
The Role of Custom Design in ASIC Chips

William J. Dally and Andrew Chang
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{billd,achang}@cva.stanford.edu

 Abstract
Custom design, in which the designer controls the physical

structure of the chip, can greatly improve the speed, power, and
delay of an ASIC chip without affecting design time. Through
floorplanning and tiling data paths, the designer places the critical
wires first, before the logic is placed. Crafted datapath cells struc-
ture wiring at the other end of the spectrum by keeping local wires
short enabling the use of minimum sized drivers. Routing the
wires first gives early visibility of timing issues, allows the design
to be optimized to drive the exact wire load, and enables the use of
fast circuit styles.

1 Introduction
We have found that the performance of an ASIC can be greatly

improved without increasing design time by judiciously employing
a number of custom design techniques including floorplanning,
prerouting critical signals, tiling datapaths, and generating crafted
cells. These techniques all structure the design by routing the crit-
ical wires first and then placing the devices. This ‘key wires first’
approach exploits the structure of the logic to reduce wire loads,
provide early visibility of the timing and power dissipation of a
design, and gives the designer control of the key wiring. These
techniques can all be applied within a standard ASIC CAD flow
alongside less critical blocks that are implemented without struc-
ture.

There is a continuum of design styles between full custom,
where every wire is hand placed, to fully automated, where none
are. The key to applying custom design techniques to an ASIC is
to limit customization by structuring the few key wires that give
the most leverage and leaving the rest to automated tools. Exam-
ples of critical wires that are easy to structure are global signals
and buses, datapath bit and word lines, and signals internal to
crafted cells.

Circuits play an important, but subordinate, role in custom
design. Structured wiring is the key enabler for fast circuits such
as domino logic and low-swing signaling. These circuits require a
well controlled load and noise environment that cannot be guaran-
teed with automated wiring. When the wiring is well controlled

the use of fast circuits gives an additional performance boost, but
one that is less than a factor of 2.

Traditionally, custom design has been restricted to high-perfor-
mance components like microprocessors [3]. However, as geome-
tries continue to shrink, both the importance of wire delay and the
increase in ASIC complexity will necessitate a significant expan-
sion in the use of custom techniques as automated flows increas-
ingly fail to meet performance, power, and area goals.

2 Custom design means designer control over
the physical structure

A custom design is one in which the designer has explicit con-
trol over the physical structure of the design. This is in contrast to
automated design in which the designer specifies the logical struc-
ture of the design and the physical design is generated automati-
cally, usually with little structure. Custom design gives much
better circuits because it results in structured wiring where key sig-
nals have much smaller wire loads.

In a custom design one first routes the key signals and then
places the modules. In contrast, an automated design system
places the modules and then routes the signals. This loses the
structure of the design. Any EE student knows to layout a datapath
in an array of bits and functions; however, no place and route sys-
tem we know of can automatically perform this task. Data paths
are not a special case. Almost every piece of logic we’ve worked
with has a structure that is known to the designer and lost to the
tools.

There is a continuum of custom design approaches from simple
floorplanning to hand-crafting every transistor. The biggest gains
in power and performance come from taking the first few steps
down this path. Almost everyone who builds ASICs today takes at
least the first step by floorplanning the chip.

2.1 Standard cell design converts RTL to lay-
out without regard for structure
Figure 1: Flow of automated design

A simplified design flow for a standard cell chip is illustrated in
Figure 1. The designer writes an RTL description of the function

RTL Netlist

LibraryWire
Models

Place &
RouteSynthesis Layout

ExtractorR & CTiming
Analysis

Slow
Paths

Manual
Design

(Verilog or VHDL). This is synthesized to a gate-level netlist
using a logic synthesis tool and a description of the library.
Finally, a place-and-route tool generates the physical design of the
chip by first placing the library cells, and then routing them
together with wires. The electrical properties of the wires are then
extracted from this layout. Chip timing is then checked by calcu-
lating the critical path delays using these parasitics. Similarly
power is estimated by taking the dot product of the wire capaci-
tance vector and the toggle frequency vector.

There are three main problems with this approach:

1. Little is known about the performance of the design until the
very end. Power and timing are critically dependent on the
resistance and capacitance of key wires which are only known
after place and route.

2. The designer has little control. If the design fails to meet
power and timing goals after P&R and after repowering the
cells along the critical paths it is very difficult to fix the prob-
lem by changing the RTL. It is very frustrating when the
solution (structuring the wiring) is obvious, but there is no
way to tell the tools how to do it.

3. The result is unstable. If the designer changes the RTL late in
the game to fix a logic bug, the resulting netlist and placement
may change drastically creating a whole new set of timing
and power problems.

To avoid these problems, the synthesis step is usually per-
formed with a very conservative estimate of wiring parasitics (the
wire model). The wire model picks a wire that is many sigma
longer than the mean so that there are few surprises (wire loads
larger than estimated) after place and route. Most gates are over-
sized for their wiring and most paths are optimized assuming pes-
simistic wire loads. The net result is logic that is much larger,
much higher power, and slower than it needs to be.

2.2 There is a continuum of custom design
approaches that structure the wiring

Custom design structures the wiring so that the parameters of
key wires are known at the start of the design process, rather than
the end. This gives a stable design with early visibility to timing
and power problems. Moreover the designer has complete control
over the result and can exploit the structure they see in the logic.

Figure 2: Custom Design Techniques

A number of different techniques for custom design that struc-
ture wires at different levels with different amounts of design
effort are illustrated in Figure 2. They form a step-by-step
approach to building better ASICs with less effort. The first sev-

eral steps involve no custom cells, and only the last few steps
involve custom circuits.

The first step is to floorplan the chip into small regions (usually
less than 1000χ on a side, where χ is the minimum metal pitch)
and impose a discipline on signals that cross between these regions
(e.g., no combinational paths across regions). This floorplanning
structures all of the inter-region wiring. The length and density of
these wires is known up front and the logic and circuits can be built
using this knowledge. For example, pipeline stages may be added
to account for the known delay of long wires. Often this knowl-
edge is exploited in the physical design by prerouting these sig-
nals.

The next step in structuring wires is to tile the datapaths. The
designer partitions structured arrays into rows and columns and
assigns library cells to each datapath cell. This is, in effect, floor-
planning to a very fine granularity. A typical datapath cell is 16 χ
in the bit direction by 16-100 χ in the function direction. In addi-
tion to structuring processor datapaths involving registers, adders,
ALUs, and multiplexers, we have also found this approach useful
in structuring arrays that exist in control logic for issue, decoding,
scheduling, and matching. There are few large logic circuits that
are devoid of structure.

At this point the designer becomes frustrated that it takes six
library cells to make a register cell and realizes considerable sav-
ings by adding some new cells to the library. These crafted cells
are simply large standard cells with functionality matched to the
application. Their aspect ratio, pin placement, and electrical char-
acteristics are all compatible with the standard-cell approach.
These cells have three advantages. First by keeping all internal
wiring short, global wiring is reduced and very small devices can
be used to drive internal nets. Second, by folding together several
functions, redundant ‘safety’ circuits (e.g., the inverters found on
many standard-cell inputs and outputs) can be eliminated. Finally,
judicious use of aggressive sizing and custom circuits can be
employed in these cells. Crafted cells can be realized at different
levels of ambition. The simplest crafted cells are just several
library cells fused together, realizing just the first advantage. At
the next level, arbitrary static CMOS circuits are employed within
the cell. Finally, for very special cases, custom circuits are
employed within the cell.

Our experience shows that the level of effort to develop a
crafted cell, including generating all of the ‘views’ needed to sup-
port the standard-cell tools, is quite low (0.5-4 person days
depending on complexity) [1][6] and that a very small number of
cells (10-20) is sufficient to realize most datapaths. Moreover
these cells are reusable. They really should already be in the
library.

An orthogonal step, that can be applied independent of tiling or
crafted cells, is to use signaling circuits to improve the perfor-
mance of global signals. Structuring the global wiring at the floor-
planning step, the electrical characteristics of global wires,
resistance, capacitance, and coupling, become well characterized
and well controlled. We can exploit this degree of control by using
circuits that are optimized for the wires. For example, on recent
chips we have employed low-swing (100mV) drivers with clocked
receivers that cut wire latency by a factor of 3, increase repeater
spacing by a factor of 3, and cut power by a factor of 10. The driv-
ers and receivers fit into the standard-cell methodology, but can

Floorplanning

Tiling

Crafted Cell

Low-Swing
Signaling

only be employed on pre-routed wires that have well controlled
characteristics and are shielded from full-swing CMOS signals.
This approach would never work on the ‘spaghetti’ wiring gener-
ated by a place and route system.

The final step along our path is to do a full custom design. In a
full custom design, there is aggressive use of special circuits and
every device is sized for its load. Devices need not be organized
into cells with ‘on-grid’ I/Os and ‘safe’ electrical interfaces. In
short, there are no constraints. While full custom design does give
the best absolute performance, it also requires tremendous effort
and gives limited incremental returns compared to a crafted-cell
approach with optimized global signaling. It is almost never justi-
fied.

3 Custom design structures the wiring which
in turn enables optimized circuits.

In custom designs, effective partitioning of logic into primitives
and the selection of optimal circuit styles is enabled by the synergy
of pre-defined structure; explicit global and local wire planning;
and detailed bit-slice floorplanning. Four specific benefits com-
bine to give power savings and reduced delay. First, designers
can size devices to match the actual load instead of relying on
oversized devices configured for a generic load. Second, designers
can preserve datapath regularity minimizing required area and
eliminating unnecessary gate and wire loading. Third, designers
can use the most appropriate logic style to implement a given func-
tion, for example a simple PLA instead of gates for a state
machine. Lastly, the pre-planning and up-front design partitioning
inherent in a custom approach enables designers to identify and
apply fast circuits (domino, DCVSL, reduced swing, etc...) exactly
where they will have the most impact.

3.1 Area and power are saved by using mini-
mum sized devices (W=4λ devices rather than
W=50λ devices)

The smallest inverter in a typical 0.18um standard-cell library
is 5µm/2.5µm (a 5µm PFET over a 2.5µm NFET) or about
50λ/25λ [5] where λ is half the minimum gate length. In crafted
cells, where the wire loads are small and certain, we often employ
a true minimum-sized inverter, 6λ/4λ. This has one tenth the total
gate width of the smallest standard cell inverter and hence one
tenth the input capacitance (3ff vs 30ff). As a result, where we
can structure the wiring to keep wire loads small and well known
these circuits require significantly less power and area and often
result in smaller delays as well. Often a few crafted cells with
small devices, iterated many times, account for a large fraction of
the area and power of a chip even though most of the logical com-
plexity of the chip is realized as automated layout with large
devices.

3.2 Datapaths stay bit aligned reducing power,
area, and load on critical circuits.

A cell-based methodology can be made to approach the quality
of custom design by selectively adding a few crafted cells and
manually tiling bit-slices. The regular layout of a datapath with
bits aligned in one direction and functions aligned in the other

results in extremely efficient wiring. The length of the bit lines
and word (function control) lines are minimized as they can follow
a straight path rather than wandering from side-to-side. Also, most
of the wiring within a function remains local to a cell of the datap-
ath resulting in short wires with small loads. Unfortunately, exist-
ing CAD tools are poor at identifying and extracting the bit-slice
structure of datapaths. The space of possible placements is too
large and the space of good solutions too small to find this struc-
ture using search. However, the advantage of datapath structure
can be realized in an ASIC design flow by manually tiling logic
into the cells of a datapath.

Datapath tiling can be exploited at several levels of customiza-
tion. The impact on area and delay of different design styles is
shown in Figure 3 and Table 1. These results are from four imple-
mentations of a 64-bit microprocessor register fetch stage [1][6].
This datapath includes a 7-ported 75 entry 64-bit register file, a
six-entry reservation station, bypass multiplexors, 18-bit immedi-
ate insertion logic and thirteen 1-bit condition code registers. The
baseline custom design is implemented in IBM’s CMOS5L (Leff =
0.5µm, M2/M3 pitch 1.8µm) and contains 68361 transistors occu-
pying 1864.8µm x 1344.6µm (1036χ x 747χ) area. All four
designs in Figure 3 are drawn at the same scale.

Figure 3 Layout of a 64-bit datapath in four design styles

The custom approach (Figure 3d) was created with manually
generated schematics, required 80 unique cells and each cell was
manually placed and hand routed. The crafted-cell implementation
(Figure 3c) was created from a structural verilog model which was
then manually mapped to a basic 91 gate standard-cell library sup-
plemented by 7 crafted cells. Bit-slices were manually tiled and
function blocks are manually ordered. The design was automati-
cally routed after the detailed placement. The ‘ bitsliced’ standard
cell implementation (Figure 3b) was created by synthesis of a one
bit slice from the crafted-cell structural verilog source code target-
ing just the basic 91 cell library. The individual bit-slice was then
placed and routed automatically. Finally, the bit-slices were
ordered and assembled manually. The ‘automated’ standard cell
implementation (Figure 3a) was created by synthesis of the full
design from the crafted-cell structural verilog source code. The
resulting netlist was then automatically placed and routed. The
same metal layer conventions and external pin location constraints
were used in all four cases. All four cases employed only static
CMOS logic.

(a) No structure

(b) Tiled

(c) Crafted-cell

(d) Full Custom

The differences in quality of the four designs highlights the
benefits of both datapath structure and the use of design-specific
custom cells. Structuring the design into bitslices reduced the area
by almost a factor of 2.7 due to the regularity of the wiring. The
next step, going to crafted cells saves another factor of 3.2. The
crafted cells were able to overcome the inefficiency of building
multiplexed input latches from the cells available in the library.
The area advantage of full custom over the crafted cell approach
was mainly due to the gridding penalty required to interoperate
with the automated routing system.

 The results for delay are similar if a bit less dramatic. No
delay results are available for the fully automated design. The
crafted cell design outperforms the bitsliced design by almost
exactly a factor of 2. This advantage is gained by removing redun-
dant levels of logic and matching drivers to internal loads. The
1.1x speed advantage of full custom design is due to sub-optimal
device sizing at the boundaries of crafted cells and increased wire
parasitics due to the larger area.

The difference in metal length confirms the importance of pre-
planned structure. The custom design uses the minimal M2 & M3
resources as all contacts are made by abutment. While the crafted-
cell design was autorouted, the manual placement guaranteed that
all the routes were minimal. The increased metal usage for the
bitsliced design is due to its larger area as well as the inefficiency
that results from assembling complex cells from inexact primi-
tives. The metal use in the fully automated design reflects the
“spaghetti” wiring that results from fully automated place and
route.

3.3 Structured circuits give much better den-
sity and performance.

Structured circuits, such as ROMs, RAMs, and PLAs organize
the wires as a regular grid. The result is a considerably more com-
pact layout. Also, because the characteristics of these wires are
well controlled, structured circuits typically employ aggressive cir-
cuits and low-swing signaling to improve speed and power. A
finite-state machine implemented as a well optimized PLA (or set
of partitioned PLAs) requires about 4 χ2 of area per logic input.
The circuit lays out in a regular grid, the product lines and output
lines use a low voltage swing, and the flip-flops, with scan, are
integrated into the output sense amp. As a result the area and
power are an order of magnitude less than the corresponding gate
circuit and the cycle time is much faster. The same FSM realized
in gates takes about 100χ2 per gate input not counting the flip-
flops. As an illustration of the density of structured circuits, Figure

4 shows the same 4-input 4-output logic function implemented
with standard cells and with a PLA. Despite the peripheral over-
head of such a small design, the PLA implementation still occupies
only about 1/8 the area as the standard cell design.

Figure 4: Comparison of standard-cell and PLA layout for a
simple 4-input 4-output logic function

In reviewing a number of designs we have been amazed at the
vast number of finite state controllers that should obviously be
implemented as PLAs or microcode ROMs that are instead turned
into a vast sea of gates because that is what the tools support. The
designer writes her microcode in behavioral verilog, synthesizes it
to a pile of gates, and then places and routes the circuit. What
could have been a small, structured, stable, easy to modify PLA or
ROM becomes a spaghetti connected set of standard cells that
completely changes each time synthesis is rerun.

3.4 Structured layout enables the use of fast
circuits

Fast circuits, such as domino logic, and low-swing high fan-in
and fan-out circuits get much of the credit for the performance and
power advantages of custom design over the standard-cell
approach. In fact, these fast circuits are only possible because
structured layout makes the wiring predictable, they cannot be
applied independently. Also, dynamic circuits give less than a fac-
tor of 2 improvement over static CMOS [4]. Most of the improve-
ment is due to the structure. Two key circuit concepts are widely
used in custom designs: dynamic logic, and low-swing signals.

Dynamic logic is judiciously used in custom designs (full-cus-
tom or crafted cell) to reduce area and speed up critical paths.
These circuits outperform static CMOS circuits for two reasons:
(1) PFET loads and delays are largely eliminated from the critical
path, and (2) the inputs switch at a lower point, VTn, than a static
inverter, Vinv, and hence switch sooner. Dynamic circuits, how-
ever, are much more susceptible to noise and can only be used in
environments where the coupling to nearby lines is well character-
ized. This coupling is easy to characterize with structured wiring
and nearly impossible to do when the wiring is done last and ran-
domly routed.

Low swing signals are used on high capacitance nets where the
delay and power of amplifying the signal at the far end is less than
the delay and power required to drive the signal through full-swing
[2]. The most common application of this technique is the bit lines
on a static RAM which swing only 100-200mV. However, it can
also be applied to high fan-in circuits (like a match line in a CAM),

Table 1: Comparison of datapath design styles

Custom Crafted Bitsliced
Std Cells

Automated
Std Cells

Area 1.0 1.64 5.25 14.50

Delay 1.0 1.11 2.23

Gate Load 1.0 1.09 2.29 2.29

M2 Length 1.0 1.07 4.19 34.90

M3 Length 1.0 1.63 2.52 7.92

and high fan-out circuits (distributing a global ‘stall’ signal), and
to circuits that have both high fan-in and fan-out (like a crossbar
switch). The savings in area, delay, and power compared to a
standard cell approach are considerable. In one switch that we
realized, the design was simply not feasible using standard cells,
but was fairly easy using structured design. The power savings are
perhaps the most dramatic, by swinging through less than 10% of
the power supply, these circuits dissipate less than 10% the power
of the full-swing alternative. Like dynamic circuits, low-swing
circuits cannot be applied independently. They depend on struc-
tured layout to give a well characterized wire to drive and to isolate
the low-swing signal from noisy full swing signals. These circuits
cannot be used with wiring that is routed last with coupling that is
not well controlled.

4 CAD tools and IP offerings should embrace
custom design

While we have had considerable success with the selective
application of custom design techniques, many designers find it
difficult to apply these techniques because they require a departure
from the standard CAD flow. Also, they are not supported by
almost all sources of reusable designs. Both of these problems
could be easily remedied.

As designers, we would like to see CAD tools that embrace a
selective custom approach to ASIC design. Specifically useful
would be:
1. Tools that support datapath tiling. Starting with a verilog

deck annotated with row and column positions and identify-
ing signals as bit lines and word lines these tools would prop-
agate this information to place the logic into specific bit cells
and to route bit-lines and word-lines along single tracks.

2. Tools that streamline the verification, characterization, and
integration of new cells. Designing the circuits and layout for
a new crafted cell is not difficult. Most of the effort goes into
validating this cell and generating the numerous views needed
to integrate this cell into the standard CAD flow. This pro-
cess could be completely automated.

3. Tools that easily support the manual placement of key signal
groups, repeaters, and shielding during the floorplanning pro-
cess and use this placement to guide logic placement. Such
tools should also support adding noise and load constraints on
select signals to facilitate the use of fast circuits.

Such tools would represent a shift on the part of the CAD ven-
dors from a logic-centric view of design toward a wire-centered
view of design. In the logic-centric view, the logic design comes
first and is specified by the designer while the physical design (the
wiring) comes last and is automatically generated. In the wire-cen-
tered view, the global wires come first, then the logic design and
both are specified by the user. The tools then generate a detailed
placement, implement the local wiring, and tidy up the loose ends.
This arrangement gives the user control over the structure of the
design.

The situation is similar with IP vendors. Most IP today is avail-
able as a synthesizable Verilog deck. When put through a standard
ASIC flow, this generates layout with little structure. In some
cases, IP vendors offer customized placement and even layout in a

particular vendor’s process, but such hard IP is not portable and
hence not widely used.

What is needed is portable IP that captures structure and, in
select cases, optimized circuits. Tools that support a wire-centered
view of design would enable such portable, optimized IP. The IP
vendor could encode the datapath structures within a design (even
those in the ‘control’ blocks), pack circuitry into crafted cells, and
even employ fast circuits, all in a portable manner. If IP blocks are
to be widely used, they should be highly optimized. Providing IP
as a Verilog deck permits only RTL optimization. Providing por-
table, structured IP permits optimization of circuits and layout as
well.

We would like to see the IP industry provide ASIC-compatible,
portable modules ranging from adders to microprocessors to net-
work switches with the speed, area, and power of a full custom
design.

5 Conclusion
Much of the gap between the performance of ASICs and the

performance of full-custom ICs can be closed by selectively apply-
ing custom design techniques to structure ASICs. Floorplanning
and datapath tiling to the level of bit cells fixes the characteristics
of key wires early in the design process. This wires-first approach
gives early visibility of timing and power problems and gives the
designer control over the most important performance factor - wire
loads. Building a small set of crafted datapath cells gives further
benefits in area, delay, and power by keeping local wires short
enabling the use of small drivers. Structuring the wiring through
these techniques also enable the use of fast circuits by providing
the controlled environment they require. As process geometries
shrink, structured wiring will become even more critical to the per-
formance of ASICs. CAD vendors and IP vendors should recog-
nize this trend and provide tools and cores that embrace a wire-
centered view of design.

 References
[1] CHANG, ANDREW, VLSI Datapath Choices: Cell-Based Versus Full-

Custom, SM Thesis, Massachusetts Institute of Technology, February
1998.

[2] DALLY, WILLIAM J., AND POULTON, JOHN W., Digital Systems Engi-
neering, Cambridge University Press, 1998, Chapter 8.

[3] GRONOWSKI, PAUL E., BOWHILL, WILLIAM J., PRESTON, RONALD
P., GOWAN, MICHAEL K., AND ALLMON, RANDY L., High-Perfo-
mance Microprocessor Design, IEEE Journal of Solid-state Circuits.
Vol 33. No 5., May 1998, pp. 676-686.

[4] HARRIS DAVID I., OBERMAN, STUART F., HOROWITZ, MARK A.,
“SRT Division Architectures and Implementations”, Proceedings of
13th IEEE International Symposium on Computer Arithmetic, July
1997, pp 18-25.

[5] IBM CORPORATION, SA-27E ASIC Databook, February 2000.
[6] KECKLER, STEPHEN W., DALLY, WILLIAM J., CHANG, ANDREW.,

CARTER, NICHOLAS P., LEE, WHAY SING., “The MIT Multi-ALU
Processor”, Hot Chips IX, August 1997, pp 1-8.

