
penalty ofc (i.e. −c is added to its total payoff) to represent the
cost of having to maintain both technologies.

Thus, in this model, there are two parameters that can be varied:
the relative qualities of the two technologies (encoded byq), and
the cost of being bilingual, which reflects a type of incompatibility
(encoded byc).

Following [13] we assume the underlying graphG is infinite;
we further assume that for some natural number∆, each node has
degree∆.1 We are interested in the question posed at the outset, of
whether a new technologyA can spread through a network where
almost everyone is initially usingB. Formally, we say that strategy
A can becomeepidemicif the following holds: starting from a state
in which all nodes in a finite setS adoptA, and all other nodes
adoptB, a sequence of best-response updates (potentially with tie-
breaking) inG − S causes every node to eventually adoptA. We
also introduce one additional bit of notation that will be useful in
the subsequent sections: we definer = c/∆, the fixed penalty for
adoptingAB, scaled so that it is a per-edge cost.

In the Morris model, where the only strategic options areA and
B, a key parameter is thecontagion thresholdof G, denotedq∗(G):
this is the supremum ofq for which A can become epidemic in
G with parameterq in the payoff structure. A central result of
[13] is that 1

2
is the maximum possible contagion threshold for any

graph: supG q∗(G) = 1
2
. Indeed, there exist graphs in which the

contagion threshold is as large as1
2

(including theinfinite line– the
unique infinite connected2-regular graph); on the other hand, one
can show there is no graph with a contagion threshold greater than
1
2
.
In our model where the bilingual strategyAB is possible, we

have a two-dimensional parameter space, so instead of a conta-
gion thresholdq∗(G) we have anepidemic regionΩ(G), which
is the subset of the(q, r) plane for whichA can become epidemic
in G. And in place of the maximum possible contagion thresh-
old supG q∗(G), we must consider the general epidemic region
Ω = ∪GΩ(G), where the union is taken over all infinite∆-regular
graphs; this is the set of all(q, r) values for whichA can become
epidemic insome∆-regular network.

1We can obtain strictly analogous results by taking a sequence of
finite graphs and expressing results asymptotically, but the use of
an infinite bounded-degree graphG makes it conceptually much
cleaner to express the results (as it does in Morris’s paper [13]): less
intricate quantification is needed to express the diffusion properties,
and the qualitative phenomena remain the same.
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Figure 1: The region of the(q, r) plane for which technologyA
can become epidemic on the infinite line.

Our Results. We find, first of all, that the epidemic regionΩ(G)
can be unexpectedly complex, even for very simple graphsG. Fig-
ure 1 shows the epidemic region for the infinite line; one observes
that neither the regionΩ(G) nor its complement is convex in the
positive quadrant, due to the triangular “cut-out” shape. (We find
analogous shapes that become even more complex for other sim-
ple infinite graph structures; see for example Figures 3 and 4.) In
particular, this means that for values ofq close to but less than1

2
,

strategyA can become epidemic on the infinite line ifr is suffi-
ciently small or sufficiently large, but not ifr takes values in some
intermediate interval. In other words, strategyB (which represents
the worse technology, sinceq < 1

2
) will survive if and only if the

cost of being bilingual is calibrated to lie in this middle interval.
This is a reflection of limited compatibility — that it may be in

the interest of an incumbent technology to make it difficult but not
too difficult to use a new technology — and we find it surprising
that it should emerge from a basic model on such a simple network
structure. It is natural to ask whether there is a qualitative interpre-
tation of how this arises from the model, and in fact it is not hard to
give such an interpretation, as follows.

Whenr is very small, it is cheap for nodes to adoptAB as
a strategy, and soAB spreads through the whole network.
OnceAB is everywhere, the best-response updates cause all
nodes to switch toA, since they get the same interaction ben-
efits without paying the penalty ofr.

Whenr is very large, nodes at the interface, with oneA neigh-
bor and oneB neighbor, will find it too expensive to choose
AB, so they will chooseA (the better technology), and hence
A will spread step-by-step through the network.

When r takes an intermediate value, a nodev at the inter-
face, with oneA neighbor and oneB neighbor, will find it
most beneficial to adoptAB as a strategy. Once this happens,
the neighbor ofv who is playingB will not have sufficient
incentive to switch, and the best-response updates make no
further progress. Hence, this intermediate value ofr allows
a “boundary” ofAB to form between the adopters ofA and
the adopters ofB.

In short, the situation facingB is this: if it is too permissive, it gets
invaded byAB followed byA; if it is too inflexible, forcing nodes
to choose just one ofA or B, it gets destroyed by a cascade of
direct conversions toA. But if it has the right balance in the value
of r, then the adoptions ofA come to a stop at a bilingual boundary
where nodes adoptAB.

Moving beyond specificgraphsG, we find that this non-convexity
holds in a much more general senseas well, by considering the gen-

eralepidemic regionΩ = ∪GΩ(G). For any given value of∆, the
regionΩ is a complicated union of bounded and unbounded poly-
gons, and we do not have a simple closed-form description for it.
However, we can show via a potential function argument that no
point (q, r) with q > 1

2
belongs toΩ. Moreover, we can show the

existence of a point(q, r) 6∈ Ω for whichq < 1
2

. On the other hand,
consideration of the epidemic region for the infinite line shows that
( 1
2
, r) ∈ Ω for r = 0 and forr sufficiently large. Hence, neitherΩ

nor its complement is convex in the positive quadrant.
Finally, we also extend a characterization that Morris gave for

the contagion threshold [13], producing a somewhat more intricate
characterization of the regionΩ(G). In Morris’s setting, without an
AB strategy, he showed thatA cannot become epidemic with pa-
rameterq if and only if every cofinite set of nodes contains a subset
S that functions as a well-connected “community”: every node in
S has at least a(1 − q) fraction of its neighbors inS. In other
words, tightly-knit communities are the natural obstacles to diffu-
sion in his setting. With theAB strategy as a further option, a more
complex structure becomes the obstacle: we show thatA cannot be-
come epidemic with parameters(q, r) if and only if every cofinite
set contains a structure consisting of a tightly-knit community with
a particular kind of “interface” of neighboring nodes. We show that
such a structure allows nodes to adoptAB at the interface andB
inside the community itself, preventing the further spread ofA; and
conversely, this is the only way for the spread ofA to be blocked.

The analysis underlying the characterization theorem yields a
number of other consequences; a basic one is, roughly speaking,
that the outcome of best-response updates is independent of the or-
der in which the updates are sequenced (provided only that each
node attempts to update itself infinitely often).

Further Extensions. Another way to model compatibility and in-
teroperability in diffusion models is through the “off-diagonal” terms
representing the payoff for interactions between a node adoptingA
and a node adoptingB. Rather than setting these to0, we can con-
sider setting them to a valuex ≤ min(q, 1 − q). We find that
for the case of two technologies, the model does not become more
general, in that any such instance is equivalent, by a re-scaling of
q andr, to one wherex = 0. Moreover, using our characteriza-
tion of the regionΩ(G) in terms of communities and interfaces, we
show a monotonicty result: ifA can become epidemic on a graph
G with parameters(q, r, x), and thenx is increased, thenA can
still become epidemic with the new parameters.

We also consider the effect of these off-diagonal terms in an ex-
tension tok > 2 competing technologies; for technologiesX and
Y , let qX denote the payoff from anX-X interaction on an edge
andqXY denote the payoff from anX-Y interaction on an edge.
We consider a setting in which two technologiesB andC, which
initially coexist with qBC = 0, face the introduction of a third,
better technologyA at a finite set of nodes. We show an example
in which B andC both survive in equilibrium if they setqBC in
a particular range of values, but not if they setqBC too low or too
high to lie in this range. Thus, in even in a basic diffusion model
with three technologies, one finds cases in which two firms have an
incentive to adopt a limited “strategic alliance,” partially increasing
their interoperability to defend against a new entrant in the market.

2. MODEL
We now develop some further notation and definitions that will

be useful for expressing the model. Recall that we have an infinite
∆-regular graphG, and strategiesA, B, andAB that are used in
a coordination game on each edge. For edge(v,w), the payoff



to each endpoint is0 if one of the two nodes chooses strategyA
and the other chooses strategyB; 1 − q if one chooses strategyA
and the other chooses eitherA or AB; q if one chooses strategyB
and the other chooses eitherB or AB; andmax(q, 1 − q) if both
choose strategyAB. The overall payoff of an agentv is the sum of
the above values over all neighborsw of v, minus a cost which is 0
if v choosesA or B andc = r∆ if she choosesAB. We refer to
the overall game, played by all nodes inG, as acontagion game,
and denote it using the tuple(G, q, r).

This game can have many Nash equilibria. In particular, the
two states where everybody uses technologyA or everybody uses
technologyB are both equilibria of this game. As discussed in
the previous section, we are interested in the dynamics of reaching
an equilibrium in this game; in particular, we would like to know
whether it is possible to move from an all-B equilibrium to an all-A
equilibrium by changing the strategy of a finite number of agents,
and following a sequence of best-response moves.

We provide a formal description of this question via the follow-
ing two definitions.

DEFINITION 2.1. Consider a contagion game(G, q, r). Astate
in this game is a strategy profiles : V (G) 7→ {A,B,AB}. For
two statess ands′ and a vertexv ∈ V (G), if starting from states
and lettingv play her best-responsemove (breaking ties in favor of
A and thenAB) we get to the states′, we writes

v→ s′. Similarly,
for two statess ands′ and a finite sequenceS = v1, v2, . . . , vk of

vertices ofG (wherevi’s are not necessarily distinct), we says
S→

s′ if there is a sequenceof statess1, . . . , sk−1 such thats
v1→ s1

v2→
s2

v3→ · · · sk−1
vk→ s′. For an infinite sequenceS = v1, v2, . . . of

vertices ofG, we denote the subsequencev1, v2, . . . , vk bySk. We

says
S→ s′ for two statess and s′ if for every vertexv ∈ V (G)

there exists ak0(v) such that for everyk > k0(v), s
Sk→ sk for a

statesk with sk(v) = s′(v).

DEFINITION 2.2. For T ⊆ V (G), we denote bysT the strategy
profile that assignsA to every agent inT andB to every agent in
V (G) \ T . We say that technologyA can become anepidemicin
the game(G, q, r) if there is afinite setT of nodes inG (called the
seed set) and a sequenceS of vertices inV (G) \ T (where each

vertex can appear more than once) such thatsT
S→ sV (G), i.e.,

endowing agents inT with technologyA and letting other agents
play their best response according to scheduleS would lead every
agent to eventually adopt strategyA.2

The above definition requires that the all-A equilibrium be reach-
able from the initial state by at least one scheduleS of best-response
moves. In fact, we will show in Section 4 that ifA can become
an epidemic in a game, then foreveryschedule of best-response
moves of the nodes inV (G) \ T in which each node is scheduled
an infinite number of times, eventually all nodes adopt strategyA.3

3. EXAMPLES
We begin by considering some basic examples that yield epi-

demic regions with the kinds of non-convexity properties discussed
2Note that in our definition we assumethat agents inT are endowed
with the strategyA at the beginning. Alternatively, one can define
the notion of epidemic by allowing agents inT to be endowed with
any combination ofAB andA, or with just AB. However, the
difference between these definitions is rather minor and our results
carry over with little or no change to these alternative models.
3Note that we assume agents in the seed setT cannot change their
strategy.

0−1 1 2

Figure 2: The thick line graph

in Section 1. We first discuss a natural∆-regular generalization of
the infinite line graph, and for this one we work out the complete
analysis that describes the regionΩ(G), the set of all pairs(q, r)
for which the technologyA can become an epidemic. We then de-
scribe, without the accompanying detailed analysis, the epidemic
regions for the infinite∆-regular tree and for the two-dimensional
grid.

The infinite line and the thick line graph . For a given even in-
teger∆, we define thethick line graphL∆ as follows: the vertex
set of this graph isZ × {1, 2, . . . ,∆/2}, whereZ is the set of all
integers. There is an edge between vertices(x, i) and(x′, i′) if and
only if |x − x′| = 1. For eachx ∈ Z, we call the set of vertices
{(x, i) : i ∈ {1, . . . ,∆/2} thex’th group of vertices. Figure 2
shows a picture ofL6

Now, assume that starting from a position where every node uses
the strategyB, we endow all agents in a group (say, group 0) with
the strategyA. Consider the decision faced by the agents in group
1, who have their right-hand neighbors usingB and their left-hand
neighbors usingA. For these agents, the payoffs of strategiesA,
B, andAB are(1 − q)∆/2, q∆/2, and∆/2 − r∆, respectively.
Therefore, if

q ≤ 1

2
and q ≤ 2r,

the best response of such an agent isA. Hence, if the above in-
equality holds and we let agents in groups1,−1, 2,−2, . . . play
their best response in this order, thenA will become an epidemic.

Also, if we haveq > 2r andq ≤ 1 − 2r, the best response of
an agent with her neighbors on one side playingA and neighbors
on the other side playingB is the strategyAB. Therefore, if we
let agents in groups1 and−1 change to their best response, they
would switch their strategy toAB. After this, agents in group 2
will see AB on their left andB on their right. For these agents
(and similarly for the agents in group−2), the payoff of strategies
A, B, andAB are(1−q)∆/2, q∆, and(q+max(q, 1−q))∆/2−
r∆, respectively. Therefore, ifmax(1, 2q) − 2r ≥ 1 − q and
max(1, 2q) − 2r ≥ 2q, or equivalently, if

2r ≤ q and q + r ≤ 1

2
,

the best response of such an agent isAB. Hence, if the above
inequality holds and we let agents in groups2,−2, 3,−3 . . . play
their best response in this order, then every agent (except for agents
in group 0) switches toAB. Next, if we let agents in groups
1,−1, 2,−2, . . . change their strategy again, forq ≤ 1/2, ev-
ery agent will switch to strategyA, and henceA becomes an epi-
demic.4

4Strictly speaking, since we defined a schedule of moves as
a single infinite sequence of vertices inV (G) \ T , the order
1,−1, 2,−2, . . . , 1,−1, 2,−2, . . . is not a valid schedule. How-
ever, since vertices ofG have finite degree, it is not hard to see
that any ordering of a multiset containing any (possibly infinite)
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Figure 3: Epidemic regions for the infinite grid
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Figure 4: Epidemic regions for the infinite ∆-regular tree

The above argument shows that for any combination of(q, r)
parameters in the marked region in Figure 1, technologyA can
become an epidemic. It is not hard to see that for points outside
this region,A cannot become epidemic.

Further examples: trees and grids. Figures 3 and 4 show the
epidemic regions for the infinite grid and the infinite∆-regular tree.
Note they also exhibit non-convexities.

4. CHARACTERIZATION
In this section, we characterize equilibrium properties of conta-

gion games. To this end, we must first argue that contagion games
in fact have well-defined and stable equilibria. We then discuss
some respects in which the equilibrium reached from an initial state
is essentially independent of the order in which best-response up-
dates are performed.

We begin with the following lemma, which proves that agents
eventually converge to a fixed strategy, and so the final state of a
game is well-defined by its initial state and an infinite sequence of
moves. Specifically, we prove that once an agent decides to adopt
technologyA, she never discards it, and once she decides to discard
technologyB, she never re-adopts it. Thus, after an infinite number
of best-response moves, each agent converges to a single strategy.

LEMMA 4.1. Consider a contagion game(G, q, r) and a (pos-
sibly infinite) subsetT ⊆ V (G) of agents. LetsT be the strategy
profile assigningA to every agent inT and B to every agent in
V (G) \ T . LetS = v1, v2, . . . be a (possibly infinite) sequence of

number of copies of each vertex ofV (G) \ T can be turned
into an equivalent schedule of moves. For example, the sequence
1,−1, 2,−2, 1,−1, 3,−3, 2,−2, . . . gives the same outcome as
1,−1, 2,−2, . . . , 1,−1, 2,−2, . . . in the thick line example.

agentsin V (G) \ T and consider the sequence of statess1, s2, . . .
obtained by allowing agents to play their best-responsein the order
defined byS (i.e.,s

v1→ s1
v2→ s2

v3→ · · · ). Then for everyi, one of
thefollowing holds:

• si(vi+1) = B andsi+1(vi+1) = A,

• si(vi+1) = B andsi+1(vi+1) = AB,

• si(vi+1) = AB andsi+1(vi+1) = A,

• si(vi+1) = si+1(vi+1).

PROOF. Let X >k
v Y indicate that agentv (weakly) prefers

strategyX to strategyY in statesk. For anyk let zk
A, zk

B, andzk
AB

be the number of neighbors ofv with strategiesA, B, andAB in
statesk, respectively. Thus, for agentv in statesk,

1. A >k
v B if (1− q)(zk

A + zk
AB) is greater thanq(zk

B + zk
AB),

2. A >k
v AB if (1− q)(zk

A + zk
AB) is greater than(1− q)zk

A +
qzk

B + max(q, 1 − q)zk
AB − ∆r,

3. andAB >k
v B if (1−q)zk

A+qzk
B +max(q, 1−q)zk

AB−∆r
is greater thanq(zk

B + zk
AB).

Suppose the lemma is false and consider the smallesti such that the
lemma is violated. Letv = vi+1 be the agent who played her best
response at timei. Thus, either 1.si(v) = A andsi+1(v) = B,
or 2. si(v) = A and si+1(v) = AB, or 3. si(v) = AB and
si+1(v) = B. We show that in the third case, agentv could not
have been playing a best response. The other cases are similar.

In the third case, we havesi(v) = AB andsi+1(v) = B. As
si(v) = AB, there must be a timej < i wheresj

v→ sj+1 and
sj+1(v) = AB. Since this was a best-response move forv, in-
equality 3 implies that(1 − q)zj

A + max(0, 1 − 2q)zj
AB ≥ ∆r.

Furthermore, asi is the earliest time at which the lemma is vio-
lated,zi

A ≥ zj
A andzj

AB − zi
AB ≤ zi

A − zj
A. Thus, the changeQ

in payoff betweenAB andB (plus∆r) is

Q ≡ (1 − q)zi
A + max(0, 1 − 2q)zi

AB

≥ (1 − q)(zi
A − zj

A + zj
A)

+max(0, 1 − 2q)(zj
AB − zi

A + zj
A)

= (1 − q)zj
A + max(0, 1 − 2q)zj

AB

+max(q, 1 − q)(zi
A − zj

A)

≥ (1 − q)zj
A + max(0, 1 − 2q)zj

AB

≥ ∆r,

and so, by inequality 3,B can not be a better response thanAB for
v in statesi.

COROLLARY 4.2. For every infinite sequenceS of vertices in

V (G) \ T , there is a unique states such thats0
S→ s, wheres0

denotes the initial state where every vertex inT playsA and every
vertex inV (G) \ T playsB.

Such a states is called theoutcomeof the game(G, q, r) starting
from T and using the scheduleS.

Equivalence of best-response schedules. Lemma 4.1 shows that
the outcome of a game is well-defined and unique. The following
theorems show that the outcome is also invariant to the dynamics,
or sequenceof best-responsemoves, under certain mild conditions.
The first theorem states that if the all-A equilibrium is the outcome
of a game for some (unconstrained) schedule, then it is the outcome
for any schedule in which each vertex is allowed to move infinitely
many times. The second theorem states that the outcome of a game
is the same for any schedule of moves in which every vertex moves
infinitely many times.



THEOREM 4.3. Consider a contagion game(G, q, r), a subset
T ⊆ V (G), and a scheduleS of vertices inV (G) \ T such that
the outcome of the game is the all-A equilibrium. Then for any
scheduleS ′ of vertices inV (G) \ T such that every vertex in this
set occurs infinitely many times, the outcome of the game using the
scheduleS ′ is also the all-A equilibrium.

PROOF. Note thatS is a subsequence ofS ′. Letπ : S → S ′ be
the injection mappingS to its subsequence inS ′. We show for any
vi ∈ S, if vi switches toAB, thenπ(vi) switches toAB or A, and
if vi switches toA, thenπ(vi) switches toA (here “v switches to
X” means that after the best-responsemove, the strategy ofv isX).
Suppose not and leti be the smallest integer such that the statement
doesn’t hold. LetzA, zB, andzAB be the number of neighbors of
vi with strategiesA, B, andAB in the current state defined byS.
Definez′

A,z′
B , andz′

AB similarly forS ′. Then, by Lemma 4.1 and
the choice ofi, z′

A ≥ zA, z′
B ≤ zB, z′

AB − zAB ≤ zB − z′
B, and

zAB − z′
AB ≤ z′

A − zA. Now supposevi switches toAB. Then
the same sequence of inequalities as in Lemma 4.1 show thatAB
is a better response thanB for π(vi) (althoughA might be the best
response) and soπ(vi) switches to eitherAB or A. The other case
(vi switches toA) is similar.

THEOREM 4.4. Considera contagiongame(G, q, r) and a sub-
setT ⊆ V (G). Then for every two schedulesS andS ′ of vertices
in V (G)\T such that every vertex in this set occurs infinitely many
times in each of these schedules, the outcomes of the game using
these schedules are the same.

PROOF. The proof of this theorem is similar to that of theo-
rem 4.3 and is deferred to the full version of the paper.

Blocking structures. Finally, we prove the characterization men-
tioned in the introduction:A cannot become epidemic if and only
if (G, q, r) possesses a certain kind ofblocking structure. This re-
sult generalizes Morris’s theorem on the contagion threshold for
his model; in his case withoutAB as a possible strategy, a simpler
kind of “community structure” was the obstacle toA becoming
epidemic.

We begin by defining the blocking structures.

DEFINITION 4.5. Consider a contagion game(G, q, r). A pair
(SAB , SB) of disjoint subsets ofV (G) is called ablocking struc-
ture for this game if for every vertexv ∈ SAB,

degSB
(v) >

r

q
∆,

and for every vertexv ∈ SB ,

(1 − q) degSB
(v) + min(q, 1 − q) degSAB

(v) > (1 − q − r)∆,

and

degSB
(v) + q degSAB

(v) > (1 − q)∆,

wheredegS(v) denotes the number of neighbors ofv in the setS.

THEOREM 4.6. For every contagion game(G, q, r), technol-
ogy A cannot become epidemic in this game if and only if every
co-finite set of vertices ofG contains a blocking structure.

PROOF. We first show that if every co-finite set of vertices of
G contains a blocking structure, then technologyA cannot become
epidemic. LetT be any finite set of vertices endowed with tech-
nology A, and let(SAB, SB) be the blocking structure contained
in V (G) \T . We claim that in the outcome of the game for any se-
quenceS of moves, the vertices inSAB have strategyB or AB and

thevertices inSB have strategyB. Supposenot and letv be the first
vertex in sequenceS to violate this (i.e.,v ∈ SAB switches toA or
v ∈ SB switches toA or AB). Supposev ∈ SAB (the other cases
are similar). LetzA, zB , andzAB denote the number of neighbors
of v with strategiesA, B, andAB respectively. Asv is the first
vertex violating the claim,zA ≤ ∆−degSB

(v)−degSAB
(v) and

zB ≥ degSB
(v). We showAB is a better strategy thanA for v.

To show this, we must prove that(1 − q)zA + qzB + max(q, 1 −
q)zAB − ∆r > (1 − q)(zA + zAB) or, equivalently, the quantity
Q ≡ qzB + max(2q − 1, 0)zAB − ∆r > 0:

Q = (max(2q − 1, 0) − r)∆ − max(2q − 1, 0)zA

+(q − max(2q − 1, 0))zB

≥ (max(2q − 1, 0) − r)∆ + min(q, 1 − q) degSB
(v)

−max(2q − 1, 0)(∆ − degSB
(v) − degSAB

(v))
≥ [min(q, 1 − q) + max(2q − 1, 0)] degSB

(v) − r∆
= q degSB

(v) − r∆
> 0,

where the last inequality holds by the definition of the blocking
structure.

We next show thatA cannot become epidemic if and only if ev-
ery co-finite set of vertices contains a blocking structure. To con-
struct a blocking structure for the complement of a finite setT of
vertices, endowT with strategyA and consider the outcome of
the game for any sequenceS which schedules each vertex an infi-
nite number of times. LetSAB be the set of vertices with strat-
egy AB and SB be the set of vertices with strategyB in this
outcome. Note for anyv ∈ SAB , AB is a best-response and so
is strictly better than strategyA, i.e. q degSB

(v) + max(q, 1 −
q) degSAB

−∆r > (1−q) degSAB
(v), from where it follows that

degSB
(v) > (r∆)/q. The inequalities for the verticesv ∈ SB can

be derived in a similar manner.
A corollary to the above theorem is that for every infinite graph

G, the epidemic regions in theq-r plane for this graph is a finite
union of bounded and unbounded polygons. This is because the
inequalities defining blocking structures are linear inequalities in
q and r, and the coefficients of these inequalities can take only
finitely many values.

5. NON-EPIDEMIC REGIONS IN GENERAL
GRAPHS

The characterization theorem in the previous section provides
one way of thinking about the regionΩ(G), the set of all(q, r)
pairs for whichA can become epidemic in the game(G, q, r). We
now consider the regionΩ = ∪GΩ(G), where the union is taken
over all infinite∆-regular graphs; this is the set of all(q, r) val-
ues for whichA can become epidemic in some∆-regular network.
The analysis here uses Lemma 4.1 and an argument based on an
appropriately defined potential function.

The first theorem shows that no point(q, r) with q > 1
2

belongs
to Ω. Sinceq > 1

2
implies that the incumbent technologyB is

superior, it implies that in any network, a superior incumbent will
survive for any level of compatibility.

THEOREM 5.1. For every∆-regular graphG and parameters
q andr, the technologyA cannot become an epidemic in the game
(G, q, r) if q > 1/2.

PROOF. Assume, for contradiction, that there is a∆-regular
graphG and valuesq > 1/2 andr, a setT of vertices ofG that are
initially endowed with the strategyA, and a scheduleS of moves
for vertices inV (G) \ T such that this sequence leads to an all-A
equilibrium. We derive a contradiction by defining a non-negative



potentialfunction that starts with a finite value and showing that
after each best response by some vertex the value of this function
decreases by some positive amount bounded away from zero. At
any state in the game, letXA,B denote the number of edges inG
that have one endpoint using strategyA and the other endpoint us-
ing strategyB. Furthermore, letnAB denote the number of agents
using the strategyAB. The potential function is the following:

qXA,B + cnAB

(recallc = ∆r is the cost of adopting two technologies). SinceG
has bounded degree and the initial setT is finite, the initial value
of this potential function is finite. We now show that every best
responsemove decreases the value of this function by some positive
amount bounded away from zero. By Lemma 4.1, we only need to
analyze the effect on the potential function for moves of the sort
described by the lemma. Therefore we have three cases: a nodeu
switches from strategyB to AB, a nodeu switches from strategy
AB to A, or a nodeu switches from strategyB to A. We consider
the first case here; the proofs for the other cases are similar.

Suppose a nodeu with strategyB switches to strategyAB. Let
zAB, zA, andzB denote the number of neighbors ofu in partition
pieceAB, A, andB respectively. Thus, recalling thatq > 1/2, we
seeu’s payoff with strategyB is q(zAB + zB) whereas his payoff
with strategyAB is q(zAB + zB) + (1 − q)zA − c. In order for
this strategic change to improveu’s payoff, it must be the case that

(1 − q)zA ≥ c. (1)

Now, notice that such a strategic change on the part ofu induces
a change in the potential function of−qzA + c aszA edges are
removed from theXA,B edges betweenA andB and the size of
partition pieceAB is increased by one. This change will be nega-
tive so long aszA > c/q which holds by inequality 1 asq > (1−q)
for q > 1/2. Furthermore, aszA can take only finitely many values
(zA ∈ {0, 1, . . . ,∆}), this change is bounded away from zero.

This next theorem shows that for any∆, there is a point(q, r) 6∈
Ω for whichq < 1

2 . This means that there is a setting of the param-
etersq andr for which the new technologyA is superior, but for
which the incumbent technology is guaranteed to survive regardless
of the underlying network.

THEOREM 5.2. There existq < 1/2 andr such that for every
contagion game(G, q, r), A cannot become epidemic.

PROOF. The proof is based on the potential function from The-
orem 5.1:

qXA,B + cnAB .

We first show that ifq is close enough to1/2 andr is chosen ap-
propriately, this potential function is non-increasing. Specifically,
let

q =
1

2
− 1

64∆
and c = r∆ = α,

where α is any irrational number strictly between3/64 and q.
Again, there are three cases corresponding to the three possible
strategy changes for a nodeu. Let zAB, zA, andzB denote the
number of neighbors of nodeu in partition pieceAB, A, andB
respectively.

Case 1:B → AB. Recalling thatq < 1/2, we seeu’s payoff
with strategyB is q(zAB + zB) whereas his payoff with strategy
AB is (1 − q)(zAB + zA) + qzB − c. In order for this strategic
change to improveu’s payoff, it must be the case that

(1 − 2q)zAB + (1 − q)zA ≥ c. (2)

Now, notice that such a strategic change on the part ofu induces
a change in the potential function of−qzA + c as zA edges are
removed from theXA,B edges betweenA andB and the size of
partition pieceAB is increased by one. This change will be non-
positive so long aszA ≥ c/q. By inequality 2 and the fact thatzA

is an integer,

zA ≥
⌈

c

1 − q
− (1 − 2q)zAB

1 − q

⌉
.

Substituting our choiceof parameters, (and noting thatq ∈ [1/4, 1/2]
andzAB ≤ ∆), we see that the term inside the ceiling is less than
1 and at least3/64

3/4
− 1/32

1/2
> 0. Thus, the ceiling is one, which is

larger thanc/q.
Case 2:AB → A. Recalling thatq < 1/2, we seeu’s payoff

with strategyAB is (1 − q)(zAB + zA) + qzB − c whereas her
payoff with strategyA is (1 − q)(zAB + zA). In order for this
strategic change to improveu’s payoff, it must be the case that

qzB ≤ c. (3)

Such a strategic change on the part ofu induces a change in the po-
tential function ofqzB−c aszB edges are added to theXA,B edges
betweenA andB and the size of partition pieceAB is decreased
by one. This change will be non-positive so long aszB ≤ c/q,
which holds by inequality 3.

Case 3:B → A. Noteu’s payoff with strategyB is q(zAB +
zB) whereas his payoff with strategyA is (1 − q)(zAB + zA). In
order for this strategic change to improveu’s payoff, it must be the
case that

(1 − 2q)zAB ≥ qzB − (1 − q)zA. (4)

Such a strategic change on the part ofu induces a change in the
potential function ofq(zB − zA) aszA edges are removed andzB

edges are added to theXA,B edges betweenA andB. This change
will be negative so long aszB < zA. By inequality 4 and the fact
thatzA is an integer,

zA ≥
⌊

qzB

1 − q
+

(1 − 2q)zAB

1 − q

⌋
.

Substituting our choice of parameters, it is easy to see that the term
inside the floor is at mostzB + 1/4, and so the floor is at most
zB aszB is an integer. We have shown the potential function is
non-increasing for our choice ofq andc. This implies the potential
function is eventually constant. Asc is irrational and the remain-
ing terms are always rational, bothnAB andXA,B must remain
constant for the potential function as a whole to remain constant.

SupposeA is epidemic in this region. AsnAB is constant and
A is epidemic, it must be thatnAB = 0. Thus, the only moves
involve a nodeu switching from strategyB to strategyA. In order
for XA,B to be constant for such moves, it must be thatzA (the
number of neighbors ofu in A) equalszB (the number of neighbors
of u in B) and, asnAB = 0, we have thatzA = zB = ∆/2. Thus,
the payoff ofu for strategyA is (1 − q)zA < ∆/4 whereas her
payoff for strategyAB is (1−q)zA +qzB −c > ∆/2−q ≥ ∆/4.
This contradicts the assumption thatu is playing her best response
by switching toA.

6. LIMITED COMPATIBILITY
We now consider some further ways of modeling compatibility

and interoperability. We first consider two technologies, as in the
previous sections, and introduce “off-diagonal” payoffs to capture
a positive benefit in directA-B interactions. We find that this is



in fact no more general than the model with zero payoffs forA-B
interactions.

We then consider extensions to three technologies, identifying
situations in which two coexisting incumbent technologies may or
may not want to increases their mutual compatibility in the face of
a new, third technology.

Two technologies. A natural relaxation of the two-technology model
is to introduce (small) positive payoffs forA-B interaction; that is,
cross-technology communication yields some lesser value to both
agents. We can model this using a variablexAB representing the
payoff gathered by an agent with technologyA when her neigh-
bor has technologyB, and similarly, a variablexBA representing
the payoff gathered by an agent withB when her neighbor hasA.
Herewe consider the special case in which these “off-diagonal” en-
tries are symmetric, i.e.,xAB = xBA = x. We also assume that
x < q ≤ 1 − q.

We first show that the game with off-diagonal entries is equiva-
lent to a game without these entries, under a simple re-scaling of
q andr. Note that if we re-scale all payoffs by either an additive
or a multiplicative constant, the behavior of the game is unaffected.
Given a game with off-diagonal entries parameterized byq, r andx,
consider subtractingx from all payoffs, and scaling up by a factor
of 1/(1 − 2x). As can be seen by examining Table 1, the resulting
payoffs are exactly those of a game without off-diagonal entries,
parameterized byq′ = (q − x)/(1 − 2x) andr′ = r/(1 − 2x).
Thus the addition of symmetric off-diagonal entries does not ex-
pand the class of games being considered.

Table 1 represents the payoffs in the coordination game in terms
of these parameters.

Nevertheless, we can still ask how the addition of an off-diagonal
entry might affect the outcome of any particular game. As the fol-
lowing example shows, increasing compatibility between two tech-
nologies can allow one technology that was not initially epidemic
to become so.

EXAMPLE 6.1. Consider the contagion game played on a thick
line graph (see Section 3) withr = 5/32 and q = 3/8. In this
case,A is not epidemic, as can be seen by examining Figure 1,
since2r < q andq + r > 1/2. However, if we insert symmetric
off-diagonal payoffsx = 1/4, we have a new game, equivalent to a
game parameterized byr′ = 5/16 andq′ = 1/4. Sinceq′ < 1/2
andq′ < 2r′, A is epidemic in this game, and thus also in the game
with limited compatibility.

We now show that generally, ifA is the superior technology (i.e.,
q < 1/2), adding a compatibility termx can only helpA spread.

THEOREM 6.2. LetG be a game without compatibility, param-
eterized byr andq on a particular network. LetG′ be that same
game, but with an added symmetric compatibility termx. If A is
epidemic forG, thenA is epidemic forG′.

PROOF. We will show that any blocking structure inG′ is also
a blocking structure inG. By our characterization theorem, Theo-
rem 4.6, this implies the desired result. We have thatG′ is equiv-
alent to a game without compatibility parameterized byq′ = (q −
x)/(1 − 2x) andr′ = r/(1 − 2x). Consider a blocking structure
(SB , SAB) for G′. We know that for anyv ∈ SAB , q′dSB(v) >
r′∆. Thus

qdSB (v) > (q − x)dSB(v)
= q′(1 − 2x)dSB (v)
> r′(1 − 2x)∆

= r∆,

as required for a blocking structure inG. Similarly, the two block-
ing structure constraints forv ∈ SB are only strengthened when
we move fromG′ to G.

More than two technologies. Given the complex structure inher-
ent in contagion games with two technologies, the understandingof
contagion games with three or more technologies is largely open.
Here we indicate some of the technical issues that come up with
multiple technologies, through a series of initial results. The ba-
sic set-up we study is one in which two incumbent technologiesB
andC are initially coexisting, and a third technologyA, superior
to both, is introduced initially at a finite set of nodes.

We first present a theorem stating that for any even∆, there is
a contagion game on a∆−regular graph in which the two incum-
bent technologiesB andC may find it beneficial to increase their
compatibility so as to prevent getting wiped out by the new supe-
rior technologyA. In particular, we consider a situation in which
initially, two technologiesB andC with zero compatibility are at
a stable state. By a stable state, we mean that no finite perturba-
tion of the current states can lead to an epidemic for eitherB or
C. We also have a technologyA that is superior to bothB andC,
and can become epidemic by forcing a single node to chooseA.
However, by increasing their compatibility,B andC can maintain
their stability and resist an epidemic fromA.

Let qA denote the payoffs to two adjacent nodes that both choose
technologyA, and defineqB andqC analogously. We will assume
qA > qB > qC . We also assume thatr, the cost of selecting
additional technologies, is sufficiently large so as to ensure that
nodes never adopt more than one technology. Finally, we con-
sider a compatibility parameterqBC that represents the payoffs
to two adjacent nodes when one selectsB and the other selects
C. Thus our contagion game is now described by five parameters
(G, qA, qB , qC , qBC).

THEOREM 6.3. For any even∆ ≥ 12, there is a∆-regular
graphG, an initial states, and valuesqA, qB, qC , andqBC , such
that

• s is an equilibrium in both(G, qA, qB, qC , 0) and
(G, qA, qB, qC , qBC ),

• neitherB nor C can become epidemic in either
(G, qA, qB, qC , 0) or (G, qA, qB , qC , qBC) starting from state
s,

• A can become epidemic(G, qA, qB, qC , 0) starting from state
s, and

• A can not become epidemic in(G, qA, qB , qC , qBC)
starting from states.

PROOF. (Sketch.)Given∆, defineG by starting with an infinite
grid and connecting each node to its nearest∆ − 2 neighbors that
are in the same row. The initial states assigns strategyB to even
rows and strategyC to odd rows. LetqA = 4k2 + 4k + 1/2,
qB = 2k +2, qC = 2k + 1, andqBC = 2k + 3/4. The first, third,
and fourth claims in the theorem can be verified by checking the
corresponding inequalities. The second claim follows from the first
and the observation that the alternating rows contain any plausible
epidemic from growing vertically.

The above theorem shows that two technologies mayboth be
able to survive the introduction of a new technology by increasing
their level of compatibility with each other. As one might expect,



A B AB
A (1 − q; 1 − q) (x;x) (1 − q; 1 − q − r)
B (x;x) (q; q) (q; q − r)

AB (1 − q − r; 1 − q) (q − r; q) (max(q, 1 − q) − r;max(q, 1 − q) − r)

Table 1: The payoffs in the coordination game. Entry(x, y) in row i, column j indicates that the row player gets a payoff ofx and
the column player gets a payoff ofy when the row player plays strategyi and the column player plays strategyj.

there are cases when increased compatibility between two tech-
nologies helps one technology at the expense of the other. Sur-
prisingly, however, there are also instances in which compatibility
is in fact harmful to both parties; the next example considers a fixed
initial configuration with technologiesA, B andC that is at equi-
librium whenqBC = 0. However, if this compatibility term is in-
creased sufficiently, equilibrium is lost, andA becomes epidemic.

EXAMPLE 6.4. Consider the union of an infinite two-dimensional
grid graph with nodesu(x, y) and an infinite line graph with nodes
v(y). Add an edge betweenu(1, y) andv(y) for all y. For this net-
work, we consider the initial configuration in which allv(y) nodes
selectA, and nodeu(x, y) selectsB if x < 0 and selectsC other-
wise.

We now define the parameters of this game as follows. LetqA =
3.95, qB = 1.25, qC = 1, andqBC = 0. It is easily verified that
for these values, the initial configuration given above is an equi-
librium. However, now suppose we increase the coordination term,
settingqBC = 0.9. This is not an equilibrium, since each node of
the formu(0, y) now has an incentive to switch fromC (generating
a payoff of3.9) to B (thereby generating a payoff of3.95). How-
ever, once these nodes have adoptedB, the best-response for each
node of the formu(1, y) is A (A generates a payoff of4 where as
B only generates a payoff of3.95). From here, it is not hard to
show thatA spreads directly throughout the entire network.
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