
The Role of Critiquing in
Cooperative Problem Solving

GERHARD FISCHER, ANDREAS C. LEMKE, THOMAS MASTAGLlO,
and ANDERS I. MORCH
University of Colorado, Boulder

Cooperative problem-solving systems help users design solutions themselves as opposed to
having solutions designed for them. Critiquing-presenting a reasoned opinion about a user's
product or action-is a major activity of a cooperative problem-solving system. Critics make the
constructed artifact "talk back" to the user. Conditions under which critics are more appropriate
than autonomous expert systems are discussed. Critics should be embedded in integrated design
environments along with other components, such as an argumentative hypertext system, a
specification component, and a catalog. Critics support learning as a by-product of problem
solving. The major subprocesses of critiquing are goal acquisition, product analysis, critiquing
strategies, adaptation capability, explanation and argumentation, and advisory capability. The
generality of the critiquing approach is demonstrated by discussing critiquing systems developed
in our group and elsewhere. Limitations of many current critics include their inability to learn
about specific user goals and their intervention strategies.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine
Systems-human factors; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval; J.6 [Computer Applications]: Computer-Aided Engineering-computer-aided design;
K.3.1 [Computers and Educationl: Computer Uses in Education

General Terms: Design, Human Factors

Additional Key Words and Phrases: Cooperative problem-solving systems, critics, critiquing,
design environments, high-functionality computer systems, intelligent support systems

1. INTRODUCTION

The critiquing approach is an effective way to use computer knowledge bases
to aid users in their work and to support learning. Our experience with this
approach consists of several years of innovative system building, integration

This research was partially supported by grant N00014-85-K-0842 from the Office of Naval
Research, grants IRI-8722792 and IRI-9015441 from the National Science Foundation, grant
MDA903-86-C0143 from the Army Research Institute, and grants from the Intelligent Interfaces
Group at NYNEX and from Software Research Associates (SRA), Tokyo.
Authors' addresses: G. Fischer and A. C. Lemke, Department of Computer Science and Institute
for Cognitive Science, University of Colorado at Boulder, Boulder, CO 80309. T. Mastaglio, U.S.
Army TRADOC, P. O. Box 298, Fort Monroe, VA 23651; A. 1. Morch, NYNEX Science and
Technology, 500 Westchester Avenue, White Plains, NY 10604; email: gerhard@cs.colorado.edu,
andreas@cs.colorado.edu, mastaglt%mon1@leavemh.army.mil, anders@nynexst.com.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and lor
specific permission.
© 1991 ACM 1046-8188/91/0400-0123 $01.50

ACM Transactions on Information Systems, Vol. 9, No.3, April 1991, Pages 123--151.

124 G. Fischer et aL

of cognitive and design theories, empirical observations and evaluation of
prototypes. In this paper, we discuss the role of critiquing in cooperative
problem solving. By illustrating the approach with examples from our own
work and critics developed by others, we develop a general characterization
of the critiquing process. We conclude with a discussion of potential future
research on the critiquing paradigm.

2. THE ROLE OF CRITIQUING IN COOPERATIVE PROBLEM SOLVING

2. 1 Cooperative Problem Solving

Cooperative problem solving [15,41, 60, 63] in the context of this paper refers
to cooperation between a human and a computer. To design successful
cooperative problem-solving systems, issues such as what role each partner
should play, when to take the initiative and how to communicate to the other
partner must be resolved. These issues are shared with two related but
different research areas: Computer-Supported Cooperative Work (CSCW) [33],
which describes the cooperation between humans mediated by a computer
and Distributed Artificial Intelligence [5], which refers to cooperation between
computer systems. Cooperative problem solving requires more from a system
than having a nice user interface or supporting natural language dialogs.
The design of cooperative problem-solving systems must be based on a theory
of problem solving that describes the functions of shared representations,
mixed-initiative dialogues, argumentation and management of trouble. Coop
erative problem-solving approaches exploit the asymmetry of the communica
tion process. Humans use common sense, define the common goal, decompose
problems into subproblems and so on. Computers provide external memory
for the human, insure consistency, hide irrelevant information and summa
rize and visualize information.

Cooperative problem-solving systems are examples of human-computer
cognitive systems [66]. They serve as cognitive amplifiers of the human. The
goal of building such cooperative systems challenges the predominant goal of
artificial intelligence: understanding and building autonomous, intelligent,
thinking machines. Along with many other researchers [60], we believe that
building cooperative problem-solving systems and interactive knowledge me
dia is at least as important a goal as building autonomous thinking ma
chines. The major difference between classical expert systems, such as MYCIN
[6] and Rl [45], and cooperative problem-solving systems involves the roles of
the human and computer. Most expert systems ask the user for input, make
all decisions and then return an answer. In a cooperative problem-solving
system, the user is an active agent empowered by the system's knowledge.

In this paper, we review critiquing systems in which the human generates
an artifact and the computer critiques it. This is not the only role we have
explored for critiquing. Alternately, computers can propose solutions and the
humans subsequently critique and modify them. Examples of this latter
approach are discussed by Nieper-Lemke [48] for layout of graphs and by
Fischer and Stevens [29] for filters that reduce large information spaces. In
both examples, the systems have algorithms for creating a first approxima-

ACM Transactions on Information Systems. Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 125

tion of the desired artifact, which the users can then critique and modify. To
generate the first approximations, the systems collect information about the
graphs and the information spaces that is not necessarily known to the users.

The following aspects of cooperative problem solving are of special interest
in this paper:

- Breakdowns in cooperative problem-solving systems are not as detrimental
as in expert systems. One can never anticipate or "design away" all of
the misunderstandings and problems that might arise in achieving a
goal. System resources are needed to recognize and deal with the
unexpected. A cooperative system needs to deal with open problems
and know about the human problem solver's intentions, which often
change during problem solving.

-Background assumptions do not need to be fully articulated. Suchman [61]
argues that background assumptions cannot be fully inventoried in any
formal system. It is a strength of human experts that they know the
larger problem context, which enables them to solve ill-defined prob
lems and to learn while solving problems. This learning improves the
conceptual structure of their knowledge. Experts can judge the rele
vance of design knowledge to design problems and they know when
design rules should be broken. Expert performance degrades gracefully
as they attempt to solve problems that are further removed from the
core of their expertise. Current expert systems are limited in these
capabilities.

-Semiformal system architectures are appropriate. Semiformal computer
systems need not be capable of interpreting all information structures
available to them. The systems deliver information to humans and
humans read and interpret it. Semiformal systems can be used more
extensively in cooperative systems than in expert systems and will play
a large role in the design of effective joint human-computer systems.

-Delegation problem. Automating a task or delegating it to another person
requires that the task be precisely described. Most tasks involve many
background assumptions that delegators are incapable of describing.
The cooperative approach eliminates the need to perfectly specify tasks.
Instead, the cooperating agents incrementally evolve an understanding
of the task.

-Humans enjoy "doing" and "deciding." Humans often enjoy the process
and not just the product; they want to take an active part. This is why
they build model trains, why they plan their vacations, and why they
design their own kitchens. Automation is a two-edged sword. At one
extreme, it is a servant, relieving humans of the tedium of low-level
operations and freeing them for higher cognitive functions. Many
people do not enjoy checking documents for spelling errors, and wel
come the automation provided by spelling checkers in word processors.
At the other extreme, automation can reduce the status of humans to
"button pushers" and strip their work of its meaning and satisfaction.
People's willingness to delegate tasks depends on the extent to which

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

126 G. Fischer et aI.

they trust they will receive satisfactory solutions. Critics allow-and
indeed force-them to exercise a great deal of personal control over,
and to take responsibility for, the design of the product.

2.2 The Critiquing Approach

Critiquing is a major activity of a cooperative problem-solving system. Cri
tiquing is the presentation of a reasoned opinion about a product or action
(Figure 1).1 The product could be a computer program, a kitchen design or a
medical treatment plan; the action could be a sequence of keystrokes that
corrects a mistake in a word processor document or a sequence of operating
system commands. An agent-human or machine-capable of critiquing in
this sense is a critic. Critics are made up of a set of rules or procedural
specialists for different aspects of a product; sometimes each individual rule
or specialist is referred to as a critic.

Critics do not necessarily solve problems for the user. The core task of
critics is to recognize and communicate debatable issues concerning a prod
uct. Critics point out errors and suboptimal conditions that might otherwise
remain undetected. Many critics also advise users on how to improve the
product and explain their reasoning. Critics thus help users avoid problems
and learn different views and opinions.

Characterization of domains suited for critiquing. Critics are particularly
well suited for design tasks in complex problem domains. Design problems
are ill-defined [58] or wicked [53]. They do not have an optimal solution and
the problem cannot be precisely specified before attempting a solution.
Critics can function with only a partial understanding of the task. Even if
the system knows only aspects of the general problem domain, it can provide
support by applying generic design knowledge.

Not all problems fit this description; there are problems in engineering
design and operations research that can be precisely specified and for which
optimal solutions can be found. Those types of problems yield more to
algorithmic solutions and are not good candidates for the critiquing ap
proach.

Expert systems are inadequate in situations where it is difficult to capture
sufficient domain knowledge. Because they leave the human out of the
decision process and all "intelligent" decisions are made by the computer,
autonomous expert systems require a comprehensive knowledge base cover
ing all aspects of the tasks being performed. Some domains, such as user
interface design and computer network design, are not sufficiently under
stood and creating a complete set of principles that adequately capture their
domain knowledge is infeasible. Other domains, such as high-functionality
computer systems [10, 39], are so vast that a tremendous effort is needed to
acquire all relevant knowledge. Critics are better suited to these situations

lIn the remainder of the paper the term "product" is often used in a generic sense, encompassing
both product in a narrow sense as well as actions.

ACM Transactions on Information Systems, Vol. 19. No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 127

(
Proposed

\ Solution
Domain
Knowledge

Domain J Expertise

it ~ .a.
(

Goals

~ .J
User Model

Critique

Fig. 1. The critiquing approach. This figure shows that a critiquing system has two agents, a
computer and a user, working in cooperation. Both agents contribute what they know about the
domain to solving some problem. The human's primary role is to generate and modify solutions;
the computer's role is to analyze those solutions and produce a critique for the human to apply in
the next iteration of this process.

because they need not be complete domain experts. Critics often are experts
on only some aspects of the problem domain.

History. The term "critic" has been used to describe several closely
related yet different ideas. It was first used in planning systems to describe
internal demons that check consistency during plan generation. For example,
critics in the HACKER system [62] discover errors in blocks-world programs.
When a critic discovers a problem, it notifies the planner component, which
edits the program as directed by the critic. The NOAH system [54] contains
critics that recognize planning problems and modify general plans into more
specific ones that consider the interactions of multiple subgoals. Critics in
planners interact with the internal components of the planning system;
critics in the sense of this paper interact with human users. Our work on
critics tightly integrates the study of ill-defined problems, the development of
conceptual frameworks, the development of prototypical systems instantiat
ing the conceptual frameworks and system evaluations.

2.3 Descriptions of Some of Our Critiquing Systems

In this section, we provide an overview of critiquing systems that have
influenced the development of the paradigm or that illustrate an interesting
aspect of it. We describe in some detail the critiquing systems developed in
our own work as mentioned in Figure 2.

Activist-Systems that volunteer information. Humans often learn by re
ceiving answers to questions that they have never posed or were not able to
pose. To ask a question, one must know how to ask it; one cannot ask

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

128 G. Fischer et aI.

ACTIVIST • active help systems
• system volunteers information

liSP-CRITIC • style rules define standard ways of designing artifacts

• visual explanations

• minimalist explanations

FRAMER • extending construction kits to design environments

• making the situation talk back

• signaling breakdowns

• checklists

JANUS • integrating construction and argumentation to support reflection-in-
action

• relevancy to the task at hand

• multiple critics with different points of view

MODIFIER • competent practitioners know more than they can say (impossibility
of completely articulating background assumptions)

• tacit knowledge is triggered by situations, by breakdowns

• critiquing knowledge is judgmental, instable, and never complete

Fig. 2. Features of our evolving critiquing systems.

questions about something if one is not aware of its existence. ACTIVIST [23] is
a critic in the form of an active help system for a text editor. ACTIVIST looks
"over the shoulder" of a user and infers user goals from observed actions.
The system then matches the user's actions to plans in its knowledge base
that accomplish the same goals. ACTIVIST volunteers information at appropri
ate times based on a user model. After three suboptimal executions of a task
type (measured by the number of keystrokes), ACTIVIST informs the user of a
better procedure for the task. In order to be less intrusive, ACTIVIST ceases to
critique actions when the user ignores its suggestions.

LISP-CRITIc-Applying critics to programming. LISP-CRITIC is a system
designed to support programmers [14, 24]. It helps programmers to both
improve the programs they are creating and acquire programming knowl
edge on demand. Programmers ask LISP-CRITIC for suggestions on how to
improve their code. The system suggests transformations that make the code
more cognitively efficient (i.e., easier to read and maintain) or more machine
efficient (i.e., faster or smaller). Many of LISP-CRITIC'S suggestions require
user confirmation because they preserve program correctness only if certain

ACM Transactions on Information Systems, VoL 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 129

conditions are met that cannot be derived from the program code alone.
Figure 3 shows a screen image of LISP-CRITIC.

LISP-CRITIC is a passive critic; that is, users have to invoke the critic when
they desire its suggestions. The system is embedded in the ZMACS editor on
SYMBOLICS LISP machines. LISP-CRITIC analyzes the function definition within
which the cursor is located. When the system finds pieces of code that could
be improved, it shows the user its recommendation. Users can accept or reject
the critic's suggestion and they can ask for an explanation to aid in making
that decision. In the scenario in Figure 3, LISP-CRITIC suggests that the user
replace a single conditional cond expression with an if expression. The user
requests an explanation of why if is preferable to condo The system develops
an appropriate explanation based on a user model and displays the explana
tion in hypertext form. The user can use the explanation to access more
detailed information available about LISP in an on-line documentation sys
tem (the Symbolics Document Examiner). This incremental unfolding of
information spaces supports a minimalist explanation strategy [18].

LISP-CRITIC is an effective system for many users. To adequately support a
wide range of user expertise, the system incorporates a user modeling compo
nent [42], which acquires and maintains information about the domain
knowledge and goals of each individual user. LISP-CRITIC uses these models to
customize explanations to cover exactly what the user needs to know. The
models are also suitable for determining the subset of rules to fire for each
user.

FRAMER-Extending construction kits to design environments. FRAMER [39,
40] is a design environment for the design of program frameworks, compo
nents of window-based user interfaces on SYMBOLICS LISP machines (Figure
4). The purpose of the FRAMER design environment is to support designers in
using a high-level abstraction: program frameworks.

FRAMER contains a knowledge base of design rules for program frame
works. The rules evaluate the completeness and syntactic correctness of the
design as well as its consistency with the interface style used on SYMBOLICS
LISP machines. Each critic is classified as either mandatory or optional.
Mandatory critics represent absolute system constraints that must be satis
fied for program frameworks to function properly. Optional critics inform the
user of issues that typically are dealt with in another way. The critics are
active and the system displays the messages relevant to the currently se
lected checklist item in the window entitled Things to take care of.

Each message is accompanied by up to three buttons: Explain, Reject, and
Execute. The Explain button displays an explanation of the reasons the
designer should consider this critic suggestion; it also describes ways to
achieve the desired effect. Optional suggestions have a Reject or Unreject
button depending on the state of the suggestion. The Execute button accesses
the advisory capability of FRAMER, which is available for issues that have a
reasonable default solution.

A previous version of FRAMER employed a passive critiquing strategy.
Experiments [39] showed that users often invoked the critic too late, after a

ACM Transactions on Information Systems, VoL 19, No.2, April 1991.

v))
(Cdr 5)
(po~.r (cdr .»»)

(defun.,err'l (.5 r)
(cond (equ",l r 1) (,..apcar (funct'lon li5t) 5»

(t (l"'Iapcan (funct i on

{defun COMb (0: r)

(l""l"Ibda {x}
(l"Iapcar (functl on (1 ~nbde (y) (cons x y»)

(pe.rl"'! (r-el"'love x 5) (svb! r»)))
.))))

{cond «(r 11 ("'41pcar (function list) s»
(t (nopcon (funct i on

(l.nbd. (u)
(cend «< (length u) r) n11)

(t (l"I~pc~r (function (l~f"'Ibda (y) (con5 (car u) y»)
(cenb (cdr u) () - r»))))))

.» »
; ;; su-b~eq5 .5 r
;;; all consecutive 5ub~equence5 of len9th r
(defun !'>ub5eqs (5 r)

(H «((len9th :5-) r) on
(con~ (seq .5 r) (subseq5 (cdr 5) r»»

(defun ~eq (!'I r)
(cond ({::;; r e) nil)

(t (con5 (car 5) (5eq

(defun ~ub-5e4rch (5vb 1)
(cond ((null 1) n11)

{(null sub) t)
(t (5ub-5e~rch sub (cdr

, ,
1 i

LIsp-CRITIC

(y) (cons x y» (pern (renQve ON; s) ($ubl r»))

('If (eQu~l r 1)
(I"\~Dc~r ... 1 i 6 t s)
(l"I~pc~n tt' (1 al"'l.bd~ (x)

(l"Iapcar II' (1 anbda (y) (cons x y» {per" (renove x a) (subl r))
.))

Explanation (Why-cond-to-If-else)

IF is more readable than CONO because it uses fewer parentheses
and becaus .. IF has a common English m .. anlng.

Abort
Accep~
Accep~ All

Explain New Code Show New Code
Reject Show Oritinal Code
Set Parameter. Why Is I IS Be~terl

Zf"'l~C5 (LISP Fo-nt:;Toc-k) pouer.lisp >brentr>-a:lc MUNCH:
Nove point

Fig. 3. The user interface of LISP-CRITIC. The large editor shows the program on which a user is working. The
LISP·CRITIC window on top of it displays a "cond-to-if' transformation and an explanation of why LISP-CRITIC

recommended changing the cond to an if expression.

o C I n i ti~l progret"l frnf'u!lJork)

(2] (Progra" naM:)

o (Invok i ng 1:."'1.5 ~"'09 ... al'\)

:)0 r Rrrongef.e:nt of p.n~5)

o (Co l'I1"l4nd loop function)

o (CO'n l"l and d~fin ~r"I9 nacro)

o (tYPe> of lnput)

o~

o (CooMod lobl ••)

o C Cod~ Ger"lerat ion)

Check 115\ tte,,: Rrr.nuellent of panes

Rrr.nge the panes •• de:s~red In vour progra"" rrM'lltlolQrk shololn in the loIork are.. Choos~ frot'\
the following nou~e cOl'\l"Iands.

Work. Area
Nouse Butt on Op.r~t ton
Left Move pane.

l1iddlc Resiu' pane.

Palette
f1ous. Sul.ton

Left

MIddle

Op.".tion
Get pone of thi.5 type.

Describe: thi$ t ype .

Right Menu of all possible operat i ons.

Shift.-Left Edit pane optlontl.
Shift-r1iddle: Delete pone.

• Add " P'lcmu bar. ([.plain) ~ (E.U'c:vt.)

• Move the t ttl e pane to the lop of the fr,,"e . (£,.,phin) ~ (E •• C\,It.)

-Re"ove the. overlo.p of DATA and TIllE.
(R.Qf.Jt r fld)

·Ft 11 the ."pty apec e ina1de th~ progra"
fr"nework. (R#qulred)

((xplall'\)

~ ([.K>A«)

[iiiT0"" I I""'"" .,'"
Idl1,I I)'-p4n.

rm;n-u·p:.-;;-.--]

[,;;i~;-;-;:~ i;;-,-]
~--------I·· -"".

Fig . 4, FRAMER. This figure shows a screen image of a session with FRAMER. The checklist describes the elements
of the task of designing a program framework. The What you can do window shows the detailed options pertaining
to a checklist item, The window entitled Things to take care of displays the critic messages. The work area is the
place were frameworks are assembled in a direct manipulation interaction style. A palette contains title panes,
display panes, and other primitive parts for constructing program frameworks. FRAMECR al so offers a catalog (not
shown) for design by modification .

132 G. Fischer et al.

major incorrect decision had already been made. The newest version of
FRAMER addresses this problem by continuously displaying messages. FRAMER
prevents its users from permanently ignoring the critics through its check
list. Each item in the checklist describes one subactivity of designing pro
gram frameworks, and the user checks off those subactivities that have been
completed. Checklist items cannot be checked off until all critic suggestions
associated with a sub activity are either resolved or explicitly rejected.

JANus-Integrating construction and argumentation. JANUS is a design
environment based on the critiquing approach that allows designers to
construct residential kitchens [25, 26]. JANUS contains two integrated subsys
tems: JANUS-CONSTRUCTION (Figure 5) and JANUS-ARGUMENTATION (Figure 6).
JANUS-CONSTRUCTION is a construction kit with a set of critics and
JANUS-ARGUMENTATION is an argumentative hypertext system containing
information about general principles of design.

JANUS contains a critiquing component with knowledge about building
codes, safety standards and functional preferences. JANUS uses this knowl
edge to signal breakdowns and to link construction to argumentation. JANUS
displays messages explaining the nature of the breakdowns in the Messages.
window. Clicking with the mouse on a message activates JANUS-ARGUMENTA
TION in the context that discusses the associated breakdown.

In Figure 5, the critic points out that the circumference of the work
triangle (i.e., sink, refrigerator and stove) is greater than 23 feet. Designers
who are· unaware of the work triangle rule do not perceive a breakdown if
that rule is violated. The associated section of JANUS-ARGUMENTATION (Figure
6) explains the rationale for this rule including any exceptions. The Cata
loging Example window of JANUS-ARGUMENTATION shows an example from the
catalog illustrating a way to satisfy the work triangle rule. Critics are
implemented as condition-action rules, which are triggered whenever the
design is changed.

MODIFIER-Making critics user-extensible. No practical situation fits ex
actly into a preconceived knowledge framework. Application domains and
user requirements are constantly changing. These changing environments
require design environments that designers can adapt to fit unanticipated
needs. Initial domain knowledge in our design environments is represented
in seeds [19]. The seeds consist of objects in the palette, examples in a
catalog, critics and argumentation.

The evolution of design environments will be severely limited if the
domain experts are unable to incorporate new knowledge themselves. But
domain experts are in most cases unwilling to acquire detailed knowledge
about programming and knowledge engineering-therefore mechanisms sup
porting end-user modifiability are required [21]. End-user modifiability is of
crucial importance in design environments for the following reasons: (1)
competent practitioners usually know more than they can say; (2) tacit
knowledge is triggered by situations and by breakdowns; (3) background
assumptions cannot be completely articulated; (4) situations of practice are
complex, unique, uncertain, conflicted and unstable; and (5) initial moves

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

Janus-Const;ruct;/on CI loIori< ~. Criti_ 111\ Edit Glob.1 O .. cnptlon.
Load Catoloe Sav. In Catal09 Select Contc.<t

AppllalXU! Palette Won\: A,....

walls

doors:

D \]
lOW 001 I window,

- ~

i ,.ink,. -I 0 DO •• -•• ~
1\ Hovel r--

rnJ 1.·.1 [;] ~

•• ••
~ Catalog

IDDIDwl I

II -- I I

II l-Shaped-Kltchen (
M"S&aQ8& --•• I"~ '"''" 0 , ... ,," '.-," (,_ .. -,.w<-",,- : \O",~'_",-'''~,-, j

II Sinale-Door-Refrla .. rator-l I. ';reat .. r than 23 f t.

il •• 1\
.Slngle-Door-Refrigeralor-l I. not near Four-Eiement-Sto".-l.

r--

II Comnuv>d. I" edti"". 11/1

I::J
...

Fig. 5. JANUS·CONSTRUCTION: The work triangle critic. JANUS·CONSTRUCTION is the construction part of JANUS.
Building blocks (design units) are selected from the Palette and moved to desired locations inside the Work Area.
Designers can reuse and redesign complete floor plans from the Catalog. The Messages pane displays critic
messages automatically after each design change that triggers a critic. Clicking with the mouse on a message
activates JANUS-ARGUMENTATION and displays the argumentation related to that message (see Figure 6).

Janus-Argumentation Clitlliog Ex_'.

Answer (Refrigerator, Sink, Stove) ~ The distance between ilnk. stov~ and refrigerator J the worX triangle,
should be less than 23 feet.

One-Wall-Kitchen

lU DD I 1001 OW 1.·.1 •• I

"i

~ Thoe length of the work tr!angle (Stove. " D Refrigerator. Sink) is less than 23 feet.

Viaited Next. ..
dJ: # d2 # dJ (23 !e«t • An.\oIer (Refrigera.tor, Sink, StoveJ Section

Figure 10: the work tr lang Ie

Argument (Walking Distance)
The work triangle Is an Important concept In kitchen des[9n. The
work tr langle denotes the center front distance between the

three main appliances: &in~, stOViW a.nd refrigerator. This length
should be less than 23 feet to avoid unnecessary walking and to
enSure an efficient work flow In the kltchenl

~
Argument (Small Room)
tn small kitchens where the work trianQle Is less than 16 feet.

Vi8W8r: Default Viewer
! I
Command& Show Ou~lin. Resume Con6truction

R stOIo.l Ex~l"\p If!: • An:'llo.ler (RefriQerator. Sink. 6t.ove)·
S ... rch ForT opic. Snow Construction
Show Argurnc:nt1at.ion lS~ow (",ampl,*-

~ Show EX4"lpl, Rnsw«r (R./r19.r«tor, Sinlt, Stov.-) Show Context Show ount.~r Example
~I

Fig. 6. JANUS-ARGUMENTATION: Rationale for the work triangle rule. JANUS-ARGUMENTATION is an argumentative
hypertext system based on the PHI method [43]. The Viewer pane shows a diagram illustrating the work triangle
concept and arguments for and against the work triangle answer. The top right pane shows an example illustrating
this answer generated by the ARGUMENTATION ILLUSTRATOR. The Visited Nodes pane lists in sequential order the
previously visited argumentation topics. By clicking with the mouse on one of these items, or on any bold or
italicized item in the argumentation text itself, the user can navigate to related issues, allBwers, and arguments.
Hypertext access and navigation features are inherited from the SYMBOLICS DOCUMENT EXAMINER.

The Role of Critiquing in Cooperative Problem Solving 135

must be reframed, as the changed situation most often deviates from the
initial appreciation. The breakdowns are not experienced by the knowledge
engineers, but by the domain experts using the system. In order to support
evolution on a continual basis, the people experiencing the breakdowns are in
the best position to do something about it. End-user modifiability is not a
luxury but a necessity in cases where systems do not fit a task, a style of
working or a personal sense of aesthetics.

MODIFIER (Figure 7) [21] extends JANUS with knowledge-based components
that support the following types of modifications: (1) introducing new appli
ances (e.g., a "microwave") into the palette, (2) adding new critic rules (e.g.,
"the microwave should be next to the refrigerator") to the system, (3) adding
definitions of new relationships (e.g., "between") and (4) creating composite
objects (e.g., a "cleanup center").

2.4 Making the Situation "Talk Back" with Critics

Construction kits (such as FRAMER and JANUS) support human problem
domain communication [22] with domain-oriented building blocks. Designers
using JANUS said that they experienced a sense of accomplishment when
using the system because it enabled them to construct something quickly, but
without needing detailed knowledge of computers. Construction kits support
a design process that Schoen [56] calls reflection-in-action. Designers experi
ment with various shapes and discover their implications and consequences.
They are likely to find unexpected meanings in the situations they create,
and, "if they are good designers, they will reflect-in-action on the situation's
back talk" [57]. These unexpected meanings become apparent when a break
down occurs [65], that is, when the designer is unable to continue action.

But construction kits do not in themselves lead to the production of
interesting artifacts [22, 49]. Construction kits do not help designers perceive
the shortcomings of an artifact they are constructing. As passive representa
tions, constructions in the work area do not talk back unless the designer has
the skill and knowledge to form new appreciations and understandings while
constructing. Designers often do not experience breakdowns before the arti
fact is actually put in use. For example, designers who are unaware of the
work triangle rule will not experience a breakdown if that rule is violated
(see Figures 5 and 6). Critics enhance the back talk of the situation, they
trigger breakdowns early in the design phase before the designer has made
too many commitments that make repair expensive. Critics such as those in
JANUS (1) use knowledge of design principles to detect and critique subopti
mal solutions constructed by the designer, and (2) provide access paths to the
relevant information in the argumentative space.

2.5 Critics in Integrated Design Environments

ACTIVIST and LISP-CRITIC operate in a stand-alone mode and are not tightly
integrated with a larger design environment. We have demonstrated with
JANUS, FRAMER, and with Schoen's theory of reflection-in-action that

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

""' .. :lis·

Janus-Construction

i crol.lave
415SI!S:

ibute5: dll dttribut, description
Descriptions! (Cook!! Self Food)

" f~ct d~$c,..tptton
Display Method: loc~1l Inherlted Def.ult
Appear!!i in the Palette: Yes No

Oettmg Started
Get ~:o::pran&t!ons about the windows, "" the DrlCTI'ptJofU
f'leld .nd copy ~ddit!on.1 descriptions from tht muchlng
cj&He~, COPt 05ppropridte rule, into the Ru/~:. to Appl)l
window,

Window.
HtJp and Sugge~tiorr'. Clid with the mOUH~: on topic
ht-~din9s to show/hide the topic,

Stove:)

lu:--, .---- ,-----, ,.rriger.tor) I
ouble-Bowl-Sink-1> Four-Element-$tolle-1,

tha.n 23 fut,
to four-Element-Stolfe-1.

Sln91e-Door-~.triger. \or-1,

Fig. 7. MODIFIER: Introducing a microwave oven. MODIFIER is a component of JANUS. The screen image shows the
system facilities for adding a new class of domain objects: microwave oven. The New Class window describes the
attributes of microwave ovens. The window on the right shows a tree of existing domain objects. A major part of
introducing a new type of object is to decide which existing critic rules should apply and what new rules should be
created. The rule window at the bottom of the screen displays a critic rule that fires when a stove is placed near a
refrigerator. The designer is checking to see if this rule should apply to microwave ovens as well.

The Role of Critiquing in Cooperative Problem Solving 137

integrated design environments are necessary, and critics should be consid~
ered as embedded systems rather than as stand-alone components. This
insight has led us to the development of the multifaceted architecture for
design environments (Figure 8). The architecture consists of the following
five components:

-A construction kit is the principal medium for modeling a design. It
provides a palette of domain concepts and supports construction using
direct manipulation and electronic forms.

-An argumentative hypertext system contains issues, answers and argu
ments about the design domain. Users can annotate and add argumenta
tion as it emerges during the design process.

-A catalog is a collection of prestored designs. These illustrate the space of
possible designs in the domain and support reuse and case-based reasoning.

-A specification component allows designers to describe characteristics of
the design they have in mind. The specifications are expected to be
modified and augmented during the design process, rather than to be fully
articulated at the beginning. They are used to retrieve design objects from
the catalog and to filter information in the hypertext.

-A simulation component allows designers to carry out "what-if'
games-that is, to simulate various usage scenarios involving the artifact
being designed.

This multifaceted architecture derives its power from the integration of its
components. Used individually, the components are unable to achieve their
full potential. Used in combination, however, each component augments the
value of the others in a synergistic manner. At each stage during the design
process, the partially completed design that is embedded in the design
environment serves as a stimulus suggesting to users what they should
attend to next.

The components of the architecture are integrated by the following linking
mechanisms (see Figure 8):

-CONSTRUCTION ANALYZER. Users need support for construction, argumenta
tion and perceiving breakdowns. The CONSTRUCTION ANALYZER is a cri
tiquing system. The firing of a critic signals a breakdown and provides
entry into the exact place in the argumentative hypertext system at which
the corresponding argumentation is located.

-ARGUMENTATION ILLUSTRATOR. The explanation given in the form of argu
mentation is often highly abstract and conceptual. Concrete design exam
ples matching the explanation help users to understand the concept. The
ARGUMENTATION ILLUSTRATOR helps users to understand information given
in the argumentative hypertext by finding a catalog example that illus
trates the concept [16] (see the top right window in Figure 6).

-CATALOG EXPLORER. CATALOG EXPLORER helps users search the catalog
space according to the task at hand [27]. It retrieves design examples

ACM Transactions on Infonnation Systems. VoL 19. No.2, April 1991.

138 G. Fischer et al.

provide
context'

Simulation
Component

constrain
scenarios

inform

modify \

Cata/ogExplorer

verify

constrain

reduce search

Construction inform

Kit

reuse

reduce
search

Catalog
illustrate

Construction

~ .. Analyzer

i critique
reduce ,----''-----,
search Argumentative

Hypertext

case-based
reasoning

Argumentation
I//ustrator

Fig. 8. A multifaceted architecture. The components of the multifaceted architecture. The links
between the components are crucial for exploiting the synergy of the integration.

similar to the current construction situation and orders a set of examples
by their appropriateness to the current specification.

2.6 Supporting Learning with Critics

The computational power of high-functionality computer systems can be used
to provide qualitatively new learning environments. Learning technologies of
the future should be multifaceted, supporting a spectrum that extends from
open-ended, exploratory environments such as LOGO [50] to system-guided
tutoring environments [64].

Tutors, such as the LISP TUTOR [2] step a student through a predesigned
curriculum consisting of problems to be solved or information to be read.
These tutors are adequate for novices in a domain, but tutors are of little help
when users are involved in their "own doing" and need to learn on demand
[17]. Tutors do not know the user's problem; they provide their own set of
example problems for the user to solve. To support user-centered learning
activities, computational environments must match individual needs and
learning styles. Giving users control over their learning and working re
quires that they become the initiators of actions, setting their own goals.

By contrast, users have unlimited control in open learning environments,
but these environments have other problems. They do not sufficiently help
learners who are stuck in a problem-solving activity or who have reached a
suboptimal plateau in their problem-solving behavior. Users are often unwill
ing to learn more about a system or tool than what is required to solve their

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 139

immediate problems. This tendency leads to inefficient and error-prone ways
of creating artifacts, lower quality artifacts and in some situations failure to
successfully create an artifact at all. To successfully cope with new problems
as they arise, users can benefit from critics that point out shortcomings in
their solutions and suggest ways to improve them. With critics, users retain
control and are interrupted only when their products or actions appear to be
significantly inferior to the system's solution.

There is a spectrum of educational systems that give students various
degrees of freedom in setting their own goals. Gaming systems such as WEST
(arithmetic) [7] and DECISIONLAB (management decision making) [55] support
guided discovery learning. They create a task for students but give them the
freedom of exploring their own personal solution approaches. WEST con
structs a diagnostic model of the student weaknesses. The system has explicit
intervention and tutoring strategies enabling the system "to say the right
thing at the right time." This approach works well because in the domain of
arithmetic, the computer expert can play an optimal game and it can
determine the complete range of alternative behaviors. This condition is not
met in some other domains, such as kitchen design.

The Voltaville system [32] allows more exploratory behavior than WEST.
Voltaville is a prototype discovery environment designed to build scientific
inquiry skills in the context of learning the principles of DC circuits. A
similar exploratory learning environment is STEAMER/Feedback MiniLab
[30]. In this system, students assemble simulated devices, such as steam
plant controllers, from primitive elements. The system recognizes some
instances of known devices and identifies common bugs in them.

GRACE [3] is a learning environment for COBOL programming integrating
a critic and a tutor. It supports both system-directed and exploratory learn
ing. While the system is functioning as a critic, it can decide to adopt the
tutoring mode to give remedial problems; conversely, while functioning as a
tutor, the system may decide to let the student explore in the critiquing
mode. In either case, the system provides direct accessible hypertext refer
ence information for on-line help.

By integrating working and learning, critics offer unique opportunities:
Users understand the purposes or uses for the knowledge they are learning;
they learn by actively using knowledge rather than passively perceiving it
and they learn at least one condition under which their knowledge can be
applied. A strength of critiquing is that learning occurs as a natural by-prod
uct of the problem-solving process.

3. THE CRITIQUING PROCESS

The design and evaluation of the systems discussed in the previous section
led to an understanding of the theoretical aspects of critiquing. Our theoreti
cal framework specifies the following subprocesses of critiquing: goal acquisi
tion, product analysis, critiquing strategies, adaptation capability, explana
tion and argumentation, and advisory capability (Figure 9). Each subprocess
raises associated design issues and alternative resolutions of these issues are

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

140 G. Fischer et aI.

Legend

8

Fig. 9. The critiquing process. Users initiate the critiquing process by presenting a product to
the critic. In order to evaluate the product, the critic needs to obtain a specification of the user's
goals either by recognizing them from the product or by explicit input from the user. The product
analyzer evaluates the product against the goal specification. Some critics do this by generating
their own solution and comparing it to that of the user. A presentation component uses the
product analysis to formulate a critique, to give advice on how to make improvements, and to
provide explanations. Critiquing strategies and a user model control the kind of critique, its
form and timing. Based on the output of the critic, the user generates a new version of the
product, and the design process goes through the game cycle, integrating the new insight.

discussed. Many issues are not currently fully understood and are subjects of
ongoing research. Most critiquing systems, including JANUS, implement only
a subset of all processes. We use JANUS and other systems to illustrate the
processes.

3.1 Goal Acquisition

Critiquing a product requires at least a limited understanding of the in
tended purpose of the product. Problem knowledge can be separated into
domain knowledge and goal knowledge. Having only domain knowledge
without any understanding of the particular goals of the user, a critic can

ACM Transactions on Information Systems, VoL 9, No.3, April 1991.

The Role of Critiquing in Cooperative Problem Solving 141

reason only about characteristics that pertain to all products in the domain;
for example, in a procedural domain, the syntactical correctness and compati
bility of preconditions and postconditions of operators.

Domain knowledge allows JANUS, for example, to point out that stoves
should not be placed in front of a window because this arrangement consti
tutes a fire and burn hazard. For a more extensive evaluation of a product,
some understanding of the user's specific goals and situation is required. A
critic can acquire an understanding of the user's goals in several ways:

- The simplest approach is implicit goal acquisition. A general goal is
directly built into the critic system. For example, JANUS is built for the
problem domain of residential kitchen design, and the user's goal is
assumed to be to design a "good" residential kitchen. The knowledge base
of the system needs to be modified to cope with designs of other kinds of
kitchens, such as in restaurants or mountain cabins.

- User goals can be recognized by observing the evolving product. A kitchen
with a table and chairs suggests that the user intends to eat meals in the
kitchen. A critic can recognize this goal and suggest better solutions, such
as a counter, that use less space and do not interfere with the work flow.
Goal recognition presupposes solutions that approximate a solution to the
user's problem. If the product fails to come close to the user's goal, the
critic cannot infer that goal or might infer a goal different from the user's
goal. For goal recognition, results of research on plan recognition in
artificial intelligence [8] can be applied.

- The specification component provides an explicit representation of the
problem to be solved [27, 28]. User specifications often contain conflicting
preferences, such as low cost and large size, and a specification component
must be capable of representing these.

The condition parts of critic rules reference the goal knowledge obtained from
the specification component and the goal recognizer. For example, rules
about eating areas will fire only if the system knows that the user wants to
include an eating area.

3.2 Product Analysis

There are two general approaches to critiquing: differential and analytical
critiquing. In the former approach, the system generates its own solution,
compares it with the user's solution and points out the differences. An
advantage of differential critiquing is that all differences can be found. Some
domains allow radically different, but equally valid, solutions. This is a
potential problem if the system generates its solution without regard to the
user's solution approach. If user and system solutions differ fundamentally,
the critic can say only that the system solution achieves good results, but it
cannot explain why the user's solution is less than optimal. The ATTENDING

system [46], for example, first parses the user's solution into a goal/subgoal
hierarchy and then evaluates each node in a top-down manner using its own
solution generator. By choosing the user's approach whenever it is not
suboptimal, the system is guaranteed to approximate the user's solution as
closely as possible.

ACM Transactions on Information Systems. Vol. 19, No.2. April 1991.

142 G. Fischer et al.

Different solution attempts fulfill the goals to varying degrees or may be
associated with other undesirable effects. In such situations, metrics (utility
functions) are needed to measure the quality of alternative solutions [23].
Based on the controversial nature of design problems, alternative, conflicting
metrics can be defined and have to be reconciled by negotiation and argumen
tation. A critique generated by JANUS-CONSTRUCTION is backed up with "pro"
and "con" arguments in JANUs-ARGUMENTATION. LISP-CRITIC suggests trans
formations that increase either cognitive or machine efficiency. The ROUNDS
MAN system [52] is a critic in the domain of breast cancer treatment, a domain
in which there is no well-defined metric to compare different treatments.
Therefore, ROUNDSMAN bases its critique on studies from the medical litera
ture.

An analytic critic checks products with respect to predefined features and
effects. Analytical critics identify suboptimal features using pattern match
ing [14], finite state machines or augmented transition networks [23] and
expectation-based parsers [13]. In analytical approaches, critics do not need a
complete understanding of the product. JANUS is an analytical critic that uses
a set of rules to identify undesirable spatial relationships among kitchen
design units, but it does not identify all possible problems within a kitchen
design. Its rule base allows it to criticize kitchens without exactly knowing
the requirements and preferences of the kitchen designer.

Critics for large designs must operate on intermediate states and not only
on complete products. A design rule in the domain of kitchen design specifies
a certain minimum window area. The critiquing component of JANUS must be
able to deal with temporary violations to avoid bothering users when they
have not yet included all the windows in their design.

Some critics receive a stream of information that is not yet separated into
individual products or actions. ACTIVIST, for example, receives a stream of
keystrokes that contain subsequences representing meaningful actions such
as transposing two words. Such systems face several problems: action se
quences are hard to delineate; sequences of actions may constitute a useful
plan but may also be the beginning of a different, larger, not yet complete
plan; and different plans may overlap or be included within each other. For
example, users may delete a word at one place in a text, then correct a
spelling mistake and finally paste the word at a different place. This compos
ite action sequences needs to be recognized as an interleaved execution of a
correct-spelling plan and an exchange-words plan. Critics must decide how
long to wait for later parts of a plan and whether interspersed actions
interfere with the interrupted plan. WIZARD [13] is an active help system for
users of the VMS operating system command language. WIZARD uses an
expectation-based parser to recognize contiguous and noncontiguous com
mand sequences containing interspersed commands from other goals.

3.3 Critiquing Strategies

Critiquing strategies and a user model control the presentation component of
a critic. The critiquing strategies determine what aspects of a design to
critique and when and how to intervene in the working process of the user.

ACM Transactions on Information Systems, VoL 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 143

Critiquing strategies differ, depending on the dominant use of a critiquing
system either to help users solve their problems or as educational systems.

Personal and social issues. Critics will be accepted and used only if they
address personal and social concerns. Critics should be integrated into the
work environment in a way such that users welcome their existence. Like
recommendations from colleagues or co-workers, messages from a critic can
be seen as helpful or hindering, as supportive or interfering with the accom
plishment of goals. Critiquing strategies should consider intrusiveness and
emotional impact on the user.

Intrusiveness is the users' perception of how much the critiquing process is
interfering with their work. Critics can either interfere too much or fail to
provide sufficient help, depending on the frequency of feedback, the complex
ity of the tasks and the sophistication of the user. As our experience with
FRAMER has shown, critics should intervene when the user has made a
potentially suboptimal choice and later choices are likely to depend on it. To
avoid the cost of revising whole chains of decisions, critics should point out
problems early. On the other hand, it is not critical to critique independent
choices immediately after they have been made. FRAMER employs its check
list to prevent users from completely ignoring unintrusively displayed critic
messages.

Emotional impact relates to how users feel about having a computer as an
intelligent assistant. Critiquing from a computer might be more tolerable
than critiquing from a human because it is handled as a private matter
between the user and the computer. Everybody who has used a spelling
checker has used a simple critiquing system. Users do not face the negative
aspects that can be associated with interpersonal communication. A critique
can cause anxiety if users know it can be seen by other people who might
form a negative opinion of them. Users of our systems have welcomed the
input from the critics. We have not observed any negative emotional impact.

What should be critiqued? Educational critics, whose prime objective is to
support learning, and performance critics, whose prime objective is to help
produce better products, have different requirements for their critiquing
strategies. Performance critics should help users create high-quality products
in the least amount of time using as few resources as possible. Learning is
not the primary concern of performance systems but can occur as a by-prod
uct of the interactions between users and critics. Educational critics should
maximize the educational effect; the quality of the product is a secondary
concern.

Most performance critics (e.g., FRAMER, JANUS, ROUNDSMAN [52), KATE [12])
do not select specific aspects of a product to critique; they evaluate the
product as a whole to achieve the highest possible quality. Some critics
selectively critique based on the policies specified by users. LISP-CRITIC, for
example, operates differently depending On whether cognitive efficiency or
machine efficiency IS specified as the primary concern for writing LISP
programs.

ACM Transactions on Information Systems, Vol. 19, No.2, Aprii199L

144 G. Fischer et al.

Educational critics (e.g., the WEST system [7]) usually employ a more
complex intervention strategy that is designed to enhance the educational
experience and the learners motivation. For example, WEST never critiques
the student on two consecutive moves. Continuous critiquing without giving
users a chance to explore their own ideas is intrusive and may reduce the
motivation to learn.

Negative versus positive critics. Most existing critics operate in the nega
tive mode by pointing out suboptimal aspects of the users' products. Positive
critics recognize the good parts of a product and inform users about them.
Positive performance critics help users retain the good aspects of a product in
further revisions; positive educational critics reinforce the desired behavior
and aid learning. JANUS has a Praise Design Unit command that acts as a
positive critic by printing out all the design principles a design unit satisfies.

Intervention strategies. Intervention strategies determine when and how a
critic should signal a breakdown. Active critics exercise control over the
intervention strategy by critiquing a product or action at an appropriate
time. They function like active agents by continuously monitoring user
actions. Active critics can respond to individual user actions. Passive critics
are explicitly invoked by users when they desire an evaluation. Passive
critics usually evaluate the (partial) product of a design process, not the
individual user actions that resulted in the product. The active critiquing
strategy is infeasible if a continuous evaluation of the design is computation
ally too expensive. Analyses in digital circuit design, for example, are
typically run in batch mode [37]. The problem can be alleviated by using a
truth maintenance system [59]. Passive critics can also be used if the critic
information is used only at certain times. For example, WANDAH [31] is a
system that assists writers by providing feedback on structural problems and
statistical properties of the text. This information is useful to review and
revise a text but is not used during the initial generation of a text.

For active critics, intervention strategies must specify when to send mes
sages to users. Intervening immediately after a suboptimal or unsatisfactory
action has occurred (immediate intervention strategy) has the advantage
that the problem context is still active in the user's mind (action-present),
and the user still knows how he arrived at the solution. The problem can be
corrected immediately without causing dependent problems. A disadvantage
of active critics is that they may disrupt a cognitive process (knowing-in-ac
tion), causing short-term memory loss. Users then need to reconstruct the
goal structure that existed before the intervention. JANUS is a predominantly
active critic, but users can also request critiquing on demand by running the
Critique All command.

Critics can use any of various intervention modes that differ in the degree
to which they attract users' attention. A critic can force users to attend to the
critique by not allowing them to continue with their work. A less intrusive
mode is the display of messages in a separate critic window on the screen.
This gives users a choice of whether to read and process the message
immediately or first complete an action in progress. However, there is a risk

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 145

that messages go unnoticed, and users often have trouble following written
advice [35]. In response to this problem, Wroblewski et al. [67] have coined
the notion of "advertising." Advertising means drawing the user's attention
to the work materials that bear more work rather than drawing attention to
a separate window. Systems advertise services, for instance, by specially
marking those objects that are affected by critic messages.

3.4 Adaptation Capability

To avoid repetitive messages and to accommodate different user preferences
and users with different skills, a critiquing system needs an adaptation
capability. A critic that persistently critiques the user on a position with
which the user disagrees is unacceptable, especially if the critique is intru
sive. Equally unacceptable is a critic that constantly repeats an explanation
that the user already knows.

Critics can be adaptable or adaptive. Systems are called adaptable if the
user can change the behavior of the system (see MODIFIER in Section 2.3). An
adaptive system is one that automatically changes its behavior based on
information observed or inferred. An adaptation capability can be imple
mented by simply disabling or enabling the firing of particular critic rules,
by allowing the user to modify or add rules and by making the critiquing
strategy dependent on an explicit, dynamically maintained user model.
ACTIVIST [23] uses a dynamically maintained user model in its intervention
strategy. For each text-editing goal it knows and for each user, ACTIVIST
records how often the goal was accomplished, how often it was accomplished
optimally, how often the user was notified and other information. ACTIVIST
uses this model to adapt its strategy. For example, a message concerning the
same error will be given only a limited number of times, and no message will
be given after the user has successfully executed a plan a certain number of
times.

How to acquire and represent individual user models remains a topic of
ongoing research [42]. User modeling in critics (e.g., in ACTIVIST) shares ideas
and goals with student modeling in intelligent tutoring systems [9] and
advice-giving natural language dialogue systems [38].

3.5 Explanation and Argumentation

Users who are not competent to assess the critic's judgments have been
observed to blindly follow the critics' suggestions [39]. Therefore, users need
to be able to obtain information about the rationale for the critique. Simple
explanation components provide prestored text explanations [40, 47]. But
there is not always a simple explanation. If design is an argumentative
process [53], an explanation component capable of presenting different alter
natives and opinions and their corresponding advantages and disadvantages
is necessary [20]. Argumentation is not a separate activity but, to be effec
tive, must take place within the action present, that is, within the time
period during which it can still make a difference as to what action is taken.
If the time required to read and/or record explanatory argumentation is

ACM Transactions on Information Systems. Vol. 19, No.2, April 1991.

146 G. Fischer et aI.

greater than the action present, design is disrupted and the required context
is lost. This observation led to the requirement for a strong integration of the
components of our design environments (Section 2.5).

Another approach to explanation is to simulate and visualize the processes
under consideration. LISP-CRITIC is capable of visualizing the effects of certain
LISP functions [14]. KATE [12] critiques software specifications and backs up
its critique with simulation scenarios designed to approximate the rich set of
examples that software professionals use.

3.6 Advisory Capability

All critics detect breakdowns in the product (problem detection mode). Some
critics require the user to determine how to resolve the breakdowns by
making changes to address the problems pointed out by the critic. Other
critics are capable of suggesting alternatives to the user's solution. We call
these solution-generating critics. In the JANUS system, critics detect the
problems and the argumentation component suggests alternative solutions
and provides arguments for and against these alternatives.

4. DISCUSSION AND CONCLUSIONS

The systems described in this paper show that critiquing is an emerging
paradigm for knowledge-based systems. This section assesses the system
building efforts and the conceptual framework previously presented.

Experiences. Empirical evaluations of the systems constructed in our
research (see Fischer et al. [25] for JANUS, Fischer and Mastaglio [24] for
LISP-CRITIC, and Lemke [39] for FRAMER) demonstrated that critiquing sys
tems support incremental learning of high-functionality computer systems,
provide a new approach in support of learning, extend construction kits to
design environments and support cooperative problem solving. The evalua
tion results often pointed out new directions for our research.

FRAMER and LISP-CRITIC are tools used by researchers and students in our
laboratory; this enabled us to evaluate them in actual work settings. The
members of our group use FRAMER for designing their screen layouts.
LISP-CRITIC has been used by students learning to program in LISP as well as
by experienced programmers. Professional kitchen designers and computer
experts acting as amateur designers have evaluated JANUS in a laboratory
setting.

Building a knowledge-based system is a major effort and critics are no
exception. Realistic systems that provide broad functionality and support
tools are needed to test the usefulness of critics in actual settings. Critics are
often embedded systems; for example, they constitute only one part of the
JANUS and FRAMER design environments.

The strengths of critics are that they support users who are involved in
their own work and that they integrate learning with that work. As noted
in several recent research efforts [11, 44, 56, 61, 65], professional practice in
design is both action and reflection. The basis for design is a combination of
personal involvement and rational understanding, rather than detached

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 147

reflection. Systems such as JANUS and FRAMER make the situation "talk
back" and critics help designers to deal with breakdowns in a constructive
fashion. By showing that the artifact under construction has shortcomings,
critics cause users to pause for a moment, to reflect on the situation and to
apply new knowledge to the problem as well as to explore alternative
designs. By serving as skill-enhancing tools, critics support the "Scan
dinavian approach to system design" [4, 11], which attempts to develop
"systems for experts" rather than expert systems. Critics help users to
become lay designers and they remind professional designers of the principles
of good design.

Limitations of current critics and future research lssues. One of the fea
tures that contributes to the strengths of critics is at the same time a
potential weakness. Supporting users in their own doing means that detailed
assumptions about what a user might do cannot be built into the system. Our
critic systems have only a limited understanding of the goals users pursue.
This limitation restricts the amount of assistance and detailed goal-oriented
analysis that critics can provide. By moving from generic domains such as
LISP programming to more narrowly defined domains such as kitchen de
sign, our critiquing systems took advantage of the richer domain semantics
and became more powerful. Other researchers have worked on systems that
have a deep understanding of a very small set of problems [36]. We are
working on solutions to the goal acquisition problem by developing a specifi
cation component for JANUS that allows users to communicate their goals to
the system [27, 28]. This goal knowledge will activate or disable critics, for
example, if the kitchen is specified for a short, tall or handicapped person.

Users should be able to modify critics without having to possess detailed
programming knowledge. In developing MODIFIER, first steps were made in
this direction. Systems with sufficient inference and user modeling capabili
ties, such as ACTIVIST, can control the critics for the user. Interactions with
kitchen designers demonstrated that they test their designs by mentally
simulating tasks in the kitchen under construction. Critics should employ a
simulation component when it is necessary to evaluate a design.

Observation of users of JANUS and FRAMER showed that users sometimes do
not notice the critiques generated by the system or that they ignore the
advice. A more detailed analysis of attention and intervention is required to
develop critiquing strategies that insure that users do not miss important
information, but at the same time users should not be interrupted when it is
more appropriate for them to focus on other issues.

Currently, most critics support only "one-shot dialogs" [1]. The critiquing
systems discussed in this paper respond to user actions; they give suggestions
and provide explanations and argumentation. But systems do not achieve the
cooperative problem-solving ability of human critics [51] and they do not
increase problem understanding to the same degree. As mentioned briefly in
Section 2.1, the role distribution can also be reversed: the computer gener
ates and a person critiques and modifies (e.g., a computer creates a layout
structure of a graph, which the user can then critique and modify). "One-shot

ACM Transactions on Information Systems, Vo!' 19, No.2, April 1991.

148 G. Fischer et al.

dialogs" can be truly overcome when the system is capable of switching roles,
that is, when it can critique the user modifications.

Critics point out design principles when the designer violates them. The
system's knowledge of design principles could also be used to actively enforce
the principles as constraints on user actions making violations impossible
(34). For example, the principle that the sink should be under the window
could give rise to a constraint linking these two objects. Whenever the user
moves one of them, the system moves the other object along. The conditions
for preferring the critiquing approach or the constraint approach need to be
further investigated.

Conclusions. In this paper, we have presented the critiquing approach to
the design of knowledge-based computer systems supporting human work
and learning. We have presented example critiquing systems and have
described how they enhance the back-talk of construction situations. Critics
activate otherwise passive drawings and constructions. The critiquing ap
proach can be successfully applied in any domain in which tasks cannot be
completely specified in advance and optimal solutions cannot be found algo
rithmically. Critics are partial problem solvers that cooperate with human
users while expert systems generally offer only a complete solution that users
must either accept or reject. Critics are modular, that is, individual critics
can easily be added or removed without affecting the overall function of the
system. But critics can help only after the designer has acted; they do not
operate proactively. Critics support learning on demand for users involved in
their own doing. Critics are components in the multifaceted architecture of
integrated design environments.

Critics are not the only solution to building better knowledge-based sys
tems, but we believe that a growing number of such systems will contain a
critiquing component. Some of these systems will have elaborate problem
understanding, but more commonly they will have limited yet helpful capa
bilities. Critics are an important step toward the creation of more useful and
more usable computer systems for the future.

ACKNOWLEDGMENTS

Many people have contributed over the years to the development of our
notion of the critiquing paradigm. The authors would like to thank especially
the members of the Janus Design Project (Ray McCall, Kumiyo Nakakoji and
Jonathan Ostwald); Heinz-Dieter Boecker, who developed many of the origi
nal ideas for LISP-CRITIC; Chris Morel, Brent Reeves and John Rieman, who
each worked on different aspects of LISP-CRITIC at different times; and all the
people who participated in discussions about the general framework for
critiquing, notably: Hal Eden, Helga Nieper-Lemke, Thomas Schwab, Curt
Stevens and the HCC research group as a whole.

REFERENCES
1. AARONSON, A., AND CARROLL, J. M. Intelligent help in a one-shot dialog: A protocol study.

In Human Factors in Computing Systems and Graphics Interface, CHI + GI'87 Conference
Proceedings (Toronto, Apr. 1987), ACM, New York, pp. 163~168.

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 149

2. ANDERSON, J. R, FARRELL, R G., AND SAUERS, R Learning to program in LISP. Cognitive
Sci. 8,2 (Apr.-June 1984),87-129.

3. ATWOOD, M. E., BURNS, B., GRAY, W. D., MORCH, A. 1., RADLlNSKI, E. R, AND TuRNER, A.
The grace integrated learning environment-A progress report. In Proceedings of the Fourth
International Conference on Industrial & Engineering Applications of Artificial Intelligence
& Expert Systems (lEA / AlE 91) (June 1991) pp. 741-745.

4. BODKER, S., KNUDSEN, J. L., KYNG, M., EHN, P., AND MADSEN, K. H. Computer support for
cooperative design. In Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW'88), ACM, New York, Sept. 1988, pp. 377-394.

5. A. H. BOND, AND L. GASSER, Ens. Readings in Distributed Artificial Intelligence. Morgan
Kaufmann, San Mateo, Calif. 1988.

6. BUCHANAN, B. G., AND SHORTLIFFE, E. H. Rule-Based Expert Systems: The MYCIN Experi
ments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, Mass. 1984.

7. BURTON, R R, AND BROWN, J. S. An investigation of computer coaching for informal
learning activities. In Intelligent Tutoring Systems, D. H. Sleeman, and J. S. Brown, Eds.,
Academic Press, London/New York, 1982, pp. 79-98.

8. CmN, D. N. GUEST EDITOR. Special issue on plan recognition. User Modeling and User
Adapted Interaction 1, 2 (1991).

9. CLANCEY, W. J. Qualitative student models. Ann. Rev. Comput. Sci. 1 (1986), 381-450.
10. DRAPER, S. W. The nature of expertise in UNIX. In Proceedings of INTERACT'84, IFIP

Conference on Human-Computer Interaction, (Amsterdam, Sept. 1984), pp. 182-186.
11. EHN, P. Work-Oriented Design of Computer Artifacts. Almquist and Wiksell International,

1988.
12. FICKAS, S., AND NAGARAJAN, P. Critiquing software specifications. IEEE Softw. 5, 6 (Nov.

1988),37-47.
13. FININ, T. W. Providing help and advice in task oriented systems. In Proceedings of the

Eighth International Joint Conference on Artificial Intelligence, 1983, pp. 176-178.
14. FISCHER, G. A critic for LISP. In Proceedings of the 10th International Joint Conference on

Artificial Intelligence (Milan, Aug. 1987), pp. 177-184.
15. FISCHER, G. Communications requirements for cooperative problem solving systems. Int.

J. Inf. Syst. (Special Issue on Knowledge Engineering.) 15, 1 (1990), 21-36.
16. FISCHER, G. Cooperative knowledge-based design environments for the design, use, and

maintenance of software. In Software Symposium '90 (Kyoto, June 1990), pp. 2-22.
17. FISCHER, G. Supporting learning on demand with design environments. In Proceedings of

the International Conference on the Learning Sciences 1991 (Evanston, Ill., Aug. 1991).
Forthcoming.

18. FISCHER, G., MASTAGLlO, T., REEVES, B. N., AND RIEMAN, J. Minimalist explanations in
knowledge-based systems. In Proceedings of the 23rd Hawaii International Conference on
System Sciences, Vol. III: Decision Support and Knowledge Based Systems Track, IEEE
Computer Society, 1990, pp. 309-317.

19. FISCHER, G., GRUDIN, J., LEMKE, A. C., MCCALL, R., OSTWALD, J., AND SmPMAN, F. Support
ing asynchronous collaborative design with integrated knowledge-based design environ
ments. Dept. of Computer Science, Univ. of Colorado, Boulder, Colo. 1991.

20. FISCHER, G., LEMKE, A. C., MCCALL, R, AND MORCH, A. Making argumentation serve
design. In Human-Computer Interaction. In press.

21. FISCHER, G., AND GIRGENSOHN, A. End-user modifiability in design environments. In Hu
man Factors in Computing Systems, CHI'90 Conference Proceedings (Seattie, Wash., Apr.
1990), ACM, New York, pp. 183-19l.

22. FISCHER, G., AND LEMKE, A. C. Construction kits and design environments: Steps toward
human problem-domain communication. Human-Computer Interaction 3,3 (1988),179-222.

23. FIsCHER, G., LEMKE, A. C., AND ScHWAB, T. Knowledge-based help systems. In Human
Factors in Computing Systems, CHI'85 Conference Proceedings (San Francisco, Apr. 1985),
ACM, New York, pp. 161-167.

24. FISCHER, G., AND MASTAGLIO, T. Computer-based critics. In Proceedings of the 22nd Annual
Hawaii Conference on System Sciences, Vol. III: Decision Support and Knowledge Based
Systems Track. IEEE Computer Society, Jan., 1989, pp. 427-436.

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

150 G. Fischer et al.

25. FISCHER, G., MCCALL, R., AND MORCH, A. Design environments for constructive and
argumentative design. In Human Fac/;{)rs in Computing Systems, CHI'89 Conference Pro
ceedings (Austin, Tex., May 1989), ACM, New York, pp. 269-275.

26. FISCHER, G., MCCALL, R., AND MORCH, A. JANUS: Integrating Hypertext with a
knowledge-based design environment. In Proceedings of Hypertext '89 (Pittsburgh, Penn.,
Nov. 1989), ACM, New York, pp. 105-117.

27. FISCHER, G., AND NAKAKOJI, K. Making design objects relevant to the task at hand. In
Proceedings of AAAI-91 , Ninth National Conference on Artificial Intelligence (Cambridge,
Mass.). In press.

28. FISCHER, G., AND NAKAKOJI, K. Empowering designers with integrated design environ
ments. In Proceedings of the First International Conference on ArtifLCial Intelligence in
Design (Edinburgh, UK). In press.

29. FISCHER, G., AND STEVENS, C. Information access in complex, poorly structured information
spaces. In Human Fac/;{)rs in Computing Systems, CHI'91 Conference Proceedings (New
Orleans, La., 1991), ACM, New York, pp. 63-70.

30. FORBUS, K. An interactive laboratory for teaching control system concepts. Rep. 5511,
BBN, Cambridge, Mass. 1984.

31. FRIEDMAN, M. P. WANDAH-A computerized writer's aid. In Applications of Cognitive
Psychology, Problem Solving, Education and Computing. Lawrence Erlbaum Associates,
Hillsdale, N.J., 1987, Ch. 15, pp. 219-225.

32. GLASER, R., RAGHAVAN, K., AND ScHAUBLE, L. Voltaville: A discovery environment to
explore the laws of DC circuits. In Proceedings of the International Conference on Intelligent
Tutoring Systems (Montreal, June 1988), pp. 61-66.

33. 1. GREIF, ED. Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf·
mann, San Mateo, Calif., 1988.

34. GROSS, M. D., AND BOYD, C. Constraints and knowledge acquisition in Janus. Dept. of
Computer Science, Univ. of Colorado, Boulder, Colo. 1991.

35. HILL, W. C. How some advice fails. In Human Factors in Computing Systems, CHI'89
Conference Proceedings (Austin, Tex., May 1989), ACM, New York, pp. 197-210.

36. JOHNSON, W. L., AND SoLOWAY, E. PROUST: Knowledge-based program understanding. In
Proceedings of the 7th International Conference on Software Engineering (Orlando, Fla., Mar.
1984), IEEE Computer Society, pp. 369-380.

37. KELLY, V. E. The CRITTER system: Automated critiquing of digital circuit designs. In
Proceedings of the 21st Design Automation Conference (1985), pp. 419-425.

38. A. KOBSA AND W. WAHLSTER, Ens. User Models in Dialog Systems. Springer-Verlag, New
York, 1989.

39. LEMKE, A. C. Design environments for high-functionality computer systems. Ph.D. thesis.
Dept. of Computer Science, Univ. of Colorado, Boulder, July 1989.

40. LEMKE, A. C., AND FISCHER, G. A cooperative problem solving system for user interface
design. In Proceedings of AAAl-90, Eighth National Conference on Artificial Intelligence.
(Cambridge, Mass., Aug. 1990), pp. 479-484.

41. MALONE, T. W., GRANT, K. R., LAI, K-Y., RAO, R., AND ROSENBLITT, D. Semi-structured
messages are surprisingly useful for computer-supported coordination. In Proceedings of the
Conference on Computer-Supported Cooperative Work (CSCW'86), MCC (Austin, Tex., Dec.
1986), pp. 102-114.

42. MASTAGLIO, T. User modelling in computer-based critics. In Proceedings of the 23rd Hawaii
International Conference on System Sciences, Vol. III: Decision Support and Knowledge
Based Systems Track, IEEE Computer Society, 1990, pp. 403-412.

43. MCCALL, R. PHI: A conceptual foundation for design hypermedia. To appear in Des. Stud.
1991.

44. MCCALL, R., FISCHER, G., AND MaRCH, A. Supporting reflection· in-action in the Janus
design environment. In The Electronic Design Studio. The MIT Press, Cambridge, Mass.,
1990, pp. 247-259.

45. McDERMOTT, J. Rl: A rule-based configurer of computer systems. Artif. Intel!. 19 (Sept.
1982), 39-88.

ACM Transactions on Information Systems, Vol. 19, No.2, April 1991.

The Role of Critiquing in Cooperative Problem Solving 151

46. MILLER, P. A Critiquing Approach to Expert Computer Advice: ATTENDING. Pittman,
London-Boston, 1984.

47. NECHES, R., SWARTOUT, W. R., AND MOORE, J. D. Enhanced maintenance and explanation
of expert systems through explicit models of their development. IEEE Trans. Softw. Eng.
SE-ll (Nov. 1985), 1337 -135l.

48. NlEPER-LEMKE, H. TRISTAN, ein generischer Editor fuer gerichtete Graphen. In Proto
typen benutzergerechter Computersysteme. Walter de Gruyter, Berlin-New York, 1988, ch.
XIV, pp. 243-257.

49. NORMAN, D. A. Cognitive engineering. In User Centered System Design, New Perspectives
on Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, N.J., 1986, ch. 3,
pp. 31-62.

50. PAPERT, S. Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New York,
1980.

51. REEVES, B. N. Locating the right object in a large hardware store-An empirical study of
cooperative problem solving among humans. Tech. Rep. CU-CS-523-91, Dept. of Computer
Science, Univ. of Colorado, Boulder, 1991.

52. RENNELS, G. D. A Computational Model of Reasoning from the Clinical Literature. Springer
Verlag, New York, 1987.

53. RITTEL, H. W. J., AND WEBBER, M. M. Planning problems are wicked problems. In Develop
ments in Design Methodology, N. Cross, Ed., Wiley, New York, 1984, pp. 135-144.

54. SACERDOTI, E. D. A structure for plans and behavior. Tech. Note 109, Stanford Research
Institute, Stanford, Calif., 1975.

55. ScHIFF, J., AND KANDLER, J. Decisionlab: A system designed for user coaching in manage
rial decison support. In Proceediongs of the International Conference on Intelligent Tutoring
Systems (Montreal, June 1988), pp. 154-161.

56. ScHOEN, D. A. The Reflective Practitioner: How Professionals Think in Action. Basic Books,
New York, 1983.

57. ScHOEN, D. A. Educating the Reflective Practitioner. Jossey-Bass, San Francisco, 1987.
58. SIMON, H. A. The structure of ill-structured problems. Artif. Intell. 4 (1973), 181-200.
59. STEELE, R. L. Cell-based VLSI design advice using default reasoning. In Proceedings of3rd

Annual Rocky Mountain Conference on AI (Denver, Colo. 1988), Rocky Mountain Society for
Artificial Intelligence, pp. 66-74.

60. STEFIK, M. J. The next knowledge medium. AI Magazine 7, 1 (Spring 1986), 34-46.
61. SUCHMAN, L. A. Plans and Situated Actions. Cambridge University Press, Cambridge, UK,

1987.
62. SUSSMAN, G. J. A Computer Model of Skill Acquisition. American Elsevier, New York,

1975.
63. WEBBER, B. L., AND FININ, T. W. In response: Next steps in natural language interaction.

In Artificial Intelligence Applications for Business, W. Reitman, Ed., Ablex, Norwood, N.J.,
1984, ch. 12, pp. 211-234.

64. WENGER, E. Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos,
Calif. 1987.

65. WINOGRAD, T., AND FLORES, F. Understanding Computers and Cognition: A New Founda
tion for Design. Ablex, Norwood, N.J., 1986.

66. WOODS, D, D. Cognitive technologies: The design of joint human-machine cognitive sys
tems. AI Magazine 6, 4 (Winter 1986), 86-92.

67. WROBLEWSKI, D, A" MCCANDLESS, T, P., AND HILL, W. C, DETENTE: Practical support for
practical action. In Human Factors in Computing Systems, CHI'91 Conference Proceedings
(New Orleans, La., 1991), ACM, New York, pp. 195-202.

ACM Transactions on Information Systems, Vol. 19, No, 2, April 1991.

