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 Introduction 

 Atherosclerosis is a metabolically induced and geneti-
cally influenced chronic inflammatory condition of the 
arteries. The characteristic pathologic manifestation is 
the atheroma, i.e. arterial intima thickened by a fatty de-
posit and inflammatory cells. Oxidatively modified low-
density lipoproteins (oxLDLs) are intimately involved in 
this process. Their presence is often associated with hy-
perlipoproteinaemia (elevated levels of lipoproteins in 
blood), a recognised risk factor for the development of 
arteriosclerosis. The prevalence of hyperlipoproteinae-
mia in the population is high, and it may be secondary to 
diabetes, gout and obesity or of hereditary origin. Bound 
by scavenger receptors, oxLDLs activate endothelial cells 
to produce pro-inflammatory mediators, leading to ad-
hesion of leukocytes. Oxidation of LDL, mediated in the 
arterial wall and aggravated by dietary intake of oxidised 
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 Abstract 

 Atherosclerosis is a chronic progressive inflammatory dis-

ease which manifests in the arterial vascular tree. It is a major 

cause of cardiovascular morbidity and contributes signifi-

cantly to mortality in the developed world. Triggers for this 

inflammatory process are elevated levels of cholesterol, bac-

terial infection and obesity. The immune response in athero-

sclerosis is essentially pro-atherogenic, leading to lipid ac-

cumulation and cellular changes within the arterial wall. 

Small-animal models of atherosclerosis are used to study the 

relevance of candidate factors (cells, genes, diets) in the de-

velopment and progression of lesions. From a multidisci-

plinary viewpoint, there are challenges and limitations to 

this approach. Activation of complement determines or 

modifies the outcome of acute and chronic inflammation. 

This review dissects the role of complement in the early de-

velopment as well as the progressive manifestation of mu-

rine atherosclerosis and the advances in knowledge provid-

ed by the use of specific mouse models. It gives a critical 

overview of existing models, analyses seemingly conflicting 

results obtained with complement-deficient mouse models, 
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fatty acid and cholesterol  [1] , leads to the formation of 
foam cells (macrophages laden with cholesterol) and in-
terferes with the activity of an endothelial coagulation 
inhibitor [through modification and degradation of tis-
sue factor (TF) pathway inhibitor], thereby promoting lo-
cal coagulation  [2] .

  There is no single target to ameliorate this disease; once 
atherosclerosis is diagnosed, attempts are made to limit 
the progress of the disease, such as treating co-morbidities 
(dyslipidaemia, hypertension and diabetes mellitus), in-
fluencing other factors known to precipitate disease 
(platelet aggregation) and managing complications of the 
disease (stroke, myocardial infarction, embolism and an-
eurysm). Because atherosclerosis is the leading cause of 
death in the developed world and of growing importance 
in the developing world, novel treatment approaches are 
sought, using genomic studies and expression profiling in 
cardiovascular disease. Expression studies in humans 
have documented an inflammatory component of athero-
sclerotic disease that may be modulated by cholesterol-
lowering drugs  [3, 4] . Currently, selective targeting of che-
mokines and their receptors is being discussed for phar-
macologic treatment of atherosclerosis  [5] .

  Innate and adaptive immune mechanisms play a role 
in both the initiation and progression of atherosclerotic 
disease. This review focuses on the contribution made by 

complement in the development and manifestation of 
murine atherosclerosis. 

  Complement comprises defined zymogens which are 
activated in a hierarchical cascade on foreign or altered 
self surfaces via the classical pathway (CP), lectin pathway 
(LP) or alternative pathway (AP)  [6] . Activation is trig-
gered by binding of C1 to bound immunoglobulins (Igs) 
(CP) or binding of the lectin recognition molecule man-
nose-binding lectin (MBL) or ficolins to surface carbohy-
drates (LP), leading to cleavage of C4 and C2, a necessary 
step in the activation of C3, which is a central feature of 
the complement system because of the potency of C3 ac-
tivation fragments. The AP (with zymogens factors B and 
D and positive regulator properdin) primarily amplifies 
the activation of C3 ( fig. 1 ). Opsonisation and phagocy-
tosis are mediated by C3 fragments and their cellular re-
ceptors (such as CR1, the integrins CR3 and CR4, and the 
C3b-binding receptor of the Ig superfamily CRIg). Com-
plement-mediated chemoattraction occurs as a conse-
quence of the cleavage of C3 and subsequently C5 via the 
release of C3a and C5a and their desArg components 
(C3a desArg , C5a desArg ) and relevant receptors, C3aR, C5aR 
and C5L2, on inflammatory cells. Non-enzymatic as-
sembly of C5b, C6, C7, C8 and C9 leads to insertion into 
membranes (in the absence of down-regulators) as the 
membrane attack complex (MAC;  fig. 1 ).
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  Fig. 1.  Pathways of complement activation. 
MASP = MBL-associated serine protease.  
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  With regard to atherosclerotic lesions, complement 
anaphylatoxins C3a and C5a bind to receptors expressed 
by plaque intima macrophages, T cells, mast cells, endo-
thelial cells and medial smooth muscle cells and therefore 
may have a role in orchestrating the inflammatory com-
ponent of atherosclerosis. In vitro, oxLDL seems to acti-
vate complement directly, as measured by the production 
of sC5b-9, involving AP and CP activation  [7, 8] . The net 
effect of complement activation distal of protein C3 was 
thought to promote maturation of atherosclerotic lesions, 
based on immunohistochemical findings obtained with 
an LDL receptor (LDLR) –/– /C3 –/–  mouse line showing 
lower smooth muscle and collagen content of atheroscle-
rotic lesions  [9] . A non-specific complement inhibitor has 
been tested in mice with the aim of limiting the disease 
phenotype; treatment of high-fat diet (HFD)-fed apoli-
poprotein E (ApoE) –/– /LDLR –/–  mice with recombinant 
 Vaccinia virus  complement control protein (VCP; a se-
creted viral protein which has been shown to block pro-
gression of the AP, LP and CP of complement activation) 
produced a significant reduction in the aortic lesion area 
compared to control HFD-fed ApoE –/– /LDLR –/–  mice 
when administered once a week for 7 weeks  [10] . The 
mode of action of the purified protein was not investi-
gated, so while interference with complement activation 
is one possible mechanism via which the extent of the le-
sion is limited, binding of VCP to heparin is another, be-
cause this interaction may competitively inhibit binding 
of chemokines to endothelial cells. VCP, through its re-
semblance to host proteins containing complement con-
trol protein modules (such as CD55, C4bBP, CD46), is 
thought to be of low immunogenicity, so it appears un-
likely that antibodies raised to VCP are confounders in 
the positive outcome of this treatment  [11] .

  Blockers which interfere with complement activation 
or signalling could thus be suitable tools to target features 
of atheroma development. 

  ApoE- and LDLR-deficient mice were generated by 
gene-specific targeting to study the pathogenesis of ath-
erosclerotic disease  [12] . LDLR is a cell surface receptor 
which mediates the endocytosis and hepatic clearance of 
LDL, whereas ApoE transports lipoprotein and choles-
terol and has a high affinity for the LDLR and ApoE re-
ceptor. Both ApoE and LDLR are necessary for the clear-
ance of lipoproteins. ApoE –/–  mice have an increased lev-
el of total plasma cholesterol, which is exaggerated on a 
cholesterogenic Western-type diet (21% fat, HFD). The 
development of atherosclerosis is primarily linked to the 
extent of hypercholesterolaemia  [13] . Very low-density li-
poprotein and intermediate-density lipoprotein fractions 

are increased, and mice demonstrate an early onset of 
atheromatous lesions  [14] , which manifest throughout 
the arterial tree. These lesions are significantly more pro-
nounced in ApoE –/–  mice than in the HFD-fed wild-type 
strain C57BL/6  [15] . LDLR –/–  mice have increased levels 
of intermediate-density lipoprotein and LDL on normal 
chow  [16]  and produce a milder atherosclerotic pheno-
type when fed an HFD  [15] . ApoE * 3-Leiden mice repre-
sent the third model used to study the development of 
atherosclerotic lesions and are transgenic for a human 
ApoE mutant (ApoE * 3) which binds defectively to LDLR, 
leading to hyperlipoproteinaemia.

  In the majority of study protocols (HFD for up to 40 
weeks), the murine models allow investigation of athero-
matous plaque development but not of progression to 
rupture of the fibrous cap  [15] . This remains a limitation 
of the mouse models because it is the late phase of athero-
sclerosis which causes life-threatening symptoms in hu-
mans. However, one study which analysed ApoE –/–  mice 
in an extended feeding protocol (HFD for 59 weeks) 
showed significant rupture and sudden death, which 
most likely was due to thrombotic embolism  [17] .

  Infections exacerbate the development of atheroscle-
rosis  [18] , and mouse models are starting to be used to 
analyse the infectious contribution to the atherosclerotic 
phenotype. However, it may be the overall lifetime patho-
gen burden that determines the development and pro-
gression of human atherosclerotic disease rather than ep-
isodic events replicated in the animal models. Because of 
the evidence of  Chlamydia pneumoniae  within athero-
matous lesions  [19]  and elevated anti- C. pneumoniae  ti-
tres in patients with cardiovascular disease, the influence 
of long-term antibiotic treatment on the incidence of car-
diovascular events was investigated in patients. Overall, 
large-scale clinical trials over at least 10 years did not sup-
port a wide application of this treatment approach  [20] . 
Common, functional gene polymorphisms for MBL, 
which binds to  C. pneumoniae , may be relevant disease 
modifiers. 

  Mouse Models of Atherosclerosis Reveal a Role of 

Complement 

 The use of LDLR –/–  and ApoE –/–  mouse models in 
combination with complement-deficient mouse lines (or 
cells) has advanced the understanding of the role of com-
plement in the development of atheromatous lesions. Dif-
ferent Western-type HFDs have been used to generate 
atherosclerotic lesions in these strains. ApoE * 3-Leiden 
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mice fed a high-cholesterol diet had up-regulated expres-
sion of complement C1q, C1qR, C3aR and C9  [21] , and 
LDLR –/–  mice fed an HFD showed a significant increase 
in the expression of complement C3, factor D and proper-
din compared to LDLR –/–  mice fed normal chow  [22] .  Ta-
ble  1  gives an overview of phenotypic observations in 
complement-deficient mice on an ApoE –/– , LDLR –/–  or 
ApoE –/– /LDLR –/–  compound-deficient background. The 
types of diet and lengths of studies vary and complicate 
a direct comparison. Nevertheless, the following conclu-
sion may be drawn: in the development of lesions, the 
presence of C1q (recognition component of the CP), MBL 
(recognition component of the LP), C3 (central compo-
nent of the complement activation cascades) and CD59 
(called protectin because it inhibits insertion of MAC) 
may be protective  [23–28] . While the membrane-bound 
down-regulator of complement activation CD55 (decay 
accelerating factor, dissociates C3 and C5 convertases) 
regulates lesional lipid deposition in LDLR –/–  mice on
an HFD  [29] , development of lesions is attenuated in 
ApoE –/–  mice on an HFD in the absence of CD55  [30] .

  By contrast, C6 (part of MAC)  [23] , C3a receptor C3aR 
 [31]  and factor B (Bf; of the AP)  [32]  appear to exacerbate 
disease during HFD. In studies analysing an early and 
later time point, the effect of complement deficiency on 
an atherosclerosis-prone genetic background manifests 
within the first 10–16 weeks of an HFD. Lesions may then 
progress  [24] , stagnate  [23–25, 33]  or approach the wild-
type phenotype  [33] . Therefore, the interpretation of phe-
notypes caused by different diet regimens is restricted to 
the particular time points of observation.

  The principle dual functionality of complement work-
ing either in a predominately atheroprotective or pro-
atherogenic manner has previously been concluded from 
mice lacking specific complement components and also 
from analyses of immunohistochemical staining of ath-
erosclerotic lesions and levels of complement compo-
nents in patients  [34] . 

  The lesion-limiting effect of CD59 compared to C1q 
is noted earlier in the disease (8 vs. 12 weeks) in studies 
which use similar diets (21% pork lard and 0.15% choles-
terol vs. normal chow with 0.15% cholesterol and 20% 
butter fat). The contribution of complement C5 to dis-
ease development and manifestation appears to be small 
 [35] . To deduce the role of MBL-A and -C, LDLR –/–  mice 
chimeric for MBL-A/-C –/–  bone marrow were generated 
and compared to LDLR –/–  mice injected with MBL-A/
-C +/+  bone marrow cells  [27] . MBL-A/-C –/–  macrophages 
show decreased apoptotic clearance or less phagocytic 
ability compared to wild-type macrophages and may co-

determine the greater plaque area with the former cells. 
C1q may be involved in an atheroprotective way via two 
mechanisms, namely apoptotic body removal and bind-
ing to natural antibodies, which are protective in the de-
velopment of atherosclerosis because of their ability to 
inhibit the uptake of oxLDL by macrophages  [36] . Serum 
IgM-deficient/LDLR –/–  mice have larger aortic lesions 
compared to C1q –/–  mice but display a similar phenotype 
with regard to cholesterol accumulation and smooth 
muscle cell proliferation; therefore, the protective effect 
of IgM may be exerted only in part via C1q  [37] . There is 
a long history of the study of natural antibodies in ath-
erosclerosis, and they are reactive with an epitope that is 
found on apoptotic cell surfaces, oxLDL and bacterial 
wall components. ApoE –/–  mice develop high titres of 
anti-oxLDL antibody  [38] , and LDLR –/–  mice have read-
ily detectable anti-oxLDL IgM  [39] ; these antibodies 
block the uptake of oxLDL by CD36-positive macro-
phages. 

  Overall, triglycerides and total cholesterol in comple-
ment-deficient mice appear not to be different from con-
trols on either an ApoE –/–  or LDLR –/–  background alone 
(which already present with hyperlipidaemia) with two 
exceptions; Bf-deficient (Bf –/– )/LDLR –/–  mice have signif-
icantly reduced cholesterol levels on an HFD compared 
with Bf-sufficient LDLR –/–  mice  [32] , and C3 –/– /ApoE –/– /
LDLR –/–  mice on normal chow show significantly in-
creased levels of serum triglycerides and cholesterol com-
pared to C3-sufficient ApoE –/– /LDLR –/–  controls  [33] . Al-
though the postprandial clearance of triglycerides was 
the same between C3 –/– /ApoE –/– /LDLR –/–  and C3-suffi-
cient ApoE –/– /LDLR –/–  controls, C3 –/– /ApoE –/– /LDLR –/–  
mice weighed significantly less than their C3-sufficient 
controls with a marked decrease in adipose tissue. Previ-
ous work using C3 –/–  mice demonstrated that triglyceride 
and cholesterol levels in plasma in mice fed a normal diet 
were not altered in the absence of C3  [40] , which is the 
precursor of C3a desArg  (acylation stimulatory protein, li-
gand for C5L2, a stimulatory receptor for triglyceride 
synthesis), although postprandially they did demonstrate 
delayed triglyceride clearance  [41, 42] . This shows the im-
portance of using atherosclerosis-prone mouse lines to 
investigate the pathogenesis of diet-induced atheroscle-
rosis and of measuring relevant parameters. It also dem-
onstrates that atherosclerotic phenotypes dependent on 
complement, such as C3 and Bf, may be markedly influ-
enced by concomitant metabolic changes, such as hypo- 
and hypercholesterolaemia, respectively.

   Table 2  collates the measurements performed in mod-
els using the aforementioned transgenes for complement 
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Table 1. O verview of in vivo studies investigating the contribution of complement to murine ApoE–/– and LDLR–/– phenotypes

Ref. 
No.

Complement Background Sex Model Control Diet End 
week

Effects on lipids Effects on lesion 

23 C6–/– C57BL/6 - C6–/–/ApoE–/– ApoE–/– HFD (0.15% C) 16/20 not determined f

CD59–/–
- CD59–/–/ApoE–/– no difference d

31 C3aR1–/– B6 -, U C3aR1–/–/ApoE–/– ApoE–/– HFD (0.15 % C, 42% fat) 24 no difference U size f, - no difference

24 CD55–/– C57BL/6J -, U DAF–/–/ApoE–/– ApoE–/– HFD (0.15% C, 20% fat) 14 not determined no significant difference
22 not determined no significant difference

CD59–/–
-, U CD59–/–/ApoE–/– ApoE–/– 14 d total serum C in U more extensive lesion 

area and size U
22 slight d total serum C 

in U
even more extensive 
lesion area only U

25 CD59ab–/– C57BL/6 -, U CD59–/–/ApoE–/– ApoE–/– HFD (1.37% C, 
Ch-free, 20.1% fat)

14/22 no difference d

26 CD59a–/– C57BL/6 U CD59–/–/LDLR–/– LDLR–/– LFD (no C, 5.2% fat) 22 no difference in C, T, 
lipoprotein profile

lesion d

HFD (0.25% C, 
Ch-free, 16% fat)

no difference in C, T, 
lipoprotein profile

 lesion d, more complex

29 CD55–/– C57BL/6 U CD55–/–/LDLR–/– LDLR–/– LFD 22 no difference in C, T, 
lipoprotein profile

d lesion, d lipid 
deposition

HFD 22 no difference in C, T, 
lipoprotein profile

d lipid deposition

30 CD55–/– C57BL/6/
129Ola

- CD55–/–/ApoE–/– ApoE–/– HFD (0.15% C, 21% fat) 20 f serum T and 
cholesterol

f lesion 

37 C1qa–/– C57BL/6 U sIgM–/–/C1q–/–/
LDLR–/–

LDLR–/– LFD (5.2% fat) 22 not determined 4.1-fold d, more 
complex

HFD (0.25% C, 
Ch-free, 16% fat)

33% d lesion size

C1q–/– LDLR–/– LFD (5.2% fat) 2.8-fold d in lesions
HFD (0.25% C, 
Ch-free, 16% fat)

no difference

28 C1qa–/– C57BL/6 U C1qa–/–/LDLR–/– LDLR–/– LFD 22 no difference in 
lipoprotein profile

3-fold d

HFD (0.25% C, 
Ch-free) 

no difference in 
lipoprotein profile

10-fold d vs. LFD 
controls, no difference 
vs. HFD controls

27 MBL-A/-C–/– C57BL/6, 
BM chimera

U MBL-A/-C–/–/
LDLR–/–

LDLR–/–/
MBL-A/
-C+/+

HFD (0.15% C, 
Ch-free, 16% fat)

10 no difference in T 
or C

30% d plaque surface 
compared to wild-type 
mice

9 C3–/– C57BL/6J × 
129BL6

-, U C3–/– LDLR–/– C3+/–/ 
LDLR–/–

HFD (1.25% C) 15 no difference in serum 
lipid content

d lipid deposition,
d lesion  

33 C3–/– C57BL/6J/
129Ola

- C3–/–/ApoE–/–/
LDLR–/–

ApoE–/–/ 
LDLR–/–

normal chow 16 58% d in serum T; 
C not affected

84% d, more advanced 
lesions

C57BL/6J/
129Ola

26 79% d in serum T; 
C not affected

no difference in lesion 
size

Bf–/– C57BL/6J/
129Ola

- Bf–/–/ApoE–/–/
LDLR–/–

ApoE–/–/ 
LDLR–/–

normal chow 16 no difference in T 
or C

no difference in lesion 
size

C57BL/6J/
129Ola

26 no difference in T 
or C

no difference in lesion 
size

32 Bf–/– C57BL/6 U Bf–/–/LDLR–/– LDLR–/– LFD 22 no difference no difference in lesion 
area

HFD f in serum C
(VLDL, LDL) 

no difference in lesion 
area;  lesion size f

35 C5–/–, 
B10.D2-H2

C57BL/6J × 
C57BL/10SnJ

- C5–/–/ApoE–/– ApoE–/– HFD (0.15% C) 22 no difference in T 
or C

no difference in lesion 
area

U no difference in lesion 
area, but f than - 

T  = Triglycerides; C = cholesterol; Ch = cholate (cholate facilitates fat and cholesterol absorption); LFD = low-fat diet; VLDL = very low-density lipo-
protein; d = increase; f = decrease.
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proteins and LDLR –/–  and/or ApoE –/–  mice. Constituents 
of atherosclerotic lesions (lipids, collagen, monocytes and 
smooth muscle cells) are key parameters to characterise 
the atherosclerotic phenotype, but these analyses are not 
carried out in every study. A complex lesion is defined by 
an increase in smooth muscle cell and collagen content, 
a concomitant decrease in macrophages and the develop-
ment of a fibrous cap. The quantification of atherosclero-
sis in mice involves two principal methods, en face (lesion 
area) and aortic root (lesion size), with en face measure-
ment normally requiring higher cholesterol consumption 
 [43] . Other common measurements relate to general 
physiological parameters (body weight, body fat, heart-
body weight ratio). 

  Procoagulant Activity and Complement in 

Atherosclerosis 

 Platelets are essential in thrombus formation over dys-
functional and eroded or fissured atherosclerotic lesions 
and play an important role in the development and pro-
gression of atherosclerosis. Thrombosis is a response 
mechanism to vascular damage including, typically, the 
late stage of atherosclerotic plaque rupture. Endothelial 
cell injury induces platelet adhesion to the vessel wall and 
secretion of von Willebrand factor (vWF), which pro-
motes platelet recruitment. A rise in vWF levels has been 
shown in CD59ab –/– /ApoE –/–  mice on an HFD, which 
demonstrate a high incidence of occlusive coronary ath-
erosclerosis and mortality  [25] . Interestingly, vWF was 

Table 2.  Methodological characterisations of the atherosclerotic phenotype in ApoE–/– and LDLR–/– models

Descriptors Method Ref. No.

Lesion size
Plaque, lumen, media and vessel area morphometry 23, 28

Histological features

Aorta en face and/or staining by aortic root section Sudan IV/Oil Red O/Mayer
hematoxylin/TOPRO-3

9, 23, 24, 25, 26, 28, 29, 
31, 32, 33, 37

Lipid content Oil Red O 28, 35

Endothelial damage Evans blue staining 25

Collagen deposition Picrosirius Red 9, 24, 27, 29

Fibrosis, cholesterol clefts, acellular areas and fibrous cap hematoxylin and eosin 31, 33

Foam cells Oil Red O 25

Elastin Miller/Van Gieson 25

Cellular and humoral characterisations

Complement deposition, binding C3, C3d, C9/MAC, C5, C5b-9, DAF, 
CD59 antibodies

9, 23, 25, 26, 29, 31,
32, 37

Macrophage content CD68, MOMA-2, Mac3 antibodies 23, 25, 26, 31, 32, 33, 37

Vascular smooth muscle cell content �-smooth muscle actin antibody 25, 26, 32, 33, 37

T cell content CD3, CD4 and CD8 antibodies 25, 37

Apoptotic cells anti-cleaved caspase 3 antibody, 
terminal uridine nick-end labelling

25, 26, 31, 37

B cell content CD19 antibody 26

IgG/IgM deposition confocal microscopy 37

Foam cells CD11b antibody 35

Triglyceride levels and clearance enzymatic assays 27, 33

Complement activation: C3, C3a levels ELISA 29, 32

Lipoprotein profile and cholesterol gel filtration liquid chromatography/
enzymatic assay

9, 23, 25, 29, 32, 33,
35, 37

IgM and IgG levels,  auto-antibodies for oxLDL/modified LDL ELISA 9, 31, 33

ssDNA, dsDNA, chromatin, histone ELISA 28, 37

Endothelial damage ELISA (for vWF in serum) 25
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shown to co-purify with properdin, possibly interacting 
through its thrombospondin-like domains  [44] , but the 
relevance of this finding has not yet been studied in vivo. 
Platelet activation promotes activation of the coagulation 
cascade; oxLDL stimulates macrophage-mediated activa-
tion of the intrinsic coagulation pathway, and TF, impor-
tant for the activation of the extrinsic coagulation path-
way, is expressed in macrophages of atheromatous plaques 
 [45] . Risk factors for the development of atherosclerosis, 
such as hypertension and dyslipidaemia, can elevate TF 
expression in atherosclerotic lesions and contribute to the 
thrombotic phenotype of disease, but the role of TF in 
murine atherogenesis models is still unclear  [46] . Inter-
estingly, C5a is a sufficient stimulus to induce expression 
of TF in endothelial cells  [47]  and therefore would appear 
to be relevant in inflammation-associated atherosclero-
sis. Apart from their role in progressive disease, platelets 
have also been shown to adhere to endothelial cells in 
ApoE –/–  mice before lesion development  [48] . Platelet mi-
croparticles, membranous vesicles released from activat-
ed platelets, provide surfaces which are conducive to 
complement activation via CP and AP, even in the pres-
ence of membrane-bound regulators of complement ac-
tivation  [49] . Platelet microparticles express P-selectin, 
which binds C3b and supports Bf-dependent comple-
ment activation (AP)  [50] . Importantly, platelet mic-
roparticles are detectable in mice and are thought to fa-
cilitate adhesion of monocytes to inflamed endothelium, 
leading to the formation of foam cells, but have not yet 
been studied in the existing compound complement/
LDLR/ApoE-deficient mouse models.

  Adipose Tissue Produces Complement Factors 

and Sustains Inflammation That Aggravates 

Atherosclerosis 

 Aside from being a lipid storage organ, adipose tissue 
is an endocrine organ active in the secretion of a variety 
of adipokines. The extent of its contribution to systemic 
immunity and inflammation has not yet been quantified, 
though expression of pro-inflammatory genes [e.g. inter-
leukin (IL)-6 and monocyte chemoattractant protein 
(MCP)-1] and plasticity within the tissue have been docu-
mented. Adipocytes express a pattern of Toll-like recep-
tors (TLRs) which depends on their state of differentia-
tion, meaning that a different response to inflammation 
is exhibited by pre-adipocytes and mature adipocytes. 
Adipose tissue is seen as an immune responsive organ 
based on TLR signalling and secretion of inflammatory 

markers such as cytokines, growth factors and also com-
plement components (factors B, D and C3)  [51] . The exact 
cellular origin of these mediators, including complement 
proteins, from within the adipose tissue remains an issue 
of debate. While there is certainty regarding the capacity 
of adipocytes to act as immune cells  [52] , it has been re-
ported that separation of cells from murine white adipose 
tissue produces lipid-rich floating adipocytes and a frac-
tion containing stroma-vascular cells, a mixture of pre-
adipocytes, endothelial cells and various immune cells 
 [53] . Expression of inflammation genes [tumor necrosis 
factor (TNF)- � , macrophage inflammatory protein-1 �  
and MCP-1] was found in the Mac-1 + /F4/80 + /CD68 +  stro-
ma-vascular fraction but not the leptin-positive adipo-
cyte fraction  [53] . A study investigating the production of 
adipokines from human adipose explants (containing 
adipocytes and stroma-vascular cells) and from isolated 
adipocytes in parallel found that adipokines such as IL-8, 
IL-6, vascular endothelial growth factor and TNF- �  (but 
not adiponectin and leptin) are produced by non-fat cells 
(present in adipose tissue explants but not in adipocyte 
cultures)  [54] . Therefore, studies investigating gene ex-
pression of the entire tissue, comprising a mixture of ad-
ipocytes, pre-adipocytes, macrophages, mast cells and 
endothelial cells, may provide a more useful insight into 
the potential of cells within the adipose context to modu-
late systemic disease  [55] . In our hands, methodological 
variability, especially the duration of collagenase diges-
tion, accounted for varying purity of the adipose and 
stroma-vascular subpopulations prepared from mouse 
epididymal adipose tissue.

  Nevertheless, it is clear that adipokines directly influ-
ence endothelial function, platelets and monocytes  [56]  
and for this reason are underestimated modulators of sys-
temic inflammation, together with adipose tissue-resi-
dent macrophages, which express a phenotype (M2 type) 
determined by the adipose environment  [57] . Adipose 
tissue-derived leptin, adiponectin and IL-6 have a direct 
role in endothelial dysfunction and platelet activation 
 [58] . Adiponectin is protective against early atherosclero-
sis by suppressing the production of adhesion molecules 
and cytokines (e.g. TNF- � ) from endothelial cells and 
macrophages, respectively. It also binds C1q and factor H 
(inhibitor of C3 and C5 convertases of the AP of comple-
ment activation), leading to a less pro-inflammatory en-
gagement of complement activation  [59] . Mast cell-de-
rived cytokines are integral modulators of white adipose 
tissue and energy expenditure  [60] . Adipose tissue-resi-
dent mast cells express complement properdin  [61] , but 
its importance in the generation of C3a desArg  as well as in 
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sustaining the inflammatory capacity of adipose tissue 
has not yet been investigated. Adipsin, a serine protease 
identical to human complement factor D, is produced by 
adipose tissue and secreted into the blood; genetically 
obese rats and mice show a substantial reduction of adip-
sin mRNA in their adipose tissue  [62] .

  A role for perivascular adipose tissue in the pathogen-
esis of atherosclerosis was proposed based on its chemo-
attractive capacity  [63] . Since then, studies have conclud-
ed that coronary perivascular adipose tissue is related to 
coronary artery disease in humans but also that perivas-
cular adipose tissue in mice is composed of white as well 
as brown fat with regional differences (thoracic vs. ab-
dominal aorta) and plasticity on an HFD  [64] . Adipose 
tissue, macrophages and mast cells in periarterial loca-
tions all contribute to thrombogenicity and plaque pro-
gression.

  Macrophages Express Complement Factors and Are 

Pathogenic in Vessel Wall and Adipose Tissue 

 Monocytes adhere to endothelial cells and infiltrate 
the arterial intima where they mature into macrophages 
and internalise modified LDL to become foam cells, 
characterising early arteriosclerotic lesions. oxLDL acts 
as endogenous ligand for signalling via TLR2 and TLR4, 
resulting in the release of pro-inflammatory TNF- �  by 
macrophages  [65] . Advanced atherosclerotic lesions ex-
hibit hypoxic areas; accumulating macrophages respond 
to hypoxia by up-regulating a number of genes required 
for angiogenesis and cell survival. Plaque destabilisation 
is brought about not only by matrix metalloproteinase 
(MMP)-expressing macrophages but also by mast cells. 
The levels and activity of MMP-1 and MMP-9 in human 
monocyte-derived macrophages were increased in vitro 
by the anaphylatoxin C5a, and C5a as well as MMP-1 and 
MMP-9 were found to be co-expressed in human ather-
ectomy specimens  [66] .

  Macrophages express most complement components 
and receptors but are a heterogenous and dynamic cell 
group characterised by differential expression of mark-
ers, which are not uniformly used in immunohistochem-
ical analyses of lesion material. 

  In aortas of ApoE –/–  mice (fed normal chow), sig-
nificantly more F4/80 + /C5aR +  macrophages were ob-
served at 25 weeks of age compared to wild-type controls 
(C57BL/6J). Administration of the C5a antagonist PMX53 
from 5 to 30 weeks of age led to a significant reduction in 
lipid area and size in this treated group compared to the 

untreated ApoE –/–  group, though the treatment did not 
alter the lesional content of CD68 +  macrophages  [67] . By 
contrast, in the absence of C1q or CD55, HFD-fed
LDLR –/–  mice showed fewer lesional MOMA-2 +  macro-
phages compared to LDLR –/–  controls  [28, 29] , and the 
content of Mac-3 +  (LAMP-2 + ) macrophages was higher in 
HFD-fed C3 –/– /LDLR –/–  mice compared to LDLR –/–  con-
trols  [9] . These changes relate to the increased severity of 
the lesion phenotype in each of these compound comple-
ment/LDLR-deficient models.

  Macrophage migration inhibitory factor (MIF) is a 
pro-inflammatory cytokine which attracts macrophages 
to adipose tissue in LDLR –/–  mice  [68] ; its significance in 
disease progression was deduced from studies investigat-
ing MIF –/– /LDLR –/–  mice on normal chow over 52 weeks, 
which showed a significant reduction in the atheroscle-
rotic lesion area compared to LDLR –/–  controls  [68] . In 
HFD-fed mice, the number of macrophages in adipose 
tissue is increased, and they contribute to the increase in 
C3aR expression as described elsewhere  [69] . There is a 
greater increase in pro-inflammatory CD11c +  M1-type 
macrophages (secretion of inducible nitric oxide synthase 
and TNF- � ) than CD206 +  M2-type macrophages (in-
volved in tissue remodelling via secretion of MMPs) in 
epididymal fat tissue  [70] , but this shift may critically de-
pend on the caloric value of the HFD  [71] . How comple-
ment activation-derived factors are involved in the pro-
cess of macrophage and immune cell recruitment to adi-
pose tissue during the development of obesity is an area 
that remains to be explored, although it is clear that
the proximal complement pathway (and production of
C3a desArg ) is functional, with demonstration of increases 
in C3a desArg  production in HFD-fed mice  [72] .

  The importance of M1- and M2-type macrophages in 
relation to the development of murine atheromatous 
plaques has been investigated in models using M1/M2 ex 
vivo polarised bone marrow-derived macrophages and 
ApoE –/–  mice. Of greater immediate relevance, however, 
are perivascular macrophages which, via TNF- �  secre-
tion, may activate vascular smooth muscle cells to express 
a phenotype consistent with lymphoid tissue organising 
cells  [73] . This is important because tertiary lymphoid 
organs are local immune environments, which lead to 
perpetuation of any chronic inflammatory disease. 

  F c  �  receptors (F c  � Rs) are IgG-binding receptors ex-
pressed by myeloid cells, which trigger cellular responses 
such as macrophage phagocytosis and endothelial dys-
function  [74] . F c  � RIIB inhibits the development of ath-
erosclerosis in LDLR –/–  mice, even when fed a diet of 
0.15% cholesterol and 21% fat  [75] . Although cooperation 
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between F c  � Rs and complement has been described  [76, 
77] , this has not yet been studied for atherosclerosis, even 
though anti-oxLDL antibodies are present and macro-
phage activation is a hallmark in the development of 
plaques. IL-1, IL-12, IL-18, MIF, TNF- � , interferon- �  and 
macrophage colony-stimulating factor are pro-athero-
genic cytokines, as deduced from a wealth of mouse mod-
els. Unfortunately, their levels have not been studied in 
the complement-deficient mouse models, which are in-
creasingly being used to identify a role of complement 
regulation and activation in the process of atheromatous 
plaque development. In this context, IL-12 seems of par-
ticular interest; it is produced by adipocytes during in-
flammation, it is one of the key drivers in Th1-dominated 
development of atheromatous lesions, and complement 
activation leads to an increase in IL-12 production via 
macrophage-expressed complement receptor CR3 and 
release of complement C5a  [78, 79] . 

  Perspective 

 Using genetically engineered mice, evidence for the 
differential involvement of complement in progressive 
atherogenic inflammation has been provided. Many 
questions remain. One limitation, as can be seen from the 
compilation of studies in  table 1 , is the variety of back-
grounds, use of male or female mice, feeding protocols 
and the scope of measurements. To maximise the knowl-
edge gained through these laborious in vivo studies, con-
sensus in the community on the choice of protocol would 
be desirable. Further frontiers remain; no model yet has 
addressed the role of infection, platelet function or adi-
pose tissue together with complement in the context of 
atherosclerotic disease. Because complement has humor-
al as well as cellular effects, acting systemically as well as 
locally ( fig. 2 ), the dissection of its role in complex, non-
acute disease such as atherosclerosis is bound to be dif-
ficult, in spite of the availability of specific gene-targeted 
experimental mice. 

  As part of the normal recognition of patterns, the 
complement system and the TLR-mediated response 
have so far been investigated singly in order to ascertain 
their individual roles and importance within innate im-
mune defence. More recently, the implications of the 
overlap in activation of these two pattern-effector sys-
tems have begun to be investigated. Joint activation of 
complement and TLR leading to a cellular response 
which, driven by IL-6, develops into a Th17-driven phe-
notype  [80] , is likely to play a role in atherosclerosis mod-

els incorporating an infectious precipitant. IL-17 was 
found to be significantly elevated in the walls of athero-
sclerotic vessels of HFD-fed ApoE –/–  mice by immuno-
histochemistry and RT-PCR. Further, CD4 + /IL-17 + /in-
terferon- �  +  (Th1/Th17) T cells were elevated in the 
spleens of HFD-fed ApoE –/–  mice at the late stage, and 
their numbers correlated with the plaque area  [81] . There-
fore, it will be of interest in future to follow the modula-
tion of this cellular phenotype in complement-deficient 
experimental mouse models of atherosclerosis.

  Current therapeutics target risk factors for cardiovas-
cular events, which are associated with atherosclerosis, 
such as platelet aggregation and elevated cholesterol and 
triglyceride levels  [5] . Since its discovery as a targetable, 
significant mediator of mortality due to sepsis, inhibition 
of C5a-mediated signalling has been pursued in pre-clin-
ical and clinical trials  [82] . A C5a antagonist was not 
found to reverse the complexity of atherosclerotic histo-
pathology; rather it significantly reduced plaque lipid ar-
eas  [83] . Others see an application of complement activa-
tion inhibitors in the acute phases of chronic disease  [84] . 
The aim of the experimental mouse model work is to 
identify complement factors which, if significantly im-
portant in the pathogenesis of disease, could be targeted 
in order to interfere with the natural progression of ath-
eroma development. However, mechanisms by which 
these individual factors exert their significant actions are 
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  Fig. 2.  Complement – an agent in activation of cells and intercel-
lular communication. 
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not yet clear ( fig. 3 ). Assessing the contribution of com-
plement by investigating complement-deficient mice at a 
protracted endpoint may miss these important temporal 
factors; the effect of complement might well be to sustain 
the pathologic process over time, but complement may 
also have a more instructive role early on in disease de-
velopment (such as M1/2 biasing  [85] ). Alternatively, as 
the disease progresses, there may be a qualitative change 
in the involvement of complement, such as when shear 
stress of endothelial cells (relevant in areas of plaque for-
mation) increases properdin expression  [86] .

  So far, complement has been viewed in a mainly pro-
inflammatory capacity; its relevance in lipid metabolism 

is only beginning to be investigated more thoroughly. In 
fact, its role in atheroprotection/atherogenesis may oper-
ate via regulation of lipid metabolism; the most recent 
findings using a CD55 –/– /ApoE –/–  model suggest that 
C3a desArg  levels may provide the missing link between 
diet, blood biochemistry and vascular changes  [30] .

  The approach, namely to dissect into small parts those 
components which we seek to understand in detail, to 
then put together as a greater whole, i.e. to synthesise, in 
order to gain fuller understanding of the experiments 
and reality, reminds us of the Cartesian method of sci-
ence. It is becoming clear that in order for this process to 
be meaningful physiologically, present avenues in athero-
sclerosis research need to be extended to include, for ex-
ample, the role of complement in adipose tissue enhanced 
platelet/leukocyte aggregates (a connection between the 
latter two entities has been made  [87] ) as well as the role 
of complement in the interactions between renal failure 
and adipose tissue  [88] . Great advances are to be expected 
from a multidisciplinary approach. 
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