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model captures the phenomenon of two firms adopting a limited
“strategic alliance” to defend against a new, third technology.

ABSTRACT : : .
In many settings, competing technologies — for example, oper- Categones and SUbJeCt DESCI’IptOFS

ating systems, instant messenger systems, or document formats —J.4 [Social and Behavioral Sciencgs Economics
can be seenadopting a limited amount of compatibility with one an-
other; in other words, the difficulty in using multiple technologies General Terms
is balanced somewhere between the two extremes of impossibility
and effortless interoperability. There are a range of reasons why
this phenomenon occurs, many of which — based on legal, social,
or business considerations — seem to defy concise mathematical Keywords
models. Despite this, we show that the advantages of limited com- algorithmic game theory, contagion on networks, diffusion of inno-
patibility can arise in a very simple model of diffusion in social vations
networks, thus offering a basic explanation for this phenomenonin
purely strategic terms. 1. INTRODUCTION

Our approach builds on work on the diffusion of innovations in
the economics literature, which seeks to model how a new technol-
ogy A might spread through a social network of individuals who
are currently users of technology B. We consider several ways o
capturing the compatibility of A and B, focusing primarily on a

Economics, Theory

Diffusion and Networked Coordination Games A fundamental

¢ guestion in the social sciences is to understand the ways in which
new ideas, behaviors, and practices diffuse through populations.

model in which users can choose to adopt A, adopt B, or — at an Suchissues arise, for example, inthe adoptior_1 of_new technolo_gies,

extra cost — adopt both A and B. We characterize how the abil- the emergence of new social norms or organizational conventions,

ity of A to spread depends on both its quality relative to B, and ©F the spread of humanlanguages [2, 14, 15, 16, 17]. An active line

also this additional cost of adopting both, and find some surprising of research in economics and mathematical sociology is concerned

non-monotonicity properties in the dependence on these parame-With modeling these types of diffusion processes as a coordination
ters: in some cases, for one technology to survive the introduction 92Me played on a social network [1, 5, 7, 13, 19]. )
of another, the cost of adopting both technologies must be balanced W€ Pegin by discussing one of the most basic game-theoretic
within a narrow, intermediate range. We also extend the framework diffusion models, proposed in an influential paper of Morris [13],

to the case of multiple technologies, where we find that a simple Which will form the starting point for our work here. We describe

: ] it in terms of the following technology adoption scenario, though
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0325453, 11S-0329064, CNS-0403340, and BCS-0537606, a Suppose there are two instant messenger (IM) systdrasd B,

| i ) .
Google Research Grant, a Yahoo! Research Alliance Grant, the which are not interoperable — users must be on the same system

Institute for the Social Sciences at Cornell, and the John D. and . . . .
Catherine T. MacArthur Foundation. in order to communicate. There is a social netw6tion the users,

indicating who wants to talk to whom, and the endpoints of each

edge(v,w) play a coordination game with possible strategiés

or B: if v andw each choose IM syster, then they they each
Permission to make digital or hard copies of all or part of this work for receive a payoff of; (since they can talk to each other using system
personal or classroom use is granted without fee provided that copies are B); if they each choose IM system, then they they each receive
not made or distributed for profit or commercial advantage and that copies a payoff of1 — ¢; and if they choose opposite systems, then they
bear this notice and the full citation on the first page. To copy otherwise, 1o each receive a payoff df (reflecting the lack of interoperability).
republish, to post on servers or to redistribute to lists, requires prior specific Note thatA is the “better” technology if; < %, in the sense that

permission and/or a fee. . .
EC’07, June 13-16, 2007, San Diego, California, USA. A-A payoffs would then exceeB- B payoffs, whileA is the worse

Copyright 2007 ACM 978-1-59593-653-0/07/00065.00. technology ifg > 3.




A number of qualitative insights can be derived from a diffusion tentially offer a graph-theoretic basis for how incompatibility may
model even at this level of simplicity. Specifically, consider a net- benefit an existing technology, by strengthening these boundaries
work G, and let all nodes initially play3. Now suppose a small and preventing the incursion of a new, better technology.
number of nodes begin adopting strategyinstead. If we apply
best-response updates to nodes in the network, then nodes in effectThe present work: Diffusion with bilingual behavior . In this
will be repeatedly applying the following simple rule: switch 4o paper, we develop a set of diffusion models that incorporate notions
if enough of your network neighbors have already adoptedE.g. of compatibility and bilinguality, and we find that some unexpected
you begin using a particular IM system — or social-networking phenomena emerge even from very simple versions of the models.
site, or electronic document format — if enough of your friends We begin with perhaps the simplest way of extending Morris’s
are users of it.) As this unfolds, there can be a cascading sequencemodel discussed above to incorporate bilingual behavior. Consider
of nodes switching tod, such that a network-wide equilibrium is  again the example of IM system$ and B, with the payoff struc-
reached in the limit: this equilibrium may involve uniformity, with  tyre as before, but now suppose that each node can adopt a third
all nodes adoptingl; or it may involve coexistence, with the nodes  strategy, denoted B, in which it decides to use botd and B. An
partitioned into a set adopting and a set adopting?, and edges  adopter ofAB gets to use, on an edge-by-edge basis, whichever
yielding zero payoff connecting the two sets. Morris [13] provides of A or B yields higher payoffs in each interaction, and the payoff
a set of elegant graph-theoretic characterizations for when thesestructure is defined according to this principle: if an adoptedAdf
qualitatively different types of equilibria arise, in terms of the un- interacts with an adopter d8, both receivey; with an adopter of

derlying network topology and the quality of relative toB (i.e. A, both receivel — ¢; and with another adopter o B, both re-
the relative sizes of — g andg). ceivemax(g,1 — ¢). Finally, an adopter ofAB pays a fixed-cost

penalty ofc (i.e. —c is added to its total payoff) to represent the
Compatibility, Interoperability, and Bilinguality . In most of the cost of having to maintain both technologies.

settings that form the motivation for diffusion models, coexistence  Thus, in this model, there are two parameters that can be varied:
(however unbalanced) is the typical outcome: for example, human the relative qualities of the two technologies (encoded;byand
languages and social conventions coexist along geographic bound-the cost of being bilingual, which reflects a type of incompatibility
aries; it is a stable outcome for the financial industry to use Win- (encoded by:).
dows while the entertainment industry uses Mac OS. An important  Following [13] we assume the underlying graghis infinite;
piece that is arguably missing from the basic game-theoretic mod- we further assume that for some natural numhereach node has
els of diffusion, however, is a more detailed picture of what is hap- degreeA.! We are interested in the question posed at the outset, of
pening at the coexistence boundary, where the basic form of the whether a new technologyt can spread through a network where
model posits nodes that adogtlinked to nodes that adogs. almost everyone is initially using. Formally, we say that strategy

In these motivating settings for the models, of course, one very A can becomepidemidf the following holds: starting from a state
often sees interface regions in which individuals essentially become in which all nodes in a finite se$’ adoptA, and all other nodes
“bilingual.” In the case of human language diffusion, this bilingual- adoptB, a sequence of best-response updates (potentially with tie-
ity is meant literally: geographic regions where there is substantial breaking) inG — S causes every node to eventually adopt We
interaction with speakers of two different languages tend to have also introduce one additional bit of notation that will be useful in
inhabitants who speak both. But bilinguality is also an essential the subsequent sections: we define- ¢/A, the fixed penalty for
feature of technological interaction: in the end, many people have adoptingAB, scaled so that it is a per-edge cost.
accounts on multiple IM systems, for example, and more gener-  In the Morris model, where the only strategic options drand
ally many maintain the ability to work within multiple computer B, a key parameter is theontagion thresholdf G, denotedy” (G):
systems so as to collaborate with people embedded in each. this is the supremum of for which A can become epidemic in

Taking this view, it is natural to ask how diffusion models be- G with parameterg in the payoff structure. A central result of
have when extended so that certain nodes can be bilingual in this [13] is that% is the maximum possible contagion threshold for any
very general sense, adopting both strategies at some cost to them-graph: sup, ¢*(G) = % Indeed, there exist graphs in which the
selves. What might we learn from such an extension? To begin contagion threshold is as large 4gincluding theinfinite line—the
with, it has the potential to provide a valuable perspective on the ynique infinite connected-regular graph); on the other hand, one
question of compatibility and incompatibility that underpins com-  can show there is no graph with a contagion threshold greater than
petition among technology companies. There is a large literature 1
on how compatibility among technologies affects competition be- *'1n our model where the bilingual strategy is possible, we
tween fil’ms, and in particular how |nCOmpat|b|||ty may be a benefi- have a two-dimensional parameter space, so instead of a conta-
cial strategic decision for certain participants ina market 3, 4, 8,9, gion thresholdg*(G¢) we have anepidemic regiort2(G), which
12]. Whinston [18] provides an interesting taxonomy of different js the subset of thég, r) plane for whichA can become epidemic
kinds of strategic incompatibility; and specificindustry case studies in ;. And in place of the maximum possible contagion thresh-
(including theoretical perspectives) have recently been carried out | sup, ¢* (G), we must consider the general epidemic region
for commercial banks [10], copying and imaging technology [11] ¢ = U;Q(@), where the union is taken over all infinits-regular

and instant messenger systems [6]. o graphs; this is the set of ally, ) values for which4 can become
While these existing models of compatibility capture network  epidemic insomeA-regular network.

effects in the sense that the users in the market prefer to use tech-
nology that is more widespread, they do not capture the more fine-
grained network phenomenonrepresented by diffusion — that each *We can obtain strictly analogous results by taking a sequence of
user is including its local view in the decision, based on what its finite graphs and expressing results asymptotically, but the use of
own social network neighbors are doing. A diffusion model thatin- an infinite bounded-degree graggh makes it conceptually much

corporated such extensions could provide insight into the structure cleaner to express the results (as it does in Morris's paper [13]).: less

oo L intricate quantification is needed to express the diffusion properties,
of boundaries in the network between technologies; it could po- 5.4the qualitative phenomena remain the same.
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Figure 1: The region of the (¢, r) plane for which technology A
can become epidemic on the infinite line.

Our Results. We find, first of all, that the epidemic regidi(G)
can be unexpectedly complex, even for very simple gra@h&ig-
ure 1 shows the epidemic region for the infinite line; one observes
that neither the regiof2(G) nor its complement is convex in the
positive quadrant, due to the triangular “cut-out” shape. (We find
analogous shapes that become even more complex for other sim-
ple infinite graph structures; see for example Figures 3 and 4.) In
particular, this means that for values @tlose to but less thaé,
strategyA can become epidemic on the infinite linerifis suffi-
ciently small or sufficiently large, but not if takes values in some
intermediate interval. In other words, stratey(which represents
the worse technology, sineg < %) will survive if and only if the
cost of being bilingual is calibrated to lie in this middle interval.
This is a reflection of limited compatibility — that it may be in
the interest of an incumbent technology to make it difficult but not
too difficult to use a new technology — and we find it surprising
that it should emerge from a basic model on such a simple network
structure. It is natural to ask whether there is a qualitative interpre-
tation of how this arises from the model, and in fact it is not hard to
give such an interpretation, as follows.

Whenr is very small, it is cheap for nodes to adapiB3 as

a strategy, and solB spreads through the whole network.
OnceAB is everywhere, the best-response updates cause all
nodes to switch tod, since they get the same interaction ben-
efits without paying the penalty of

Whenr is very large, nodes at the interface, with oh@eigh-
bor and oneB neighbor, will find it too expensive to choose
AB, sothey will choosel (the better technology), and hence
A will spread step-by-step through the network.

Whenr takes an intermediate value, a nodet the inter-
face, with oneA neighbor and on&3 neighbor, will find it
most beneficial to adopt B as a strategy. Once this happens,
the neighbor ofv who is playing B will not have sufficient
incentive to switch, and the best-response updates make no
further progress. Hence, this intermediate value @fllows

a “boundary” of AB to form between the adopters df and

the adopters of3.

In short, the situation facing is this: if it is too permissive, it gets
invaded byA B followed by A; if it is too inflexible, forcing nodes
to choose just one ofl or B, it gets destroyed by a cascade of
direct conversions tol. But if it has the right balance in the value
of r, then the adoptions od come to a stop at a bilingual boundary
where nodes adopt B.

Moving beyond specific graphs, we find that this non-convexity
holds in a much more general sense as well, by considering the gen-

eralepidemic regior2 = UgQ(G). For any given value of\, the
region(2 is a complicated union of bounded and unbounded poly-
gons, and we do not have a simple closed-form description for it.
However, we can show via a potential function argument that no
point (g, r) with g > % belongs to2. Moreover, we can show the
existence of a pointq, ) ¢ Q for whichq < % On the other hand,
consideration of the epidemic region for the infinite line shows that
(3.7) € Qforr = 0 and forr sufficiently large. Hence, neithé?

nor its complement is convex in the positive quadrant.

Finally, we also extend a characterization that Morris gave for
the contagion threshold [13], producing a somewhat more intricate
characterization of the regid(G). In Morris’s setting, without an
AB strategy, he showed that cannot become epidemic with pa-
rametery if and only if every cofinite set of nodes contains a subset
S that functions as a well-connected “community”: every node in
S has at least 41 — ¢) fraction of its neighbors inS. In other
words, tightly-knit communities are the natural obstacles to diffu-
sionin his setting. With thel B strategy as a further option, a more
complex structure becomesthe obstacle: we showthzdnnot be-
come epidemic with parametefs, r) if and only if every cofinite
set contains a structure consisting of a tightly-knit community with
a particular kind of “interface” of neighboring nodes. We show that
such a structure allows nodes to adopB at the interface and®
inside the community itself, preventing the further spread pand
conversely, this is the only way for the spread4to be blocked.

The analysis underlying the characterization theorem yields a
number of other consequences; a basic one is, roughly speaking,
that the outcome of best-response updates is independent of the or-
der in which the updates are sequenced (provided only that each
node attempts to update itself infinitely often).

Further Extensions. Another way to model compatibility and in-
teroperability in diffusion models is through the “off-diagonal” terms
representing the payoff for interactions between a node adopting
and a node adopting. Rather than setting these@we can con-
sider setting them to a value < min(g,1 — ¢). We find that
for the case of two technologies, the model does not become more
general, in that any such instance is equivalent, by a re-scaling of
q andr, to one wherer = 0. Moreover, using our characteriza-
tion of the regiorf2(G) in terms of communities and interfaces, we
show a monotonicty result: ift can become epidemic on a graph
G with parametergq, r, z), and thenz is increased, theml can
still become epidemic with the new parameters.

We also consider the effect of these off-diagonal terms in an ex-
tension tok > 2 competing technologies; for technologi&sand
Y, let gx denote the payoff from atX - X interaction on an edge
andgxy denote the payoff from aX-Y" interaction on an edge.
We consider a setting in which two technologiBsandC', which
initially coexist with gz = 0, face the introduction of a third,
better technology at a finite set of nodes. We show an example
in which B and C' both survive in equilibrium if they sejzc in
a particular range of values, but not if they ggt- too low or too
high to lie in this range. Thus, in even in a basic diffusion model
with three technologies, one finds cases in which two firms have an
incentive to adopt a limited “strategic alliance,” partially increasing
their interoperability to defend against a new entrant in the market.

2. MODEL

We now develop some further notation and definitions that will
be useful for expressing the model. Recall that we have an infinite
A-regular graphG, and strategies!, B, and AB that are used in
a coordination game on each edge. For edgew), the payoff



to each endpoint i$) if one of the two nodes chooses strategy
and the other chooses strateffy 1 — ¢ if one chooses strategy
and the other chooses eithdror AB; q if one chooses strategi
and the other chooses eith& or AB; andmax(q, 1 — ¢) if both
choose strategyl B. The overall payoff of an agentis the sum of
the above values over all neighbarsof v, minus a cost which is 0
if v choosesA or B andc = rA if she choosesiB. We refer to
the overall game, played by all nodes @\ as acontagion gamge
and denote it using the tupl&z, ¢, ).

This game can have many Nash equilibria. In particular, the
two states where everybody uses technolofypr everybody uses
technologyB are both equilibria of this game. As discussed in
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Figure 2: The thick line graph

in Section 1. We first discuss a naturalregular generalization of
the infinite line graph, and for this one we work out the complete

the previous section, we are interested in the dynamics of reaching analysis that describes the regi®}{G), the set of all pairgq, r)

an equilibrium in this game; in particular, we would like to know
whether it is possible to move from an di-equilibrium to an allA
equilibrium by changing the strategy of a finite number of agents,
and following a sequence of best-response moves.

We provide a formal description of this question via the follow-
ing two definitions.

DEFINITION 2.1. Consider a contagion gamg, ¢, r). Astate
in this game is a strategy profile : V(G) — {A, B, AB}. For
two statess and s’ and a vertexw € V(G), if starting from states
and lettingv play her best-response move (breaking ties in favor of
A and thenA B) we get to the state’, we writes — s’. Similarly,
for two statess and s’ and a finite sequencg = v, ve, ..., vk Of
vertices ofG (wherew;’s are not necessarily distinct), we sayi
s if thereis a sequenceof states, . .., sx_1 such thats 2> s; 3

s2 B .. sk 2 ¢ For an infinite sequencd = vi,vs,... Of
vertices ofGG, we denote the subsequengevs, .. ., v; by Sk.. We

says > s for two statess and s’ if for every vertexy € V(G)

there exists & (v) such that for everyt > ko(v), s S5 5 for a
statesy, with si(v) = s'(v).

DEFINITION 2.2. ForT C V(G), we denote byr the strategy
profile that assignsA to every agent iril” and B to every agentin
V(G) \ T. We say that technologyt can become arpidemicin
the game(G, g, r) if there is afinite setT" of nodes inG (called the
seed s@tand a sequencé of vertices inV (G) \ T' (where each

vertex can appear more than once) such that 5 sy(@), I-e.,
endowing agents iff" with technologyA and letting other agents
play their best response according to sched§levould lead every
agent to eventually adopt strategy.?

The above definition requires that the allequilibrium be reach-
able from the initial state by at least one schedtitef best-response
moves. In fact, we will show in Section 4 that if can become
an epidemic in a game, then fewveryschedule of best-response
moves of the nodes i (G) \ T" in which each node is scheduled
an infinite number of times, eventually all nodes adopt stratédy

3. EXAMPLES

We begin by considering some basic examples that yield epi-
demic regions with the kinds of non-convexity properties discussed

2Note that in our definition we assume that agent&iare endowed
with the strategyA at the beginning. Alternatively, one can define
the notion of epidemic by allowing agentsinto be endowed with
any combination ofAB and A, or with just AB. However, the
difference between these definitions is rather minor and our results
carry over with little or no change to these alternative models.
3Note that we assume agents in the seedlseannot change their
strategy.

for which the technologyl can become an epidemic. We then de-
scribe, without the accompanying detailed analysis, the epidemic
regions for the infiniteA-regular tree and for the two-dimensional
grid.

The infinite line and the thick line graph. For a given even in-
tegerA, we define thahick line graphLa as follows: the vertex
set of this graph iZ x {1,2,...,A/2}, whereZ is the set of all
integers. There is an edge between vertices) and(z’, ') if and
only if |z — 2’| = 1. For eachr € Z, we call the set of vertices
{(z,7) : € {1,...,A/2} thex'th group of vertices. Figure 2
shows a picture of.s

Now, assume that starting from a position where every node uses
the strategyB, we endow all agents in a group (say, group 0) with
the strategyA. Consider the decision faced by the agents in group
1, who have their right-hand neighbors usiBgand their left-hand
neighbors usingd. For these agents, the payoffs of strategigs
B, andAB are(1 — q)A/2, ¢A/2, andA/2 — rA, respectively.
Therefore, if
and

q< q < 2r,

N —

the best response of such an agentdis Hence, if the above in-
equality holds and we let agents in groups—1,2, —2, ... play
their best response in this order, thérwill become an epidemic.

Also, if we haveq > 2r andg < 1 — 2r, the best response of
an agent with her neighbors on one side playitgnd neighbors
on the other side playind is the strategyd B. Therefore, if we
let agents in groups and —1 change to their best response, they
would switch their strategy tolB. After this, agents in group 2
will see AB on their left andB on their right. For these agents
(and similarly for the agents in group2), the payoff of strategies
A, B, andAB are(1—q)A/2, ¢A, and(¢+max(q,1—q))A/2—
rA, respectively. Therefore, ifnax(1,2q) — 2r > 1 — q and
max(1,2q) — 2r > 2q, or equivalently, if

1
< 57
-2
the best response of such an agentdi$. Hence, if the above
inequality holds and we let agents in groups-2, 3, —3... play
their best response in this order, then every agent (except for agents
in group 0) switches taAB. Next, if we let agents in groups
1,—1,2,—-2,... change their strategy again, fgr < 1/2, ev-
ery ag4ent will switch to strategyl, and henced becomes an epi-
demic:

2r <gq and q+r

4Strictly speaking, since we defined a schedule of moves as
a single infinite sequence of vertices W (G) \ 7', the order
1,-1,2,-2,...,1,—1,2,—2,... is not a valid schedule. How-
ever, since vertices ofr have finite degree, it is not hard to see
that any ordering of a multiset containing any (possibly infinite)



agentsn V(G) \ T and consider the sequence of statgssa, . ..

7oA obtained by allowing agents to play their best-responsein the order
1/4 | defined bysS (i.e.,s 23 51 23 s 22 ...). Then for every, one of
3/16. thefollowing holds:
® S; (Ui+1) =B andsi+1(vi+1) = A,
1/12_ ® S; (Ui+1) =B andsi+1(vi+1) = AB,
® S; (Ui+1) = AB and8i+1(vi+1) = A,
0 : —> ® 5i(Vit1) = Sit1(Vig1).
0 1/4 12 4 PROOF. Let X >* Y indicate that agent (weakly) prefers
strategyX to strategyY” in states,. For anyk let 2%, 2%, andz% 5
Figure 3: Epidemic regions for the infinite grid be the number of neighbors efwith strategiesd, B, andAB in
statess, respectively. Thus, for agentin statesy,
1. A>F Bif (1—q)(2% + 24 ) is greater thag (25 + 2% 5),
r
2. A>" ABif (1—q)(z5 + 25 ) is greater tharfl — ¢) 2% +
gz +max(q,1 — q)zhp — Ar,
3. andAB >F Bif (1—¢)2% +qzh +max(¢q, 1—q)z5 5 — Ar
UA is greater thag (25 + 25 5).
i Suppose the lemma is false and consider the smalkasth that the
lemma is violated. Let = v; 41 be the agent who played her best
response at time. Thus, either 1s;(v) = A ands;;1(v) = B,
04« ; —> or 2.si(v) = A andsi+1(v) = AB, or 3.s;(v) = AB and
0 1/A 12 4 si+1(v) = B. We show that in the third case, agantould not
have been playing a best response. The other cases are similar.
Figure 4: Epidemic regions for the infinite A-regular tree In the third case, we havei(v) = AB andsi1(v) = B. As
si(v) = AB, there must be a timg¢ < i wheres; % s;+1 and
sjr1(v) = AB. Since this was a best-response move #otin-
The above argument shows that for any combinatior(@fr) equality 3 implies thafl — ¢)z, + max(0,1 — 2¢)z%, 5 > Ar.
parameters in the marked region in Figure 1, technolaggan Furthermore, ag is the earliest time at which the lemma is vio-
become an epidemic. It is not hard to see that for points outside lated,z} > 27 andz’, 5 — 245 < 2z — 2J. Thus, the chang&
this region,A cannot become epidemic. in payoff betweerd B and B (plus Ar) is

Q (1—g)z4 + max(0,1 —2¢)z}5
(1 —q)(za — 2 +2%) , ,
T max(0, 1 2)(hp — 2 + )

(1 — q)z?, + max(0, 1— 2q)ziB
4. CHARACTERIZATION +max(g, 1 —q)(za — 22)

: . ) . . (1 —q)z) +max(0,1 —2q)2) 5

In this section, we characterize equilibrium properties of conta- Ar,
gion games. To this end, we must first argue that contagion games ] )
in fact have well-defined and stable equilibria. We then discuss @nd so, by inequality 33 can not be a better response thas for
some respects in which the equilibrium reached from an initial state v In States;.
is essentially independent of the order in which best-response up-  coroLLARY 4.2. For every infinite sequencé of vertices in
dates are performed.

We begin with the following lemma, which proves that agents
eventually converge to a fixed strategy, and so the final state of a
game is well-defined by its initial state and an infinite sequence of
moves. Specifically, we prove that once an agent decides to adopt Such a state is called theoutcomeof the game G, ¢, r) starting
technologyA, she never discards it, and once she decides to discard from 7" and using the schedul8.
technologyB, she never re-adopts it. Thus, after an infinite number

of best-response moves, each agent converges to a single strategy. Equivalence of best-response schedulesemma 4.1 shows that
the outcome of a game is well-defined and unique. The following
LEMMA 4.1. Consider a contagion gam@~, ¢, ) and a (pos- theorems show that the outcome is also invariant to the dynamics,
sibly infinite) subseT” C V/(G) of agents. Letr be the strategy ~ or sequence of best-response moves, under certain mild conditions.
profile assigningA to every agent inl” and B to every agentin  The first theorem states that if the allequilibrium is the outcome
V(G)\T. LetS = v1,vs, ... be a (possibly infinite) sequence of  of a game for some (unconstrained) schedule, then it is the outcome

number of copies of each vertex af (G) \ T can be turned for any schedule in which each vertex is allowed to move infinitely
into an equivalent schedule of moves. For example, the sequenceMany times. The second theorem states that the outcome of a game

1,-1,2,-2,1,—1,3,-3,2,—2,... gives the same outcome as IS the same for any schedule of moves in which every vertex moves
1,-1,2,-2,...,1,—1,2,—2, ... in the thick line example. infinitely many times.

Further examples: trees and grids Figures 3 and 4 show the
epidemic regions for the infinite grid and the infinieregular tree.
Note they also exhibit non-convexities.

AVl

VIV

V(G) \ T, there is a unique state such thatsg S, s, wheresg
denotes the initial state where every vertexiimplays A and every
vertex inV (G) \ T' playsB.




THEOREM 4.3. Consider a contagion gam@=, ¢, ), a subset
T C V(G), and a schedule of vertices inV(G) \ T such that
the outcome of the game is the all-equilibrium. Then for any
scheduleS’ of vertices inV (G) \ T such that every vertex in this

thevertices inSg have strategyB. Suppose not and letbe the first
vertex in sequencs to violate this (i.e.p € Sap switchestoA or

v € Sp switches toA or AB). Suppose € Sag (the other cases
are similar). Let 4, zp, andza g denote the number of neighbors

set occurs infinitely many times, the outcome of the game using the of v with strategiesA, B, and AB respectively. Asv is the first

scheduleS’ is also the allA equilibrium.

PrROOF. Note thatS is a subsequenced’. Letr : S — S’ be
the injection mapping to its subsequence if’. We show for any
v; € S, if v; switches toA B, thenr(v;) switches toAB or A, and
if v; switches toA, thens(v;) switches toA (here v switches to
X" means that after the best-response move, the strategysoX).
Suppose not and létbe the smallest integer such that the statement
doesn't hold. Letz4, z5, andzap be the number of neighbors of
v; With strategiesd, B, andAB in the current state defined k.
Definez/s,z%, andz’y 5 similarly for S’. Then, by Lemma 4.1 and
the choice ofi, 2’y > za, 25 < 2B, 245 — zaB < 2B — 2, and
zaB — 2ag < 24 — za. Now suppose; switches toAB. Then
the same sequence of inequalities as in Lemma 4.1 showAl#at
is a better response thdhfor 7 (v;) (althoughA might be the best
response) and so(v;) switches to eitherl B or A. The other case
(v; switches toA) is similar.

THEOREM 4.4. Considera contagiongamg=, ¢, ) and a sub-
setT C V(G). Then for every two schedulésand S’ of vertices
in V(G)\ T suchthat every vertexin this set occurs infinitely many

times in each of these schedules, the outcomes of the game usind1

these schedules are the same.

PrROOF The proof of this theorem is similar to that of theo-
rem 4.3 and is deferred to the full version of the paper.

Blocking structures. Finally, we prove the characterization men-
tioned in the introduction:A cannot become epidemic if and only
if (G, q,r) possessesa certain kind blocking structure This re-
sult generalizes Morris’s theorem on the contagion threshold for
his model; in his case without B as a possible strategy, a simpler
kind of “community structure” was the obstacle t becoming
epidemic.

We begin by defining the blocking structures.

DEFINITION 4.5. Consider a contagion gamg~, ¢, r). A pair
(Sam, Sp) of disjoint subsets of (G) is called ablocking struc-
turefor this game if for every vertex € Sag,

degg,, (v) > SA,

and for every vertex € Sg,
(1 —q) degg,, (v) + min(g, 1 — q) degg, ,(v) > (1 —q —1)A,
and
degg,, (v) +qdegg, . (v) > (1 — @)A,
wheredegs (v) denotes the number of neighborswoin the setS.

THEOREM 4.6. For every contagion gaméG, ¢, r), technol-
ogy A cannot become epidemic in this game if and only if every
co-finite set of vertices @& contains a blocking structure.

PrRoOFE We first show that if every co-finite set of vertices of
G contains a blocking structure, then technolaggannot become
epidemic. LetT" be any finite set of vertices endowed with tech-
nology A, and let(Sag, Sz) be the blocking structure contained
in V(G) \ T. We claim that in the outcome of the game for any se-
quencesS of moves, the vertices if4 s have strategyB or AB and

vertex violating the claimza < A —degg, (v) —degg, , (v) and
zp > degg, (v). We showAB is a better strategy thad for v.
To show this, we must prove that — ¢)za + gz + max(q, 1 —
q)zaB — Ar > (1 — q)(za + zaB) or, equivalently, the quantity
Q = gz + max(2q — 1,0)zap — Ar > 0:

Q (max(2¢ — 1,0) — r)A — max(2q — 1,0)z4
+(g —max(2¢ — 1,0))z5

> (max(2q — 1,0) — r)A 4+ min(q, 1 — q) degg (v)
—max(2g — 1,0)(A — degg, (v) — degg, . (v))

> [min(g, 1 — q) + max(2q — 1,0)] degg, (v) —rA

= gqdegg, (v) —rA

> 0,

where the last inequality holds by the definition of the blocking
structure.

We next show thatd cannot become epidemic if and only if ev-
ery co-finite set of vertices contains a blocking structure. To con-
struct a blocking structure for the complement of a finite Betf
vertices, endowl" with strategyA and consider the outcome of
the game for any sequenc¢ewhich schedules each vertex an infi-
ite number of times. Leb4p be the set of vertices with strat-
egy AB and Sg be the set of vertices with strategy in this
outcome. Note for any € Sag, AB is a best-response and so
is strictly better than strategyl, i.e. gdegg, (v) + max(g, 1 —

q) degg , . —Ar > (1—g)degg, . (v), from where it follows that
deggs,, (v) > (rA)/q. The inequalities for the verticese S can
be derived in a similar manner.

A corollary to the above theorem is that for every infinite graph
G, the epidemic regions in ther plane for this graph is a finite
union of bounded and unbounded polygons. This is because the
inequalities defining blocking structures are linear inequalities in
g andr, and the coefficients of these inequalities can take only
finitely many values.

5. NON-EPIDEMIC REGIONS IN GENERAL
GRAPHS

The characterization theorem in the previous section provides
one way of thinking about the regiof(G), the set of all(g, )
pairs for whichA can become epidemic in the gar(@, ¢, r). We
now consider the regiof2 = UcQ2(G), where the union is taken
over all infinite A-regular graphs; this is the set of &4, ) val-
ues for whichA can become epidemic in sorde-regular network.
The analysis here uses Lemma 4.1 and an argument based on an
appropriately defined potential function.

The first theorem shows that no poifi, ) with ¢ > 1 belongs
to Q2. Sinceq > % implies that the incumbent technolody is
superior, it implies that in any network, a superior incumbent will
survive for any level of compatibility.

THEOREM 5.1. For every A-regular graphG and parameters
g andr, the technologyl cannot become an epidemic in the game
(G,q,7)if g > 1/2.

PrRoOOF Assume, for contradiction, that there is/sregular
graphG and valueg; > 1/2 andr, a setl” of vertices ofG that are
initially endowed with the strategyl, and a schedul& of moves
for vertices inV(G) \ T such that this sequence leads to an.ll-
equilibrium. We derive a contradiction by defining a non-negative



potentialfunction that starts with a finite value and showing that Now, notice that such a strategic change on the part @iduces
after each best response by some vertex the value of this function a change in the potential function efqza + ¢ asza edges are
decreases by some positive amount bounded away from zero. At removed from theX 4 5 edges betweerl and B and the size of
any state in the game, |6t 4, 5 denote the number of edges 4 partition pieceAB is increased by one. This change will be non-
that have one endpoint using strategyand the other endpointus-  positive so long aga > ¢/q. By inequality 2 and the fact thats

ing strategyB. Furthermore, let 4 5 denote the number of agents  is an integer,
using the strategyl B. The potential function is the following:

A > c _(1—2q)zAB .
qXa,B +cnap 1—g 1—gq

Substituting our choice of parameters, (and notingthat[1/4, 1/2]

(recallc = Ar is the cost of adopting two technologies). Singe
has bounded degree and the initial §éts finite, the initial value andzap < A), we see that the term inside the ceiling is less than
1/32

of this potential function is finite. We now show that every best 3764 o o
response move decreases the value of this function by some positive ! @nd atleasty7= — 57" > 0. Thus, the ceiling is one, which is
amount bounded away from zero. By Lemma 4.1, we only need to larger tharc/q.

analyze the effect on the potential function for moves of the sort ~ Case 2:.AB — A. Recalling thaly < 1/2, we seeu’s payoff
described by the lemma. Therefore we have three cases: amode With strategyAB is (1 — q)(zas + za) + ¢z — c whereas her
switches from strategy to AB, a nodeu switches from strategy ~ Payoff with strategyA is (1 — ¢)(zaB + za). In order for this
AB to A, or a nodeu switches from strategys to A. We consider ~ Strategic change to improugs payoff, it must be the case that

the first case here; the proofs for the other cases are similar. g2z < c. ®)
Suppose a node with strategyB switches to strategyi B. Let -

zZAB, 24, andzp denote the number of neighbors afin partition Such a strategic change on the partidhduces a change in the po-

pieceAB, A, andB respectively. Thus, recalling that> 1/2, we tential function ofgzp —c aszp edges are added to thé4, 5 edges

seeu’s payoff with strategyB is ¢(zas + zg) Whereas his payoff betweenA and B and the size of partition piecé B is decreased
with strategyAB is q(zap + zB) + (1 — q)za — c. In order for by one. This change will be non-positive so long as < c¢/q,
this strategic change to improves payoff, it must be the casethat ~ which holds by inequality 3.
Case 3: B — A. Noteu’s payoff with strategyB is q(zap +

(1-q)za =c @ zp) whereas his payoff with strategy is (1 — ¢)(zap + z4). In
Now, notice that such a strategic change on the pari aiduces order for this strategic change to improwts payoff, it must be the
a change in the potential function efgz4 + c asz4 edges are case that
removed from theX 4 g edges betweenl and B and the size of

partition pieceAB is increased by one. This change will be nega- (1=2q)2a5 2 gz5 — (1 — @)za. @)
tive solongas 4 > ¢/q which holds by inequality 1 ag > (1—q) Such a strategic change on the partwfnduces a change in the
for ¢ > 1/2. Furthermore, as4 cantake only finitely many values ~ potential function ofy(zs — za) asza edges are removed ang
(za € {0,1,...,A}), this change is bounded away from zero. edges are added to thé 4, p edges betweer and B. This change
This next theorem shows that for ady, there is a pointg, r) ¢ will be negative so long ass < za. By inequality 4 and the fact

Q for whichq < 1. This means that there is a setting of the param- thatz. is an integer,
etersq andr for which the new technology is superior, but for

which the incumbent technology is guaranteed to survive regardless za > {
of the underlying network.

qzB n (1—2q)zaB .
1—g¢q 1—g¢q

THEOREM 5.2. There exisiy < 1/2 andr such that for every Substituting our choice of parameters, it is easy to see that the term
contagion gaméG, ¢, r), A cannot become epidemic. inside the floor is at mosts + 1/4, and so the floor is at most
zp aszp is an integer. We have shown the potential function is

PROOF. The proof is based on the potential function from The- non-increasing for our choice gfandc. This implies the potential

orem5.1: function is eventually constant. Asis irrational and the remain-

ing terms are always rational, bothus and X 4, g must remain
9Xa,p +cnas. constant for the potential function as a whole to remain constant.

We first show that ify is close enough td /2 andr is chosen ap- Supposed is epidemic in this region. As.ap is constant and

propriately, this potential function is non-increasing. Specifically, A is epidemic, it must be thatap = 0. Thus, the only moves
let involve a nodeu switching from strategyB to strategyA. In order
1 1 for X4 g to be constant for such moves, it must be that (the

g=-——— and c=rA=aq, number of neighbors af in A) equals:g (the number of neighbors
2 644 of win B) and, asiap = 0, we have that4 = zp = A/2. Thus,

where « is any irrational number strictly betweey64 and g. the payoff ofu for strategyA is (1 — gq)za < A/4 whereas her

Again, there are three cases corresponding to the three possiblepayoff for strategyA B is (1 —q)za + gz —c > A/2—q > A/4.
strategy changes for a node Letzap, z4, andzp denote the This contradicts the assumption thats playing her best response
number of neighbors of node in partition pieceAB, A, and B by switching toA.

respectively.

Case 1: B — AB. Recalling thaty < 1/2, we seeu’s payoff 6. LIMITED COMPATIBILITY

with strategyl3 is q(zaz + 2p) whereas his payoff with strategy We now consider some further ways of modeling compatibility

ABis (1 — — c¢. In order for this strategic ; " . . : :
changéto in%i)&é?/g’:pzailzjif— ?tzrﬁust(;:)e the case that ¢ and interoperability. We first consider two technologies, as in the
' previous sections, and introduce “off-diagonal” payoffs to capture
(1—-2q)zap+ (1 —q)za > c. ) a positive benefit in directd-B interactions. We find that this is



in fact no more general than the model with zero payoffsAeB
interactions.

We then consider extensions to three technologies, identifying
situations in which two coexisting incumbent technologies may or
may not want to increases their mutual compatibility in the face of
a new, third technology.

Two technologies A natural relaxation of the two-technology model
is to introduce (small) positive payoffs fot-B interaction; that is,
cross-technology communication yields some lesser value to both
agents. We can model this using a variablgs representing the
payoff gathered by an agent with technologywhen her neigh-
bor has technologyB, and similarly, a variable:z 4 representing
the payoff gathered by an agent with when her neighbor had.
Herewe consider the special case in which these “off-diagonal” en-
tries are symmetric, i.exap = rpa = xz. We also assume that
r<qg<1l-—gq.

We first show that the game with off-diagonal entries is equiva-
lent to a game without these entries, under a simple re-scaling of
g andr. Note that if we re-scale all payoffs by either an additive
or a multiplicative constant, the behavior of the game is unaffected.
Given a game with off-diagonal entries parameterized byandz,
consider subtracting from all payoffs, and scaling up by a factor
of 1/(1 — 2z). As can be seen by examining Table 1, the resulting
payoffs are exactly those of a game without off-diagonal entries,
parameterized by’ = (¢ — x)/(1 — 2z) andr’ = r/(1 — 2z).
Thus the addition of symmetric off-diagonal entries does not ex-
pand the class of games being considered.

Table 1 represents the payoffs in the coordination game in terms
of these parameters.

Nevertheless, we can still ask how the addition of an off-diagonal
entry might affect the outcome of any particular game. As the fol-
lowing example shows, increasing compatibility between two tech-
nologies can allow one technology that was not initially epidemic
to become so.

ExamMPLE 6.1. Considerthe contagion game played on a thick
line graph (see Section 3) with = 5/32 andg = 3/8. In this
case, A is not epidemic, as can be seen by examining Figure 1,
since2r < g andq + r > 1/2. However, if we insert symmetric
off-diagonal payoffs: = 1/4, we have a new game, equivalentto a
game parameterized by = 5/16 andq¢’ = 1/4. Sinceq’ < 1/2
andq’ < 27, A is epidemic in this game, and thus also in the game
with limited compatibility.

We now show that generally, i is the superior technology (i.e.,
g < 1/2), adding a compatibility terms can only helpA spread.

THEOREM 6.2. LetG be a game without compatibility, param-
eterized byr andq on a particular network. LetG’ be that same
game, but with an added symmetric compatibility tetmIf A is
epidemic forG, then A is epidemic forG”.

ProOF We will show that any blocking structure i@’ is also
a blocking structure irz. By our characterization theorem, Theo-
rem 4.6, this implies the desired result. We have tais equiv-
alent to a game without compatibility parameterizedghy= (q —
x)/(1 — 2z) andr’ = r/(1 — 2x). Consider a blocking structure
(SB,Sag) for G’. We know that for any € Sag, ¢'ds, (v) >
r'A. Thus

quB(U) > (q—:r)dsB(v)
= (1~ 20)ds, (0)
> (1 -2x)A

rA,

as required for a blocking structure @. Similarly, the two block-
ing structure constraints far € Sg are only strengthened when
we move fromG’ to G.

More than two technologies Given the complex structure inher-
entin contagion games with two technologies, the understanding of
contagion games with three or more technologies is largely open.
Here we indicate some of the technical issues that come up with
multiple technologies, through a series of initial results. The ba-
sic set-up we study is one in which two incumbent technolodies
andC are initially coexisting, and a third technology, superior
to both, is introduced initially at a finite set of nodes.

We first present a theorem stating that for any exenthere is
a contagion game on A—regular graph in which the two incum-
bent technologie®® andC may find it beneficial to increase their
compatibility so as to prevent getting wiped out by the new supe-
rior technologyA. In particular, we consider a situation in which
initially, two technologiesB andC' with zero compatibility are at
a stable state. By a stable state, we mean that no finite perturba-
tion of the current states can lead to an epidemic for eitBesr
C. We also have a technology that is superior to botl andC,
and can become epidemic by forcing a single node to chabtse
However, by increasing their compatibilityg andC can maintain
their stability and resist an epidemic frorh

Let g4 denote the payoffs to two adjacent nodes that both choose
technologyA, and defing;z andgc analogously. We will assume
ga > qB > qc. We also assume that the cost of selecting
additional technologies, is sufficiently large so as to ensure that
nodes never adopt more than one technology. Finally, we con-
sider a compatibility parameterzc that represents the payoffs
to two adjacent nodes when one seleétsand the other selects
C. Thus our contagion game is now described by five parameters
(G,q4,98,49c,q45Bc).

THEOREM 6.3. For any evenA > 12, there is aA-regular
graph G, an initial states, and valuesj, ¢z, qc, andggsc, such
that

e sis an equilibriumin both( G, g4, g5, qc,0) and

(G7 quqBMZCv‘ZBC),

neither B nor C can become epidemic in either
(G,qa,qB,qc,0)0or (G,qa,qB, qc, gsc) starting from state
s,

A canbecome epidem(&, g4, g8, qc, 0) starting from state
s, and

A can not become epidemic (7, g4, g8, 9c, gBC)
starting from states.

PROOF (Sketch.)Given A, defineG by starting with an infinite
grid and connecting each node to its nearst- 2 neighbors that
are in the same row. The initial stateassigns strategys to even
rows and strategy” to odd rows. Letgs = 4k + 4k + 1/2,

g = 2k +2,qc = 2k+ 1, andgsc = 2k + 3/4. The first, third,

and fourth claims in the theorem can be verified by checking the
corresponding inequalities. The second claim follows from the first
and the observation that the alternating rows contain any plausible
epidemic from growing vertically.

The above theorem shows that two technologies rbath be
able to survive the introduction of a new technology by increasing
their level of compatibility with each other. As one might expect,



A B AB
A 1-¢;1—¢q) (z; ) A—gl—q-—r1)
B (z; ) (¢;9) (g;q—1)
AB || (1—g—71;1—¢q) [ (g—r;q) | (max(¢g,1 —¢g) —r;max(q,1 —q) —7)

Table 1: The payoffs in the coordination game. Entry(z, y) in row ¢, column j indicates that the row player gets a payoff ofz and
the column player gets a payoff ofy when the row player plays strategy: and the column player plays strategy;.

there are cases when increased compatibility between two tech-
nologies helps one technology at the expense of the other. Sur-

prisingly, however, there are also instances in which compatibility
is in fact harmful to both parties; the next example considers a fixed
initial configuration with technologied, B andC that is at equi-
librium whenggc = 0. However, if this compatibility term is in-
creased sufficiently, equilibrium is lost, antdbecomes epidemic.

EXAMPLE 6.4. Considerthe union of an infinite two-dimensional
grid graph with nodes:(x, y) and an infinite line graph with nodes
v(y). Add an edge betweer(1, y) andv(y) for all y. For this net-
work, we consider the initial configuration in which al(y) nodes
selectA, and nodeu(z, y) selectsB if < 0 and selects” other-
wise.

We now define the parameters of this game as followsghet
3.95, g = 1.25, q¢ = 1, andgsc = 0. Itis easily verified that
for these values, the initial configuration given above is an equi-
librium. However, now suppose we increase the coordination term,
settinggec = 0.9. This is not an equilibrium, since each node of
the formu(0, ¥) now has an incentive to switch frofi (generating
a payoff 0f3.9) to B (thereby generating a payoff &95). How-
ever, once these nodes have adoptgdthe best-response for each
node of the formu(1, y) is A (A generates a payoff of where as
B only generates a payoff df.95). From here, it is not hard to
show thatA spreads directly throughout the entire network.
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