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Abstract

In this paper we study the role of context in existing state-

of-the-art detection and segmentation approaches. Towards

this goal, we label every pixel of PASCAL VOC 2010 de-

tection challenge with a semantic category. We believe this

data will provide plenty of challenges to the community, as

it contains 520 additional classes for semantic segmenta-

tion and object detection. Our analysis shows that near-

est neighbor based approaches perform poorly on semantic

segmentation of contextual classes, showing the variability

of PASCAL imagery. Furthermore, improvements of exist-

ing contextual models for detection is rather modest. In

order to push forward the performance in this difficult sce-

nario, we propose a novel deformable part-based model,

which exploits both local context around each candidate de-

tection as well as global context at the level of the scene.

We show that this contextual reasoning significantly helps

in detecting objects at all scales.

1. Introduction

Humans perceive the visual world effortlessly. We look

at a complex and cluttered scene and know that the tiny ob-

ject on the table is a fork and not the tail of an elephant. We

know that the object hanging on the wall is more likely to be

a picture or even a moose head than a car, and that a highly

deformable entity stretching on the sofa is more likely to

be a cat than a tiger. Context is a statistical property of the

world we live in and provides critical information to help us

solve perceptual inference tasks faster and more accurately.

Cognition-based studies have proved the effect of con-

text in various perceptual tasks such as object detection,

semantic segmentation and scene classification. The sem-

inal work of Biederman et al. [3] and Hock et al. [17]

showed that contextual information such as biases in ob-

ject arrangements in particular scenes, relative physical size

to other objects, and location are important cues for humans

to detect objects. Furthermore, it is known that humans re-

quire a longer time to detect out of context objects. In a

recent study, Parikh et al. [27] showed that context is an
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Figure 1. Examples of our annotations, which contain semantic

segmentation of 540 categories in the PASCAL VOC 2010.

effective cue for humans to detect low-resolution (and typ-

ically small) objects in images. For object segmentation,

Torralba [35] showed that at lower resolutions where only

coarse scene information can be perceived, humans perform

surprisingly well in delineating the most salient objects in

the scene. In [26], the authors showed that humans are

worse than machines at classifying small image patches but

are far better when more contextual information is available.

In this paper, we are interested in further analyzing the

effect of context in detection and segmentation approaches.

Towards this goal, we label every pixel of the training and

validation sets of the PASCAL VOC 2010 detection chal-

lenge with a semantic class. We selected PASCAL as our

testbed as it has served as the benchmark for detection and

segmentation in the community for years (over 600 citations

and tens of teams competing in the challenges each year).

Our analysis shows that our new dataset is much more chal-

lenging than existing ones (e.g., Barcelona [34], SUN [38],

SIFT flow [25]), as it has higher class entropy, less pixels

are labeled as “stuff” and instead belong to a wide variety

of object categories beyond the 20 PASCAL object classes.

We analyze the ability of state-of-the-art methods [34, 7]

to perform semantic segmentation of the most frequent

classes, and show that approaches based on nearest neigh-

bor (NN) retrieval are significantly outperformed by ap-

proaches based on bottom-up grouping, showing the vari-
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ability of PASCAL images. We also study the performance

of contextual models for object detection, and show that ex-

isting models have a hard time dealing with PASCAL im-

agery. In order to push forward the performance in this dif-

ficult scenario, we propose a novel deformable part-based

model, which exploits both local context around each can-

didate detection as well as global context at the level of the

scene. We show that the model significantly helps in detect-

ing objects at all scales and is particularly effective at tiny

objects as well as extra-large ones.

2. Related Work

A number of approaches have employed contextual in-

formation in order to improve object detection [5, 28, 19,

36, 16, 9, 11]. This contextual information can be in the

form of global scene context [36], ground plane estima-

tion [28], geometric context in the form of 3D surface ori-

entations [19], relative location [10], 3D layout [31, 14, 24],

spatial support and geographic information [11]. In [16],

contextual relationships between regions are found in an un-

supervised manner and objects are detected using a discrim-

inative approach. A context-driven search is proposed in [1]

to focus on limited areas in the image to find the objects of

interest. Torralba et al. [37] penalize the presence of objects

in irrelevant scenes. In [9], spatial and co-occurrence priors

are combined with local detector outputs and global image

features to detect objects. The layout of familiar objects is

used in [21] as context to find regions corresponding to un-

familiar objects. For both detection and segmentation, it has

been shown that representing a region larger than an object

itself leads to better performance [32, 6, 22, 8].

Holistic models that reason about the scene as a whole

typically build strong contextual models to improve perfor-

mance over tasks in isolation. [20, 40, 6] propose CRF mod-

els that reason jointly about object detection, image labeling

and scene classification. In [29], the contextual consistency

of inferred segment labels is imposed. In [23], improved

performance is shown for scene classification when using a

bank of object detectors instead of raw image features.

In recent years, a lot of effort has been invested in col-

lecting densely labeled datasets. MSRC [32] was one of the

first datasets with pixel-wise image labels, containing 592

images and 21 semantic classes. Camvid [4] contains 708

images of street scenes with 11 semantic classes. Recently,

Liu et al. [25] released the SIFT flow dataset that contains

2688 images and 33 semantic labels, which are dominated

by “stuff”. SUN2012 [38], a subset of LabelMe, consists of

16873 images and 3819 object classes, most with only few

training examples. Barcelona [34] is another subset of La-

belMe, which includes 15150 images and 170 categories.

Silberman et al. [33] released a dataset of indoor scenes

containing 1449 RGB-D images and 894 object labels. The

PASCAL VOC challenge has 11,530 training images con-

taining 27,450 ROI annotated objects and 6,929 segmenta-

tions pertaining to 20 object classes. In this paper, we enrich

these efforts, by labeling PASCAL VOC with pixel-wise ac-

curate segmentation in terms of 520 additional classes.

3. A Novel Contextual Dataset for PASCAL

Our dataset contains pixel-wise labels for the 10,103

trainval images of the PASCAL VOC 2010 detection

challenge (Fig. 1 shows example labels). There are 540 cat-

egories in the dataset, divided into three types: (i) objects,

(ii) stuff and (iii) hybrids. Objects are classes that are de-

fined by shape. This includes the original 20 PASCAL cat-

egories as well as classes such as fork, keyboard, and cup.

Stuff denotes classes that do not have specific shape and ap-

pear as regions in images, e.g., sky, water. Hybrid classes

are classes for which shape is so variable that it cannot be

easily modeled, e.g., roads have clear boundaries (unlike

sky), but their shape is more complex than the shape of a

cup.

Our annotation effort took three months of intense label-

ing performed by six in-house annotators. This resulted in

much more accurate segmentations than when using online

systems such as MTurk. While this increased the labeling

cost significantly, we wanted to assure the highest possible

accuracy and consistency of the annotations. The annota-

tors were asked to draw a region and assign it a label using

an interface similar to LabelMe [30]. There are about 12

regions in each image on average and the annotators spent

about 3 to 5 minutes per image.

We provided the annotators with an initial set of 80 care-

fully chosen labels and asked them to include more classes

if a region did not fit into any of these classes. Some cases

were ambiguous to annotate; for example, the annotators

were not sure how to label a tree visible through a window.

We decided to go for a rich set of annotations, and thus al-

lowed some pixels to have multiple labels (tree and window

in this example). If the annotators were unable to recognize

a region, they labeled it as unknown. We double checked

each annotation and revised the ones that were not coherent

in terms of category name or the region covering the object.

As expected the categories follow a power law distribu-

tion. For the analysis conducted in this paper, we select the

59 most frequent classes and assign to the rest the back-

ground label. As a consequence 87.2% of the pixels are la-

beled as foreground, and the rest as background. Note that

the 20 object classes of PASCAL VOC cover only 29.3%
of the pixels. Fig. 2 shows the distribution of pixels and

images amongst these 59 most frequent categories.

Comparisons to existing contextual datasets: Several

datasets exist that have been labeled with contextual classes.

Notable examples are the Barcelona [34], SIFT flow [25]

and SUN [38] datasets. We now show that our PASCAL-
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Figure 2. Distribution of pixels and images for the 59 most frequent categories. See text for the statistics.

context dataset has different statistics and is more challeng-

ing, and thus worth our efforts. Among the 35 most frequent

categories of SUN [38], 87.2% of the pixels are “stuff”,

94.5% for Barcelona [34], while 60.1% for PASCAL. Thus,

the number of “things” and “stuff” pixels is more balanced

in PASCAL. The entropy1 for the most frequent 35 classes

in Barcelona is 1.78, for SUN is 2.11 and for PASCAL is

3.11, which shows that more pixels are assigned to fewer

classes in SUN and Barcelona. Thus, PASCAL images are

more diverse than SUN’s and Barcelona’s.

Furthermore, PASCAL has served as the bench-

mark for detection and segmentation in the commu-

nity for years. With the leaderboard made public just

recently (http://host.robots.ox.ac.uk:8080/

leaderboard), its popularity will even increase. Our an-

notations provide the community with dense labeling and

520 additional classes, thus giving plenty of information to

exploit and new challenges to develop.

4. Object Detection In Context

In this section, we perform a detailed analysis of ex-

isting contextual models for detection in our PASCAL–

CONTEXT dataset. Finally, we design a new contextual

model, which is able to better exploit contextual informa-

tion than existing approaches.

4.1. Existing contextual models

We explore two existing contextual models for object de-

tection: DPM context re-scoring by Felzenswalb et al. [12]

and Hierarchical Context by Choi et al. [9].

DPM Context re-scoring: The deformable parts-based

model (DPM) [12] exploits contextual information in a sim-

ple way. Context re-scoring is used as a post processing

step, which assigns a new score to each detected bounding

box. The new score takes into account DPM scores of all

other classes in an image, thus taking into account object

co-occurrences in scenes, as well as the location and size of

1For each category, we divide the number of pixels of that category

to the total number of pixels in the dataset. This probability is used to

compute entropy.

the box in order to exploit typical imaging biases. We make

a slight modification by augmenting the original contextual

features with the maximum confidence for 33 contextual

categories, where the confidence of each such category is

computed via a semantic segmentation method (details in

Sec. 4.3).

Hierarchical Context: We investigated the contextual

model of [9] which also re-scores DPM boxes. They as-

sume a parent-child relationship between different objects

and learn co-occurrence and spatial priors for objects re-

lated in the tree. Their goal is to infer which objects are

present in the scene, the set of correct detections amongst

candidates and their locations given global image features

(i.e., GIST) and the output of DPM.

4.2. A New Contextual Model

We designed a novel category level object detector,

which exploits the global and local context around each

candidate detection. By global context we mean the pres-

ence or absence of a class in the scene, while local context

refers to the contextual classes that are present in the vicin-

ity of the object. Following the success of [13], we exploit

both appearance and semantic segmentation as potentials

in our model. Our novel contextual model is a deformable

part-based model with additional random variables denot-

ing contextual parts, also deformable, which score the “con-

textual classes” around the object. Additionally, we incor-

porate global context by scoring context classes present in

the full image. This allows us to bias which object detectors

should be more likely to fire for a particular image (scene).

Unlike most existing approaches that re-score a set of

boxes during post-processing, we perform contextual rea-

soning while considering exponentially many possible de-

tections in each image. This is important as re-scoring-

based approaches cannot recover from mistakes when the

true object’s bounding box does not appear among the set

of detected boxes. An alternative is to reduce the detection

threshold, but this will increase the number of false posi-

tives, lowering precision and increasing computation time.

We follow the notation of [12], and define the root p0
as a random variable encoding the location and scale of a

http://host.robots.ox.ac.uk:8080/leaderboard
http://host.robots.ox.ac.uk:8080/leaderboard


bounding box in an image pyramid as well as the mixture

component id. This mixture is used to represent the appear-

ance variability e.g., due to viewpoint. Let {pi}i=1,··· ,K be

a set of appearance parts which encode part boxes at dou-

ble the resolution of the root. Denote with {cj}j=1,··· ,C a

set of variables describing the placement of our contextual

parts. We model deformations between the root and both

types of parts, penalizing the displacements with respect to

an anchor position. These anchors represent the expected

location of each part type with respect to the root. The ap-

pearance parts model discriminative/semantic parts of the

object and are thus mostly inside the root’s box, while the

contextual parts model the typical surrounding of the ob-

ject of a particular class, and are thus outside of the root’s

box. Following [12], we learn the anchors for the appear-

ance parts from the training data. We use four contextual

parts corresponding to the top, bottom, left and right side of

the root filter. For the top/bottom parts, the height is set to

1/3 of the height of the root filter and the width is the same

as the root’s. Fig. 3 illustrates the graphical model.

The detection problem is framed as inference in a

Markov Random Field (MRF) [12], which scores each con-

figuration of the root filter, as well as the two types of parts.

We thus write the score of a configuration as the sum of four

terms, appearance, context, and deformation:

E(p, c) = Eapp(x,p) + Ectx(x, c) + Edef (p) + Ec.def (c),

where x is the image, c is the set of contextual part place-

ments and p = {p0, · · · , pK}, the root location, scale and

component id, as well as the placements of the appearance

parts. Assuming a log-linear model, we define

E(p, c) =

K∑

i=0

w
T
i · φ(x, pi)

︸ ︷︷ ︸

appearance

+

K∑

i=1

w
T
i,def · φ(p0, pi)

︸ ︷︷ ︸

part deformation

+

+

C∑

j=1

w
T
j,lcφ(x, cj)

︸ ︷︷ ︸

local context

+

C∑

j=1

w
T
j,c.defφ(p0, cj)

︸ ︷︷ ︸

context deformation

+ w
T
gcφgc(x)

︸ ︷︷ ︸

global context

As in [12], we use a HOG pyramid to compute φ(x, pi). For

both deformation costs we use the quadratic cost of [12].

We employ semantic segmentation to compute features

for the contextual parts. In particular, we employ counts of

pixels belonging to each contextual class inside each con-

text part’s box, normalized by the area of the part’s box. We

concatenate the normalized counts for all context classes to

form our segmentation feature for each context part. As

each feature is only summing within an area, it can be com-

puted in constant time by employing a single integral image

per context class. Note that our model is agnostic to the

segmentation algorithm used. We explain our choice in 4.3.

K

pi

c1

c3

c2

c4

p0

Figure 3. Our model: Context boxes are shown in color and cor-

respond to top, bottom, left, and right boxes around the root filter.

For global context, we use a binary feature for each class,

where 1 indicates that at least 1000 pixels were labeled with

this class in the segmentation output. Note that global con-

text does not depend on location, but on the class, and we

learn a different weight for each class. We only use con-

textual classes and not also the object ones. This feature

influences the detection score depending on global image

information (i.e., type of scene): e.g., if the image only con-

tains pixels labeled as “sky” in the segmentation output, we

are more likely to see a “plane” or “bird” and not a “tv”.

Learning: We learn the model using latent structured

SVMs. We utilize a 0-1 loss function based on IOU [15].

Stochastic gradient descent is used to optimize the non-

convex objective. For initialization, we first train a mixture,

root-only model as in [15], without context. We then add

contextual parts, initializing the weights to 0, and perform

several learning iterations of the model. We finally add the

appearance parts, and train the full model using warm start.

Inference: Our model forms a tree, and thus exact in-

ference is possible using dynamic programming. We start

with the leaves, which require computing the score for each

root filter, appearance and contextual parts. For the context

parts, we first compute integral images for each contextual

class, and then score a part in every location and scale of

the pyramid. From here on, dynamic programming is ag-

nostic about the type of part (appearance or context), thus

computing the deformations and the final score as in [12].

4.3. Contextual Segmentation Features

In order to decide on a particular segmentation algorithm

to compute the features in our model we investigate two

state-of-the-art algorithms: SuperParsing [34] and O2P [7].

SuperParsing [34] performs scene-level matching with

the training set followed by superpixel matching. It then

employs an MRF to incorporate neighboring contextual in-

formation. Performance is shown in Table 2. We employ

IOU as well as recall as our metrics, where recall is just the

percentage of correctly labeled pixels. We believe the main

reason for the rather low performance is the high variability



Recall IOU Recall IOU

bag 1.4 1.3 food 16.3 14.9

bed 4.9 4.5 mouse 1.0 1.0

becloth 0.1 0.1 plate 11.5 9.6

bench 0.2 0.2 platform 10.5 10.2

book 11.7 9.6 rock 7.8 7.4

cabinet 6.9 6.3 shelves 14.9 10.2

clothes 4.3 3.9 sidewalk 0.5 0.5

computer 0.0 0.0 sign 10.7 9.9

cup 1.7 1.6 snow 18.6 17.0

curtain 21.9 19.1 truck 0.6 0.6

door 9.1 7.6 window 3.1 2.5

fence 12.0 10.0 wood 1.3 1.3

flower 13.2 12.5 light 14.6 12.4

Avg. 7.6 6.7

Table 1. The subset of 59 most frequent classes that have low seg-

mentation accuracy according to O2P [7] results.

of PASCAL images, i.e., nearest-neighbor methods do not

generalize well, requiring larger training sets.

O2P [7] uses shape-informed features to predict the

amount of region’s overlap with a GT segment for each

class. The original method worked with bottom-up region

proposals which were trained to detect object-like regions.

Since our 59 classes of interest also include a large set of

hybrid and stuff classes we decided for an alternative ap-

proach. In particular, we compute UCM superpixels [2],

resulting in 67 superpixels per image on average. We then

learn a classifier on the superpixels to predict their class us-

ing features based on SIFT, colorSIFT, and LBP as in [7].

As the output label of each superpixel we take the class

with the highest confidence, and assign the background la-

bel if the scores of all foreground classes fall below a thresh-

old, set to 0.35 empirically. As shown in Table 2, the per-

formance of this approach is much higher than SuperPars-

ing’s. We thus choose to use it in our contextual detection

model. In particular, accuracy for the “stuff” classes is very

high (e.g., sky has 87% IOU, water 68%, grass 65%). Some

classes are, however, very difficult to segment (Table 1).

Thus, to form our contextual features, we decided to not use

classes in Tab. 1, and work only with 33 classes in Tab. 2.

4.4. Analysis of Contextual Detection Models

In this section, we analyze the results of the differ-

ent contextual models. We used [9]’s implementation of

the Hierarchical Context model, and the context re-scoring

method of [12]. In both cases, we tuned their parameters to

obtain the best possible performance. The training and eval-

uation have been performed on the train and val subsets

of PASCAL VOC 2010 detection, respectively.

As shown in Table 3, our approach achieves the highest

performance. For some classes our model is more effective,

e.g., for bottle, sheep, or person the performance is 2-3%

AP higher than the state-of-the-art method of [13], and pro-

vides 7-8% AP improvement for car and train. On the other

hand, the performance for bicycle degrades, as the super-

pixels providing context cross the object boundary most of

the time. Example detections are shown in Fig. 5.

Recall IOU

SuperParsing [34] O2P [7] SuperParsing [34] O2P [7]

sky 88.8 95.1 83.0 87.1

water 44.4 74.6 42.4 67.9

grass 67.0 76.8 55.7 64.3

bus 23.0 71.7 23.8 58.1

tree 64.8 70.5 52.2 56.0

cat 37.1 70.2 32.7 53.5

aeroplane 29.6 67.2 30.6 52.6

motorbike 25.7 66.1 24.9 51.4

person 72.6 62.8 48.2 50.3

wall 65.8 73.1 46.1 48.9

road 23.0 55.1 22.0 48.6

car 31.2 58.2 29.1 46.9

bicycle 16.5 55.6 16.2 44.6

keyboard 0.2 55.4 0.1 44.4

ground 48.9 51.9 38.7 41.7

floor 25.5 57.5 22.0 41.0

sheep 5.0 44.2 5.3 40.6

dog 18.8 46.9 17.5 39.9

bird 4.9 49.0 4.9 39.6

train 16.6 47.7 16.5 38.8

horse 2.2 44.9 2.1 38.8

tvmonitor 10.8 52.5 11.4 38.4

track 22.1 44.4 20.6 32.7

mountain 9.6 39.5 9.4 32.4

building 45.8 38.1 32.9 31.9

boat 0.9 37.5 1.1 31.7

pottedplant 1.1 35.9 1.2 29.4

sofa 4.4 33.6 5.5 28.2

table 9.4 33.7 7.0 27.7

bottle 1.3 35.4 1.4 27.7

ceiling 9.5 30.1 8.7 25.9

cow 0.1 25.0 0.1 24.0

chair 3.4 22.0 3.6 16.0

Avg. 25.1 52.2 21.7 42.4

Table 2. Segmentation: Nearest-neighbor methods such as [34]

do not work well on PASCAL due to the high variability of images.

In contrast the O2P classifier [7] on superpixels performs well.

We tested [9] with our annotated contextual classes, and

obtained marginal improvement (about 0.1 AP). To inves-

tigate the upper bound on the performance of this model,

we used ground-truth (GT) information for context classes

(excluding the 20 PASCAL classes) for both training and

testing. Despite using GT, the improvement that [9] pro-

vides over DPM is quite marginal. We also evaluated DPM

context rescoring [12] with our contextual classes. We per-

formed the experiment in two settings with the original 20

object classes and also with 33 context classes. Adding

more context classes does not help the method significantly.

We next analyze the effect of context when detecting dif-

ferent sizes of objects. We adopt the convention of [18]

that cluster objects into XS (extra small), S (small), M

(medium), L (large), and XL (extra large). As shown in

Table 4, context improves detection for all sizes when using

our method. The improvement is the largest for very small

or very large objects. The appearance cues are weak for

small objects, and they can be recognized mainly by their

surrounding context (e.g., a boat that is far away from the

camera has just a few pixels, but the water surrounding the

boat provides a strong cue for detecting it). Very large ob-

jects are typically truncated making their detection hard for

approaches that rely solely on appearance. This is not con-

sistent with the claim of [11] that context is most useful only



aeroplane bicycle bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train tv mAP

DPM [12] 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 10.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6

[9] + 33 context 46.2 40.5 10.5 12.4 16.5 53.2 36.2 28.2 17.2 8.3 14.5 18.8 27.9 35.4 41.9 9.3 28.7 19.9 38.6 28.6 26.7

[9] + GT 33 context 48.8 43.1 11.9 14.3 25.1 53.2 43.1 26.0 14.5 13.4 9.2 15.0 30.0 36.9 36.7 10.9 31.6 22.4 41.5 35.5 28.2

DPM rescoring [12] + 20 context 44.3 51.3 7.1 8.0 21.8 56.0 41.2 18.4 13.8 11.7 10.4 13.5 38.3 42.7 44.6 3.7 27.0 24.3 38.0 32.2 27.4

DPM rescoring [12] + 33 context 46.4 50.8 7.5 8.2 21.2 55.3 41.6 20.0 14.7 11.8 11.6 13.9 37.9 40.2 45.1 4.2 24.1 27.6 40.8 33.9 27.8

Ours + 20 context 46.9 50.1 9.2 9.5 30.1 57.2 44.1 30.7 12.7 15.1 12.9 14.2 35.6 44.8 44.0 4.9 30.6 20.1 42.2 34.8 29.5

Ours + 33 context 49.8 48.8 12.0 10.8 29.1 55.2 45.6 32.0 14.2 12.6 13.7 16.6 39.8 44.2 45.1 8.2 35.3 26.0 42.3 34.3 30.8

Table 3. Avg. Precision for detection of 20 PASCAL categories using 20 and 33 classes as context. The contextual information encoded by

our contextual parts significantly outperforms the original DPM and other contextual models.

XS S M L XL

DPM [12] 2.1 19.6 37.4 46.9 37.0

[9] + GT 33 context 4.6 22.7 36.1 44.2 34.5

DPM rescoring [12] + 33 context 2.5 20.0 38.5 48.0 41.0

Ours + 20 context 6.1 24.1 39.5 50.7 44.1

Ours + 33 context 7.6 25.8 41.1 53.1 46.8

Table 4. Effect of context as a function of size. Following [18], we

have shown Normalized Average Precision across all categories to

make the result of different size classes comparable.

for small objects in PASCAL. Another interesting observa-

tion is that although [9]+GT context performs better than

DPM context rescoring, its performance for large objects is

lower. Also, DPM rescoring has the most improvement for

extra-large objects, but it is not very useful for small objects.

We also analyze how context affects false positives. For

this purpose, we consider top 2000 false positive detections

for each class and compute the confusion matrix for all ap-

proaches. We then subtracted the DPM confusion matrix

from the confusion matrix of all contextual models. The

results are shown in Fig. 4. There are some interesting

trends. DPM context re-scoring is quite good at reducing

the false positives from similar categories (e.g., cow-horse,

bird-aeroplane, or car-bus), however, [9] and our method

increase the confusion between objects that appear in simi-

lar context. Our method and [9] are mainly good at remov-

ing out-of-context objects, e.g., they reduce the confusion

between cat and aeroplane, while DPM re-scoring increases

it. Our method outperforms [9], for example, we reduce

boat-aeroplane or train-bus confusion, but [9] increases it.

5. Object Segmentation In Context
We also evaluate the effect of context for object segmen-

tation. Towards this goal, we augment the method of [7]

with a simple feature which exploits the contextual classes

in a region around the candidate bottom-up region. We

choose [7] as it has been amongst the winners of PASCAL

VOC segmentation challenge every year. It relies on a set of

bottom-up object hypotheses which are computed by solv-

ing repetitively a figure/ground energy with different pa-

rameters and seeds via parametric min-cuts. This way of

generating segments is called CPMC. These class indepen-

dent hypotheses (segments) are then ranked based on a set

of mid-level cues that capture general object characteristics.

O2P [7] performs segmentation by classifying and pasting

high-ranked hypotheses into the image.

To integrate context with [7], for each CPMC segment,

we consider a bounding box around the segment, which

is 5/3 times bigger than the tightest box around the seg-

ment along each dimension. For each bounding box, we

remove the segment from it and extract the context fea-

ture on the rest of the pixels. Our contextual feature is a

vector whose elements correspond to the maximum confi-

dences from O2P for the context classes depicted in Table 2.

Our experiments show that adding a simple contextual fea-

ture produces nearly as much improvement as sophisticated

methods that have been developed recently (e.g., [39]). The

results are shown in Fig. 6 and Table 5. This is very encour-

aging, as we expect that encoding higher-level contextual

information would provide even better performance.

6. Conclusions

In this paper, we studied the role of context in detection
and segmentation approaches. Towards this goal, we
labeled every pixel of the PASCAL VOC 2010 detection
challenge. Our analysis showed that NN-type approaches
perform very poorly in segmentation due to the variability
of PASCAL imagery. Furthermore, improvements of
existing contextual models for detection is rather modest.
We have proposed simple ways to explore context in
segmentation and detection and show their effectiveness.
We expect our efforts to provide the community with plenty
of new detection and segmentation challenges.
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(b) DPM re-scoring [12]
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(c) Ours

Figure 4. Analysis of false positives in different contextual methods. The confusion matrices correspond to subtracting the DPM confusion

matrix from the confusion matrix of each of the methods. To make a fair comparison, we consider top 2000 false positives for all methods.
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Figure 5. Objects that are missed by DPM, but correctly localized when we incorporate context. We show the top detection of DPM, GT

context labeling, context prediction by O2P and the result of our context model. Inferred context boxes are shown with different colors.
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Figure 6. The result of augmenting O2P [7] with a simple contextual feature.

bg aeroplane bicycle bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train tv Avg.

O2P [7] 79.6 48.2 32.5 38.7 29.6 32.8 61.1 46.7 50.4 12.4 33.9 12.4 36.8 36.3 46.0 49.0 20.8 41.6 17.0 36.7 41.6 38.29

O2P [7] + 13 context 79.4 52.4 32.8 40.1 33.1 34.4 60.5 47.8 50.2 12.8 32.8 13.0 36.3 36.9 44.5 48.6 20.1 41.8 16.7 40.1 40.7 38.83

Table 5. The result of object segmentation on PASCAL 2010 object detection subset. We augment [7] with a simple context feature. The

improvement is in the same range as recent sophisticated methods such as [39].
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