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Chemokines govern leukocyte migration by attracting cells that express their

cognate ligands. Many cancer types show altered chemokine secretion profiles,

favoring the recruitment of pro-tumorigenic immune cells and preventing the

accumulation of anti-tumorigenic effector cells. This can ultimately result in cancer

immune evasion. The manipulation of chemokine and chemokine-receptor signaling

can reshape the immunological phenotypes within the tumor microenvironment

in order to increase the therapeutic efficacy of cancer immunotherapy. Here we

discuss the three chemokine-chemokine receptor axes, CXCR1/2–CXCL1-3/5-8,

CXCR3–CXCL9/10/11, and CXCR4-CXCL12 and their role on pro-tumorigenic immune

cells and anti-tumorigenic effector cells in solid tumors. In particular, we summarize

current strategies to target these axes and discuss their potential use in treatment

approaches.
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INTRODUCTION

Immune evasion is a hallmark of carcinogenesis (1). Tumor cells interact closely with stromal cells,
immune cells and the extracellular matrix (ECM). Via complex mechanisms these communications
support tumor growth, metastatic spread, and immune escape (2). A family of small chemotactic
proteins, called chemokines, has key roles in these interactions. Depending on their protein
sequence, and more specifically, the location of the cysteine (C) residues at their N-terminus,
chemokines are subdivided into four main classes: the C-, the CC-, the CXC-, and the CX3C-
chemokines (3). Irrespective of their class, chemokines signal through binding to cognate seven-
transmembrane spanning G protein-coupled receptors (GPCRs), found on the migratory cells.
To date, 48 chemokines and 18 signal-transducing receptors have been identified in humans.
Each chemokine can activate several different receptors. Immune cell subsets differentially express
chemokine receptors, which results in their selective recruitment, according to the special needs
of each environment. Within the tumor microenvironment (TME), chemokine ligand secretion is
often altered compared to healthy tissue. This facilitates recruitment of pro-tumorigenic immune
cells such as myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TAN),
tumor-associated macrophages (TAM), and regulatory T cells (Treg). These cells expand during
tumor progression, suppress effector lymphocytes, and are associated with worse prognosis in
patients with various solid malignancies (4–7). Several studies demonstrate that tumor cells secrete
chemokines in an autocrine and paracrine fashion to directly promote cancer cell growth, survival
and metastasis (8). Here we focus on the impact of the CXCR1/2, CXCR3, and CXCR4 chemokine
axes on recruitment of pro-tumorigenic and anti-tumorigenic immune cells in solid malignancies.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02159
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02159&domain=pdf&date_stamp=2018-09-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Andreas.Lundqvist@ki.se
https://doi.org/10.3389/fimmu.2018.02159
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02159/full
http://loop.frontiersin.org/people/584209/overview
http://loop.frontiersin.org/people/584181/overview
http://loop.frontiersin.org/people/185842/overview
http://loop.frontiersin.org/people/147424/overview


Susek et al. CXCR1-4 Within the TME

We highlight the role of the CXCR1/2 axis on promoting
immunosuppressive cells and the impact of CXCR3 and CXCR4
axes on increasing effector cell recruitment. Furthermore,
we summarize preclinical and clinical studies that shape
the therapeutic potential of chemokine-targeting and their
implication in combinatorial immunotherapeutic treatment
approaches.

THE ROLE OF CXCR1 AND CXCR2 IN
SOLID MALIGNANCIES

CXCR1 and CXCR2 are expressed by several cell types, especially
neutrophils, fibroblasts and vascular endothelial cells. CXCR1
and CXCR2 bind the ligands CXCL6 and CXCL8 (IL-8) with
similar affinity, while binding of CXCL1, CXCL2, CXCL3,
CXCL5, and CXCL7 is mediated by CXCR2 (9). Mice do not
have a CXCL8 (IL-8) gene. Moreover, the gene product of
murine CXCL5, called LIX, is homologous to human CXCL6
and binds both CXCR1 and CXCR2 (10). High levels of
these chemokine receptors and ligands in tumor tissues and
serum are correlated with worse prognosis in several tumor
types, including ovarian cancer, lung adenocarcinoma, colorectal
carcinoma and pancreatic ductal adenocarcinoma (PDA) (11–
15). One explanation for the poor prognosis could be the
preferential recruitment of pro-tumorigenic immune cells via
the CXCR1/ 2 axis (summarized in Table 1). Altered signaling
pathways in tumor cells can increase chemokine secretion. For
instance, overexpression of the transcription factor Snail in
ovarian cancer cells upregulated CXCL1, CXCL2, and CXCL5
through the NF-kB pathway and promoted MDSC recruitment
(11). Snail depletion or antibody-mediated CXCR2 targeting
diminished MDSC cell numbers within tumors and increased T
cell and NK cell numbers (11). Similarly, CXCL1 and CXCL2
secretion by breast cancer cells resulted in increased infiltration
of pro-tumorigenic myeloid cells and was further augmented
by chemotherapeutic treatment, leading to chemoresistence
(16). The role of CXCL5 in recruiting CXCR2+ MDSC and
TAN has also been shown in models of renal cell carcinoma
(RCC) (17), PDA (18), melanoma (19, 20), and hepatocellular
carcinoma (HCC) (21). In patients with RCC, intratumoral
CXCL5 and CXCL8 levels correlated with increased MDSC
infiltration (17). Targeting CXCR2 reduced MDSC numbers and
increased effector T cells (17). While targeting CXCR2 alone
only modestly decreased tumor burden in a murine RCC model,
combination with immune checkpoint inhibition significantly
reduced tumor weight (17). Similarly, high CXCL5 expression
was found in PDA and mediated recruitment of CXCR2+

neutrophils (18). Abrogation of CXCR2 diminished neutrophil
infiltration and increased the ratio of effector T cells (18). In
genetically modified mice that expressed human CXCL8, MDSC
were efficiently recruited to the tumor site and suppressed T
cell activity (22). Collectively, these data indicate that CXCR1/2
blockade reduces pro-tumorigenic immune cell infiltration and
increases T and NK cell recruitment. This supports attempts
to combine CXCR1/2 blockade with other immunotherapies,
such as checkpoint inhibition or adoptive cell therapy. CXCR1/2

blockade also helps to overcome chemoresistance mediated by
pro-tumorigenic immune cells (16, 23). It was recently shown
that chemokine signaling within the TME displays high plasticity:
CXCR2+ TAN numbers within tumor biopsies increased in PDA
patients that were previously treated with an inhibitor of CCR2
(23). Inversely, depletion of TANs resulted in increased TAM
numbers and only dual inhibition of both the CXCR1, CXCR2,
and CCR2 axis disrupted myeloid infiltration and improved
responses to chemotherapeutic treatment (23).

CXCR1 and CXCR2 are highly expressed by cytotoxic
CD56dim NK cells (37, 38). We recently showed that CXCR2
expression is downregulated on tumor-infiltrating NK cells in
RCC and genetic modification to re-express CXCR2 enhanced
recruitment of NK cells to the tumor site (39). Similarly, Ali
et al. showed that CXCL8 was released within the TME of
melanoma-infiltrated lymph nodes and could efficiently recruit
highly cytotoxic NK cells (24). The percentage of this NK cell
population among all NK cells within the affected lymph node
was associated with improved prognosis among patients with
stage III melanoma. Likewise, genetically modified CXCR2+ T
cells displayed increased in vivo migration in murine melanoma
models (40, 41). A clinical phase I/II trial in patients with
metastatic melanoma infused with genetically modified CXCR2+
T cells has been initiated (Table 2).

Findings from pre-clinical studies have already been
translated into clinical phase studies (summarized in Table 2).
The combination of paclitaxel with reparixin—a CXCR1 and
CXCR2 inhibitor—was well tolerated in patients with metastatic
breast cancer and resulted in 30% response rate (42). Based on
these findings, a phase II study was initiated (NCT02370238).
Combination therapies with CXCR1/2 inhibitors are also
in clinical phase trials for prostate cancer and metastatic
melanoma.

THE ROLE OF CXCR3 AND ITS LIGANDS
IN SOLID TUMORS

CXCR3 is expressed on different subtypes of T and NK cells
(37, 44) and binds to CXCL9, CXCL10, and CXCL11. During
homeostasis, CXCL9, CXCL10 and CXCL11 are expressed at low
levels by monocytes, endothelial cells and fibroblasts, but are
upregulated upon cytokine stimulation, especially by IFNγ and
TNFα (45, 46). CXCR3 and its ligands are expressed by various
solid tumors, although their prognostic role greatly differs among
the entities. This underlines a role in tumor suppression as
well as tumor growth promotion and metastasis. While high
CXCR3 expression in glioblastoma, colorectal, and breast cancer
is associated with poor prognosis, it correlated with better
outcomes in patients with gastric cancer (28, 47, 48). In contrast,
high CXCL9, CXCL10, and CXCL11 expression in the TME of
patients with colorectal, oesophageal, non-small cell lung (NSCL)
and ovarian cancer is an indicator of improved overall survival
(27, 49–51), while it is a poor prognostic marker in patients with
localized clear-cell RCC (52).

CXCR3 is a key receptor in recruitment of activated T cells
as it is absent in naïve T cells, but highly expressed on activated
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TABLE 1 | The effect of chemokine ligands and their receptors on immune cells within the tumor microenvironment.

Chemokine

receptor

Chemokine (systematic

name/common name)

Cell type Role within the tumor microenvironment References

CXCR1/CXCR2 CXCL1 (GROα)

CXCL2 (GROß)

CXCL5 (ENA-78)

MDSC - Targeting CXCR2 in Snail+ ovarian cancer xenograft models

inhibits MDSC recruitment and prolongs overall survival of

tumor-bearing mice

(11)

CXCL1 (GROα)

CXCL2 (GROß)

CD11b(+)Gr1(+)

myeloid cells

- CXCL1 and CXCL2 are expressed by breast cancer cells and

attract myeloid cells, that secrete chemokines to promote

cancer cell survival

(16)

CXCL5 (ENA-78)

CXCL8 (IL-8)

MDSC - CXCR2+ MDSC are recruited via CXCL5 and CXCL8 to RCC

- targeting CXCR2 reduces MDSC numbers and increases T cell

infiltration

- Combination of CXCR2 blockade and immune-checkpoint

inhibition leads to more pronounced tumor growth reduction in

murine models

(17)

CXCL5 (ENA-78) TAN - CXCR2+ TAN are recruited into PDAC along CXCL5

- CXCR2 blockade reduces TAN numbers and increases T cell

numbers

(18)

CXCL5 (ENA-78) MDSC - MDSC are attracted via CXCL5 in murine metastatic uveal

melanoma models and enhance epithelial-mesenchymal

transition (EMT) in tumor cells

(19)

CXCL5 (ENA-78) TAN - Neutrophils were efficiently recruited by CXCL5 release from

human melanoma cells in xenograft mouse models

(20)

CXCL5 (ENA-78) TAN - CXCL5 can be induced by TGFb and Axl and promotes

neutrophil recruitment toward HCC cells

(21)

CXCL8 (IL-8) MDSC - MDSC are efficiently recruited to the tumor site via CXCL8

expression in genetically modified mice

(22)

CXCL1 (GROα)

CXCL3 (GROγ)

CXCL5 (ENA-78)

CXCL8 (IL-8)

TAN - TANs are recruited to orthotopic pancreatic tumor sites via the

CXCR2 axis; numbers of CXCR2+ neutrophils in pancreatic

cancer patients correlate with prognosis

- In an orthotopic PDAC model CXCR2 blockade prevents TAN

mobilization from peripheral blood and increases effector T cell

numbers in the tumor

(23)

CXCL8 (IL-8) NK - Accumulation of highly cytotoxic NK cells in metastatic lymph

nodes of melanoma patients

(24)

CXCR3 CXCL10 (IP-10) Treg - Treg recruitment via the CXCR3/CXCL10 axis increases HCC

recurrence rate after liver transplantation

(25)

CXCL11 (I-TAC) Treg - CXCL11 is highly expressed in colorectal cancer; similarly

CXCR3+ regulatory T cells are abundant in CRC specimen and

can be efficiently recruited in vitro by CXCL11

(26)

CXCL9 (MIG)

CXCL10 (IP-10)

TIL/NK - CXCL9 and CXCL10 expression is associated with improved

patient survival in advanced HGSC through recruitment of TIL

(tumor-infiltrating lymphocytes)

(27)

n.a. Effector T cells - Intratumoral CXCR3 expression was upregulated in patients with

advanced gastric and was associated with increased CD4+,

CD8+ TILs infiltration and improved OS

(28)

CXCL9 (MIG)

CXCL10 (IP-10)

Effector T cells - CXCL9, CXCL10 are important chemokines within the

melanoma tumor microenvironment and are able to recruit CD8

effector T cells in a murine xenograft model

(29)

Effector T cells - CXCR3−/− melanoma mice show accelerated tumor growth

and impaired T cell infiltration of tumor tissue

(30)

Effector T cells - CXCR3 is essential for effector T cell trafficking through tumor

vessels, even in absence of its ligands

(31)

CXCL9 (MIG)

CXCL10 (IP-10)

Effector T cells NK

cells

- Human colorectal cancer samples show high CXCL9 and

CXCL10 expression that correlates with T cell, but not NK cell

numbers

(32)

CXCL10 (IP-10) NK - CD27high CXCR3+ NK cells infiltrate tumors in murine

lymphoma and melanoma models in an CXCL10-dependent

fashion and lead to improved survival

NK cells from CXCR3−/− mice show impaired tumor infiltration

(33)

(Continued)
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TABLE 1 | Continued

Chemokine

receptor

Chemokine (systematic

name/common name)

Cell type Role within the tumor microenvironment References

CXCR4 CXCL12 (SDF-1α/ß) MDSC - PGE2 increases CXCL12 levels in ascites of ovarian cancer

patients

- CXCR4+ MDSC are recruited toward CXCL12

(34)

Treg - CXCL12 levels are elevated in NSCLC, which results in

increased recruitment of CD4+CD69+CXCR4+ T cells

(35)

NK - Genetically modified NK cells that overexpress CXCR4 lead to

improved tumor eradication in a murine glioblastoma model

(36)

TABLE 2 | Clinical trials with modulators of chemokine functions within the tumor microenvironment.

Name Mode of action Clinical trial Current status

CHEMOKINE RECEPTOR ANTAGONISM

Reparixin CXCR 1/2

inhibition

Phase IB

(NCT02001974)

- Completed: 30% response rate in patients with metastatic

breast cancer, well tolerated (42)

- Combined with chemotherapy (paclitaxel)

AZD5069 Phase I/ II

(NCT03177187)

- Recruiting patients with metastatic castrate-resistant

prostate cancer

- Combined with antiandrogen medication (enzalutamide)

SX-682 Phase I

(NCT03161431)

- Recruiting patients with metastatic melanoma

- Combined with immune checkpoint inhibitor

(pembrolizumab)

AMD3100 (Plerixafor) CXCL12/CXCR4

inhibition

Phase I

(NCT03277209)

- Recruiting patients with pancreatic, ovarian and colorectal

adenocarcinomas

- Assess safety and impact on TME

NCT02695966 - Ex-Vivo assessment of T lymphocyte function and

localization in pancreatic cancer

Ulocuplumab (BMS-936564) Phase I/II

(NCT02472977)

- In combination with nivolumab

- Terminated due to lack of efficacy

LY2510924 Phase II

(NCT01439568)

- In combination with carboplatin and etoposide

- No clinical benefit in patients with extensive-disease small

cell lung carcinoma (43)

Phase II

(NCT01391130)

- In combination with sunitinib

- Terminated due to insufficient efficacy in patients with

metastatic clear cell renal cell carcinoma

Phase 1

(NCT02737072)

- In combination with durvulumab for patients with advanced

solid tumors

- Terminated

USL 311 Phase I / II

NCT02765165

- Recruiting patients with glioblastoma multiforme

Olaptesed (NOX-A12) Phase I/II

(NCT03168139)

- Olaptesed in combination with pembrolizumab

- Recruiting patients with colorectal and pancreatic cancer

GENETICALLY MODIFIED EFFECTOR IMMUNE CELLS

CXCR2 + NGFR

+ T cells

Phase I/ II

(NCT01740557)

- Recruiting patients with metastatic melanoma

effector and memory T cells (44). CXCR3 expression on Tregs,
however, can hamper effector immune cell functions due to
competitive recruitment. In HCC, Treg infiltration in the liver
after liver transplantation was associated with higher rates of
recurrence (25). Patients with higher numbers of circulating
Tregs and increased levels of CXCL10 within the graft were more
susceptible. Similarly, high expression of CXCL11 in a colorectal
cancer model was shown to recruit CXCR3+ Tregs (26). In
contrast, in ovarian cancer, high CXCL9 and CXCL10 expression

doubled the overall survival time due to improved recruitment
of tumor-infiltrating lymphocytes (27). Enhanced effector T cell
recruitment via the CXCR3 axis has also been confirmed in the
case of gastric cancer and melanoma (28, 29). Tumor growth
was accelerated in CXCR3−/− melanoma-bearingmice and T cell
infiltration was severly impaired (30). Anti-programmed death
receptor (Anti-PD1) therapy was not beneficial in CXCR3−/−

tumor-bearing mice due to failure of efficient T cell recruitment
(30). Importantly, CXCR3 has been shown to be indispensable
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for CD8+ effector T cell trafficking across tumor vasculature
due to its role in intravascular adhesion, even in the absence
of its ligands. CCR2 and CCR5, in contrast, promoted tumor
site infiltration only in a chemokine ligand dependent manner
(31). CXCR3 expression plays an important role in recruiting
NK cells to the tumor site: We showed that CXCR3 expression
on human NK cells increased during ex vivo culture (53).
In xenograft mice models, these expanded NK cells could be
efficiently recruited toward CXCL10+ melanomas (53). However,
the sole presentation of CXCR3 ligands within the TME does
not always predict efficient effector cell recruitment. In a mouse
model of uveal melanoma that leads to spontaneous metastasis
into the skin and viscera, application of the chemotherapeutic
drug temozolomide increased CXCL9 and CXCL10 levels within
the metastatic sites (54). Nonetheless, increased T cell infiltration
was only observed in the visceral sites and not in the cutaneous
tumors due to alteredmatrix architecture andmode of CXCL9/10
presentation (54). Interestingly, high expression levels of CXCL9
and CXCL10 in colorectal cancer samples correlated with T cell
infiltration, but not with NK cell infiltration that was scarce
in the analyzed samples (32). The expression level of CXCR3
was not measured on NK cells versus T cells. In contrast,
CXCR3+ NK cells infiltrated tumor tissue in murine lymphoma
and melanoma models in a CXCL10-dependent manner (33).
CXCL10 was augmented via application of IFNγ (33). Several
factors canmodify CXCR3 expression on T cells andNK cells. For
instance, elevated CXCR3 ligands in patients with cutanenous
T cell lymphoma lead to CXCR3 downregulation on cytotoxic
T cells (55). Soluble HLA-G was also shown to downregulate
CXCR3 expression on cytotoxic T cells and inhibit migration
along CXCL9 and CXCL10 gradients (56). In another study,
STAT3 signaling in CD8+ T cells was shown to downregulate
IFNγ production, leading to decreased CXCL10 expression by
tumor-associated macrophages. Additionally, STAT3 diminished
CXCR3 expression on CD8+ T cells (57). Collectively, these
data underline not only the importance of the CXCR3 axis in
recruitment of effector immune cells, but also reveal complex
relationships of receptor-ligand interactions in a TME-specific
context.

To enhance effector cell recruitment, efforts are made to
increase CXCL9 and CXCL10 expression within the TME.
Several enzymes can modulate CXCR3 ligands such as dipeptidyl
peptidase-4 (DPP-4/CD26) (58, 59), furin (60) as well as certain
peptidylarginine deaminases and matrix metalloproteinases (61).
For instance, DPP-4 was shown to cleave CXCL9, 10 and 11,
which in turn reduced their chemotactic activity on lymphocytes,
while not affecting their antiangiogenic activities (59). In breast
cancer cell lines, Prostaglandin E2 (PGE2) impaired IFN-
γ mediated CXCL9 and CXCL10 release (62). Inhibition of
the cyclooxygenase (COX) isoenzymes with indomethacin and
acetylsalicylic acid suppressed the downregulatory functions of
PGE2 and increased CXCL9 and CXCL10 levels in vitro (62).
Evidence for the role of CXCL9 in attracting NK and cytotoxic
T cells was shown in a murine model of breast cancer (63).
Gene transfer of CXCL10 by pCLNCX retroviral vectors in
melanoma xenograft models decreased angiogenesis and tumor
growth (64). Similarly, murine-leukemia virus (MLV)-derived

replication-competent retroviruses were used to stably express
CXCL10 in fibrosarcoma, melanoma and Lewis lung cancer
models and were shown to inhibit tumor growth in vivo (65).
However, the effect of CXCL10 on T or NK cell recruitment
and functionality was not investigated in these early studies.
Only recently, an oncolytic poxvirus was armed with CXCL11
in order to attract CXCR3+ cytotoxic T cells and NK cells to
the site of the malignancy in a murine mesothelioma model
(66). Besides improving effector cell homing, the virus enhanced
the systemic antitumor activity by inducing the proliferation of
IFNγ-producing CD8+ T cells.

Targeting the CXCR3 axis to improve efficient effector cell
recruitment is hampered by the opposing role on tumor cells:
CXCR3 expression can be found on tumor cells, especially at
later stages of tumorigenesis and in patients with advanced
disease, where it is positively correlated with the formation of
metastasis (67–69). Thus, blocking CXCR3 on tumor cells might
also impair the ability of CXCR3+ NK and T cells to efficiently
kill tumor cells. Interestingly, ACKR3 (formerly CXCR7) is an
atypical receptor of CXCL11 and CXCL12, that is not expressed
on peripheral blood leukocytes but upregulated by various
tumor types, including breast, esophageal and lung squamous
cell cancer (70, 71). Targeting of ACKR3 with a monoclonal
antibody inmicemodels of glioblastoma leads to increased tumor
cell death via NK-cell mediated antibody-dependent cytotoxicity
(ADCC) (72). Combination with temozolomide prolonged
survival in tumor-bearing mice and resulted in enhanced
infiltration of anti-tumorigenic M1 macrophages (72). CXCR3
and ACKR3 inhibitors are in preclinical testing for different solid
tumors (72–74). Currently there are no registered clinical phase
trials employing either CXCR3 or ACKR3 inhibitors in solid
malignancies.

CXCR4 AND ITS LIGAND CXCL12

CXCR4 and its ligand CXCL12 are ubiquitously expressed under
physiological conditions and are important for hematopoiesis,
cardiogenesis, and neurogenesis. The CXCR4-CXCL12 axis is
involved in HSC maintenance and homing within the bone
marrow as well as during the development of B, T, and NK cells
(75, 76). In the context of cancer, CXCR4 expression is found
on tumor cells, where it promotes tumor cell growth, migration,
and invasiveness (77, 78). Moreover, CXCL12 produced within
the tumor can attract CXCR4+ Treg, MDSC and plasmacytoid
dendritic cells (pDC), potentiating the tumor-promoting effect
(34, 79–81). High CXCR4 expression in biopsies of solid tumors
is generally correlated with worse prognosis. In particular,
CXCR4 expression in breast cancer was significantly associated
with lymph node and distant metastasis and worse overall
survival (82). Similar conclusions could be drawn for prostate
cancer, melanoma and lung cancer (83–85).

The expression levels of CXCR4 on NK and T cells varies
according to their maturation stage and subset, whereas their
recruitment to the different organs is often dependent on
the co-expression of other chemokines (86, 87). High CXCR4
expression on NK cells is associated with accumulation within
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the bone marrow compartment, whereas CXCR4 desensitization
is important to enable NK cells to leave the bone marrow (88, 89).
Several factors can modulate the chemokine receptor repertoire
on immune cells: For instance, conditioning human NK cells
with TGFβ1, derived from neuroblastoma cells, significantly
upregulated CXCR4 and CXCR3 expression and downregulated
CX3CR1 on NK cells (90). This generated an NK cell phenotype
that is retained in the bone marrow, rather than recruited
to peripheral organs and tumor tissue (91). Another study
suggested that PGE2 regulates CXCL12 levels inmalignant ascites
from ovarian cancer patients and CXCR4 expression on MDSC
(34). Blockade of PGE2 abrogated migration of MDSC toward
the malignant ascites. In line with this, non-small cell lung
cancer (NSCLC) express high CXCL12 levels and especially
recruits CD4+CD69+CXCR4+ T cells with an increased ratio
of regulatory T cells (35). Although the percentage of CD8+

T cells was not altered, NK cell numbers within the tumor
tissue decreased. In accordance, regulatory T cells are maintained
within the bone marrow and can migrate along the CXCR4-
CXCL12 axis (92). Regarding modulation of CXCR4 expression
using pharmacological agents, tyrosine kinase inhibitors (TKIs)
imatinib and nilotinib have been shown to selectively increase
the cell surface of CXCR4 on NK cells and monocytes, in vitro
experiments using NK cells derived from neuroblastoma patients
(93).

Multiple approaches to target this axis have been explored,
some of which have entered clinical trials with varying outcomes
(summarized in Table 2). On a preclinical level, TN14003
and AMD3100 (Plerixafor), two anti-CXCR4 inhibitors, have
been tested in patient-derived xenografts (PDX) of breast
cancer showing antitumor activity in the HER2 subtype (94).
Interestingly, in triple-negative PDX, both inhibitors appeared
neither to control tumor growth nor to impede metastatic
spread, which highlights the complexity of breast cancer subtypes
and their respective TMEs. AMD3100 has also been tested
in a murine model of human pancreatic cancer, alone or
in combination with immunological checkpoint antagonists
(95). In this study, AMD3100 was able to successfully block
CXCR4 signaling and promote T-cell mobilization in vivo. More
importantly, AMD3100 showed improved anticancer activity
when combined with an anti-PD-L1 monoclonal antibody (96).
CXCR4 is also highly expressed in colorectal cancer, building a
therapeutic rationale for CXCR4 targeting (97). Blocking colon
carcinoma cells with a CXCL12-KDEL retention protein in vitro,
resulted in the inhibition of CXCR4-mediated signaling and a
subsequent dramatic decrease in metastatic cancer outgrowth
(98). AMD3100 has also been tested in the particular model,

exhibiting similar promising preclinical results (99). Othermeans
of modulating the CXCR4-CXCL12 axis include oncolytic viruses
and gene-engineered NK cells. In particular, introducing an
oncolytic virus equipped with a CXCR4 antagonist restored
the pathologic signaling in a murine model of ovarian cancer,
reduced metastatic spread and diminished regulatory T cell
recruitment (100). On the other hand, NK cells engineered to co-
express a chimeric antigen receptor (CAR) and the chemokine
receptor CXCR4 enhanced NK cell infiltration and tumor cell
killing in a glioblastoma tumor model (36). Last but not least,
Spiegelmer aptamers, such as the CXCL12-targeting NOX-A12,
hold great potential in modulating the TME of solid tumors.
Although clinical trials are still ongoing (Table 2), NOX-A12
(Olaptesed pegol) is thought to increase immune cell infiltration,
sensitize tumors to checkpoint inhibitors and obstruct tumor
repair mechanisms in metastatic pancreatic and colorectal
cancers (Noxxon Pharma). Examples of additional types of solid
tumors that may benefit from inhibition of the CXCR4-CXCL12
axis are oesophageal (101)and gastric cancer (102).

CONCLUDING REMARKS

Although our current understanding of solid tumor
microenvironment and its chemokine networks is more
detailed, a lot remains unexplored. The future of chemokine
modulation for therapeutic purposes is very much dependent on
efforts to elucidate the complex pro-tumor and antitumor roles
of chemokines in the TME. The current preclinical approaches
have demonstrated some promising results and defined rational
immunotherapeutic combinations. The results from the eagerly
awaited clinical trials, in combination with investigations
on new chemokine targets and advances in drug discovery,
immunotherapy and cell therapy, are expected to shape the
landscape of chemokine-based therapy further in the years to
come.
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