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Chemokines and their receptors play an important role in the recruitment, activation and

differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9,

CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced

inflammatory responses. Inflammation of the skin resulting from infections or autoimmune

disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector,

CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3

chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to

the inflammatory process in human skin requires further investigation. In skin cancers,

the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead

to cancer metastasis to systemic sites while receptor expression on immune cells

can frequently promote anti-tumor immune responses. This review will discuss the

biology of CXCR3 and its associated ligands with particular emphasis on the skin during

inflammation and carcinogenesis.
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INTRODUCTION

Chemokines are secreted, chemotactic cytokines ranging from 8 to 14 kDa in size and are
classified into four groups based on the position of the conserved cysteine residues: CXC, CC,
C and CX3C (1). Chemokines typically interact with chemokine receptors, which are seven-
transmembrane proteins of the G protein-coupled receptor (GPCR) superfamily (2). Through
these interactions, chemokines deliver diverse signal transmission to direct leukocyte migration,
inflammation and differentiation (3, 4). The importance of chemokines and chemokine receptors
in regulating inflammatory processes is underpinned by their involvement in the pathogenesis of
several autoimmune diseases, including rheumatoid arthritis (5, 6), inflammatory bowel disease
(7), type I diabetes (8, 9), and psoriasis (10, 11).

In some cases, multiple chemokines can interact with the same chemokine receptor resulting
in functional redundancy (12, 13). However, some receptors, such as CXCR4, CXCR5, CXCR6,
CCR6, CCR9, and CX3CR1 only interact with one known ligand (1). Selective ligand binding
directs tissue specific and cell type specific lymphocyte recruitment. For example, CCR9 plays
critical role in recruiting lymphocytes to the gut (7) while CCR6 drives Th17 homing to the site
of inflammation (14).
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More recently, chemokines have been observed to have
functions other than simply being leukocyte attractants. Karin
et al. termed chemokines that are able to alter the biological
functions of recruited leukocytes as “driver chemokines” (15).
For example, CXCL12 polarizes CXCR4+ macrophages into IL-
10-secreting M2-like macrophages (16) and CXCR4+CD4+ T
cells into IL-10-producing regulatory T cells (Tr1) that suppress
experimental autoimmune encephalomyelitis (EAE) (17). In
addition to inducing immunosuppressive cell types, chemokine
signaling can also influence effector T cell polarization. One
example is the CXCR3 receptor which can help differentiate naïve
T cells into Th1 effector T cells (18).

CXCR3 and Chemokine Ligands
CXCR3 (GPR9/CD183) is an interferon-inducible chemokine
receptor expressed on various cell types, but preferentially
monocytes, Th1T cells, CD8T cells, NKT cells, NK cells,
dendritic cells, and some cancer cells (19–21). Homeostatic
proliferation of T cells in immune depleted individuals can also
lead to an enrichment of CXCR3+ T cells (22). The CXCR3
receptor reacts with three interferon-inducible chemokines:
CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC/IP-9)
in addition to CXCL4. Mice have a single isoform of the
CXCR3 receptor while three isoforms, CXCR3A, CXCR3B,
and CXCR3-alt, exist in humans with distinct roles in cell
biology and tumorigenesis (23). CXCR3A plays a traditional
CXCR3 role comprising chemotaxis and cell proliferation via
calcium mobilization in immune responses induced by IFN-γ
(24). With an extension at the N terminus of 52 amino-acids,
CXCR3B is an alternatively spliced form of the CXCR3 receptor
capable of inhibiting the growth of primary endothelial cell
lines (25). CXCR3-B has also been shown to be expressed on
endothelial cells within tumors and therefore may be involved
in inhibiting angiogenesis through CXCL9/10/11 or CXCL4
signaling (25). The CXCR3-alt receptor results from alternative
splicing generated by exon skipping (26). This leads to a
truncation at the C-terminus of the protein allowing for binding
and mediating the function of CXCL11. Each of these variant
CXCR3 receptors can activate different intracellular signaling
pathways suggesting that they have non-redundant roles in the
immune response (27). A more complete understanding of the
regulation and functional activity of these variant receptors
during tumorigenesis should aid the design of therapeutic drugs
which target the human CXCR3 receptor.

The CXCR3 receptor has become an important marker of
a Th1 dominated T cell response. Co-expression of CXCR3
and CCR5 mark Th1 subsets (28), while CCR3 and CCR4
are preferentially expressed on Th2 subsets (29). Interestingly,
CXCL11, and to a lesser extent CXCL9/10, is capable of
binding and antagonizing the CCR3 receptor thus reducing
the Th2 response (30). Xanthou et al. also demonstrated that
CXCR3 can bind and sequester the CCR3 ligand, CCL11,
again reducing the migration of CD4 Th2 cells. Consequently,
CXCR3 and its ligands downregulate Th2 responses while
promoting Th1 cell migration. In this context, CXCR3 functions
include: (i) the recruitment of activated Th1 cells to inflamed
tissues (31–33), (ii) the regulation of skin-homing autoreactive

CD8+ T cells in graft-versus-host-disease (GVHD) (34), and
(iii) the rapid recruitment of NK cells to antigen-stimulated
lymph nodes and the facilitation of Th1 subset priming (35).
Transcription factor T-bet, the master regulator controlling Th1
and CTL polarization, is also a direct trans-activator of CXCR3
expression (36). While T-bet upregulation of CXCR3 promotes
the migration of Th1 effector cells to inflammatory sites, FoxP3+

regulatory T cells under the influence of IFN-γ can also induce T-
bet and subsequently CXCR3 leading to the recruitment of these
suppressive T cells into inflammatory sites (37, 38). Ultimately,
the timing and number of recruited effector and suppressor cells
will dictate the outcome of the immune response.

The key chemokine ligands of CXCR3 (CXCL9, CXCL10,
CXCL11) have limited expression under homeostatic conditions
but are rapidly up-regulated by cytokine stimulation. While
CXCL9 is mostly induced by IFN-γ, CXCL10, and CXCL11 can
be induced by both IFN-γ and type I interferons (21). Given
the association between the CXCR3 system and inflammation,
it is perhaps not surprising that CXCR3 and its ligands also
play a role in a variety of autoimmune diseases (39–42). In
response to IFN-γ, and synergistically enhanced by TNF-α, many
cell types can secrete CXCL9/10/11 including endotheliocytes,
fibroblasts, monocytes, and also cancer cells (21). There are two
distinct groups of CXC chemokines: one with an ELR (Glu-
Leu-Arg) amino acid motif and the other without. Those with
the ELR motif can promote angiogenesis while ELR-negative
chemokines principally promote lymphocytes migration and
repress angiogenesis. CXCL9/10/11 lack the ELR motif thus
attenuating angiogenesis to negatively impact on tumor growth
(43, 44). Interestingly, CXCR3 and its ligands can also be
responsible for tumor growth and metastasis in situations where
the tumor cells express the CXCR3 receptor. In a study of
CXCR3-expressing colorectal cell lines, metastasis to the liver
and lung could be prevented with a small molecule inhibitor
of CXCR3, AMG487 (45). In a nude mouse, knock down of
human CXCR3A within gastric tumor cells led to reduced
metastasis and tumor cell growth in vivo suggesting this receptor
variant as the dominant mediator of metastasis in this model
(46). Together, these observations suggest that CXCR3 receptor
isoform expression and distribution throughout the tumor
microenvironment, including on the tumor cells themselves, are
important considerations when designing therapeutics that target
the human CXCR3 receptor.

CXCL9, 10, and 11 have different binding affinity with
CXCR3. Cole et al. showed that human CXCL11 binds to
CXCR3 with the highest affinity followed by CXCL10 and
CXCL9, although binding to CXCR3 receptor variants was not
analyzed (47). This raises the question of whether CXCR3
ligands are redundant or compete during immune responses.
The redundancy of CXCL9 and 10 has been demonstrated in
a murine model of obliterative bronchiolitis (48). In this study
the authors demonstrated that blockade of CXCR3 reduced
airway obliteration while single deletion of either CXCL9 or
CXCL10 had no effect. However, while CXCL9 and CXCL10
can drive Th1 responses, CXCL11 interaction with CXCR3 can
selectively induce regulatory T cells (49, 50). CXCR3 ligands
have also been shown to have cooperative effects. For example,
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murine CXCL9 and 10 cooperatively induce the recruitment
of NK cells and CTLs to the spinal cord during herpes
simplex virus-2 infection (51). In some cases, CXCR3 ligands
can counteract one another. This is seen in a murine MHC-
mismatched cardiac transplantation model, where CXCL9 and
CXCL10 showed antagonistic effects toward the priming of
donor-reactive T cells (52). CXCL9 deficiency decreased the
frequency of donor-reactive IFN-γ-producing CD8T cells, while
deficiency of CXCL10 increased the frequency of CD8T cells in a
CXCL9 dependent manner (52). In summary, the interaction of
CXCR3 and its ligands is complex and the outcomes will likely
be controlled by spatial and temporal patterns of expression that
could well be unique to each tissue including the skin.

As post-transcriptional regulators of target genes, multiple
microRNAs (miRNAs or miRs) have been reported to regulate
CXCR3 ligands. Downregulation of miR-21 in a breast cancer
cell line raised secretion of CXCL10, resulting in enhanced
recruitment of lymphocytes (53). Interestingly, miR-21 has
been shown to be upregulated in cutaneous SCC suggesting
that it may reduce CXCL10 recruitment of lymphocytes (54).
Similarly, increasing the expression of miR-15a in PBMC results
in decreased CXCL10 production (55). In human mesangial cells
treated with IFN-γ and TNF-α, the expression of miR-155 was
increased resulting in down regulation of CXCL10 while in the
inflammatory skin setting of vulvar lichen sclerosus and lichen
planus, miR-155 was significantly upregulated but the functional
impact of this expression was not fully investigated (56, 57). The
expression of CXCL9/10 from psoriatic keratinocytes can also
be promoted by the microRNA, miR-17-92 (58). Together this
demonstrates that several microRNAs are capable of regulating
CXCL9/CXCL10 production in multiple cell types (including
skin keratinocytes) and further research will be required to
identify factors controlling expression of these miRNAs.

CXCR3 in the Skin
Skin tissue is composed of multiple layers that combine to form
a physical barrier to infection and the external environment (59).
The epidermis is a non-vascular tissue consisting of keratinocytes
at different stages of differentiation, melanocytes, Merkel cells
and immune cells (Langerhans cells, T cells). It is separated from
the underlying dermis via a basement membrane. In contrast
to the epidermis, the dermis is highly vascularized and contains
lymphatic vessels and many stromal cells in addition to T cells,
macrophages and dendritic cells. Epidermis and dermis can
be regarded as different immunological niches as illustrated
by resident memory CD8T cells which typically reside in the
epidermis and fail to recirculate to other compartments (60).
Chemokine receptors such as CCR4 and CCR10, along with
cutaneous lymphocyte antigen, have been associated with skin-
specific homing of lymphocytes under homeostatic conditions
but the induction of skin inflammation recruits additional T cells
with an altered pattern of chemokine receptor expression (61).
Immune effector cells such as Th1 CD4T cells and CD8T cells
that express CXCR3 are frequently involved in inflammatory
reactions and therefore it is not surprising that this receptor is
often associated with inflammatory skin diseases. However, prior
to inflammation, there is some evidence from CXCR3−/− (and

CXCL10−/−) mice that memory T cell accumulation within the
skin may be dependent on the CXCR3/CXCL10 axis although
development of tissue-resident memory CD8T cells (Trm) in
the epidermis appears to be independent of CXCR3 (62, 63).
CXCR3most likely acts not as a skin-specific chemokine receptor
but instead attracts immune cells to sites of interferon-mediated
inflammation (64). In a variety of inflammatory skin conditions
with CXCR3+ T cell infiltrates, CXCL10 and 11 were shown to
be produced by activated basal keratinocytes while CXCL9 was
produced from dermal cells such as macrophages (65). CXCR3
and its ligands may also control the integrin-dependent adhesion
of lymphocytes to the endothelial cell wall and thus control entry
into inflamed skin (66). Recruitment of CXCR3+ cells can be
enhanced by treatment of the inflammatory site with anti-IL-4
antibodies, leading to increased production of IFN-γ and CXCR3
chemokine ligands (67). IFN-β injections within the skin are also
capable of inducing CXCL10/CXCR3 recruitment of T cells and
macrophages while TNF-α seems to be a key inducer of CXCL10
from skin fibroblasts (68, 69).

Several inflammatory diseases serve to illustrate the role of
CXCR3 in the skin. Autoimmune skin diseases such as alopecia
areata (hair loss) that are associated with an IFN-γ gene signature
are driven by effector T cells expressing CXCR3. Blockade of
CXCR3 with antibodies prevented the development of hair loss
in a mouse model of this disease (70). In the acute phase of
alopecia areata, hair follicle production of CXCL10 is upregulated
suggesting an involvement of this chemokine in attracting
CXCR3+ T cells (71). In a second, chronic autoimmune skin
disease, psoriasis, typically characterized by scaly, red plaques
in patches on the skin, CXCL9/10/11 secretion can be induced
by IL-29, produced by Th17 cells, acting on epithelial cells and
melanocytes (72, 73). Consistent with the secretion of these
chemokines, human psoriatic skin is also characterized by T cells,
plasmacytoid dendritic cells and NK cells expressing CXCR3
(74, 75). While CXCR3+ cells may play a role in psoriasis, this
is not the only chemokine receptor associated with disease as
one study showed that intraepidermal T cells expressing CLA,
CCR4 and CCR6 were more prevalent than CXCR3+ T cells (76).
Vitiligo is an autoimmune disease that results in destruction of
melanocytes and depigmentation of the skin. Active vitiligo in
human patients has associated with elevated levels of CXCL10
in both serum and epidermal lesions (77). This matches with
the observation of enriched CXCR3+, CD8 resident memory
T cells in vitiligo patients (78). Patients receiving anti-PD-1
antibody therapy for metastatic tumor can also develop vitiligo-
like skin lesions with infiltration of CXCR3-expressing CD8T
cells (79). Using a mouse model, Rashighi et. al. demonstrated
that CXCL10-mediated recruitment, but not CXCL9-mediated
recruitment, of CXCR3+ T cells was important for mediating
this disease and that antibodies inhibiting CXCL10 might
represent a viable treatment option (80). Depleting antibodies
directed against CXCR3 were also able to reverse vitiligo in
a mouse model (81). Widespread autoimmune diseases such
as systemic lupus erythematosus [SLE] can also have skin-
related manifestations that involve CXCR3 and its ligands (82–
84). These studies show that the skin inflammatory infiltrate in
lupus is enriched in CXCR3+ lymphocytes and plasmacytoid
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dendritic cells, the latter cell producing type I IFNs which
result in CXCR3 ligand expression and amplification of the
inflammatory response. Similarly, the CXCL9 and CXCL10
chemokines are highly expressed in the skin of patients with
systemic sclerosis (85). A skin infiltrate of CXCR3+ T cells is
also observed in Bullous pemphigoid, an autoimmune blistering
disease, dermatomyositis, an autoimmune reaction in skin and
muscle, and interface dermatitis, frequently seen in lichen planus
(86–89). The common feature in many of these autoimmune skin
diseases is the induction of inflammation and the subsequent
production of CXCR3 ligands.

CXCR3 plays an important role in the recruitment of
ovalbumin (OVA)-specific CD8T cells into transgenic mouse
skin where keratinocytes express the OVA antigen (34). Lack of
CXCR3 on transgenic OVA-specific, CD8T cells reduced skin
infiltration of the T cells and the graft versus host (GVH) –
like disease seen when wild-type OT-I cells were transferred.
Consistent with this mouse model, cutaneous GVHD in humans
is also associated with CXCR3 and its ligands in both acute and
chronic forms of the disease (90, 91). Blockade of CXCR3 or
CXCL11 also extends skin allograft survival in mice (92, 93).
Expression of CXCR3 on non-immune cells of the skin may also
play an important role in wound healing as CXCR3 deficient
mice have a delayed wound healing response which can be
restored by transferring CXCR3+ fibroblasts (94, 95). Expression
of CXCR3 on keratinocytes can contribute to re-epithelisation
during wound healing (96–98).

Infection of the skin frequently results in inflammation and
involvement of the CXCR3 receptor. Inflammation driven by
Herpes Simplex virus (HSV) contributes to the recruitment of
CXCR3+ CD8T cells from systemic sites and also trafficking
of cells to the infected site within the skin tissue (99, 100).
Clearance of epicutaneous vaccinia virus was dependent on
CXCR3–expressing CD8T cells given that transfer of wild type
CD8T cells led to viral resolution in a CXCR3−/−, vaccinia
virus infected mouse (101). CD4+ skin resident memory T cells
responsive to Leishmania are able to secrete IFN-γ and attract
CXCR3+ T cells which aid in parasite clearance (102, 103).

Together, CXCR3 plays an important role in recruitment
and function of immune cells in the skin during inflammation
resulting from autoimmunity, wounds and infectious disease.

Skin Cancer and CXCR3
Skin cancers frequently arise in the epidermal layers of the
skin where, most commonly, malignant transformation of
melanocytes, keratinocytes or Merkel cells results from chronic
exposure to ultraviolet light (104). Study of CXCR3 within
this group of cancers has mainly focused on melanoma where
several lines of evidence suggest that expression of CXCR3
on infiltrating T cells is associated with improved prognosis
(Figure 1) (105, 106). Immunohistochemical study of primary
humanmelanomas showed that upregulation of CXCL10 protein
via type 1 interferons and the presence of CXCR3 infiltrating T
cells was associated with spontaneous tumor regression (107).
While it has been established that type I interferons can enhance
CXCL10 expression, the source of the interferon in the tumor
environment was less clear. A recent mouse study has shown that

DNA derived from the tumor was able to activate the stimulator
of interferon genes complex (STING) within the cytosol of
dendritic cells resulting in the production of IFN-β (108). In
addition, plasmacytoid dendritic cells, a key producer of type
I interferons, are frequently associated with primary melanoma
lesions and can be recruited to the tumor site by CCL20 (109,
110). This interferon may then act on tumor DC subsets such as
the CD103+ DCs which have been shown to be key producers
of CXCL9/10 in a mouse melanoma model and showed an
association with CXCL9/10 in human disease (111). The direct
contribution of primary melanoma cells to the secretion of
CXCL9/10/11 is not clear although metastatic melanoma cells
in vitro can produce CXCL9/10/11 in response to IFN (112).
One human study showed that a higher frequency of metastatic
melanoma samples expressed the CXCL10 gene relative to
primary melanoma samples (113). In a therapeutic setting for
melanoma, adjuvant IFN-α therapy of melanomas is known
to upregulate CXCL10 production while CXCL9 and CXCL10
were induced in melanomas by chemotherapy agents such as
cisplatin (114). Intralesional BCG can also increase production
of CXCL9/10/11 which promotes γδ T cell recruitment and
regression of melanomas (115). One melanoma study suggested
that under IFN-γ stress, melanoma variants which fail to produce
CXCL9 could be generated as a mechanism of immune escape
(116). In addition to T cells, CXCL10 can also promote the
trafficking of adoptively transferred NK cells into melanoma
where they cause regression of the tumor mass (117).

While CXCR3 expression on infiltrating immune cells
generally restrains the melanoma, the expression of this
receptor on melanoma cells themselves can lead to metastasis
(118, 119). In mouse studies with B16F10 cells, reduction
of CXCR3 expression within tumor cells by anti-sense RNA
resulted in less frequent metastasis (120). Metastasis can be
promoted by endothelial cell secretion of CXCL9 (and CXCL10),
assisted by VEGF, within the tumor microenvironment or
autocrine CXCL10/CXCR3 interactions on tumor cells (113, 121,
122). Consequently, metastasis represents a situation in which
blocking the CXCR3 receptor on tumor cells might be beneficial.
In this regard, the design of small molecule antagonists of CXCR3
should be beneficial, particularly if precisely targeted to the tumor
cells (123).

Melanoma represents one situation in whichmetastasis moves
cancer cells away from the skin but we must also consider a role
of CXCR3 in attracting cancer cells to the skin. Cutaneous T cell
lymphoma is an unusual situation where CXCR3 expression on
malignant T cells helps recruit and establish this cancer within the
skin (124, 125). In this scenario, CXCR3 has been associated with
epidermal-trophic cutaneous T lymphomas rather than dermal
residing tumors suggesting that CXCR3 ligands may be expressed
from the epidermis in this disease setting (126). Interestingly,
while T cell lymphomasmay use CXCR3 to initiallymigrate to the
skin, the presence of high levels of CXCR3 ligands in the blood,
at least partly due to secretion by the lymphoma cells, leads to
downregulation of CXCR3 on effector CD8T cells such that they
do not accumulate in the skin (127, 128). This represents a novel
form of immune escape in advanced cutaneous T cell lymphoma.
Additional cutaneous lymphomas/leukaemias have also reported
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FIGURE 1 | Proposed roles for CXCR3 and its ligands in melanoma. CXCR3 plays at least two key roles in melanoma. The presence of CXCR3 on melanoma cells

can lead to metastasis from the primary site through endothelial cell and tumor cell production of CXCL9/10. Meanwhile, the release of DNA from melanoma cells

results in uptake by APCs and the activation of the STING pathway resulting in the production of type 1 IFN. Type 1 interferon released from APCs including

plasmacytoid dendritic cells (pDCs) then upregulates CXCL10 which can recruit CXCR3+ T cells and NK cells from the blood. Once at the tumor site, T cells and NK

cells can produce IFN-γ which acts on keratinocytes, APCs and other skin cells to induce production of CXCL9/10/11 or interact with the tumour to induce cell death.

This leads to further recruitment of the adaptive immune cells and anti-tumor immunity.

expression of the CXCR3 receptor on tumor cells including in
epidermotrophic B cell lymphoma, lymphomatoid papulosis and
skin lesions of leukemic plasmacytoid dendritic cell neoplasms
(129–131).

Less well understood is the role of CXCR3 and its ligands in
non-melanoma skin cancers such as squamous cell carcinoma
(SCC) and basal cell carcinoma (BCC). The lack of studies
in this area may reflect the relatively benign nature of many
cutaneous BCC/SCCs which are generally removed through
surgical procedures (132). However, a subset of SCCs can
be metastatic with an estimate of 0.025–20% of premalignant
actinic keratosis (AK) lesions progressing to invasive SCC (133).
Immunocompromised patients (particularly those undergoing
solid organ transplantation or HIV patients) have a 65- to 250-
fold increased risk of developing SCC suggesting that immune
responses play a role in controlling these tumors (134, 135). Gene
profiling of BCC and SCC tumor tissue suggests an increase in
IFN related genes including CXCL9 while immunohistochemical
staining demonstrated the presence of CXCR3+ immune cells
(136). Imiquimod is a clinically approved, topical treatment
for SCC/BCC and can induce type 1 IFN signaling through

interaction with TLR7 leading to the downstream recruitment
of CXCR3+ T cells (137). The expression of CXCL 10/11 and
CXCR3 has also been demonstrated in human keratinocytes
derived from BCCs (138). In addition, CXCL11 is capable
of promoting immunosuppressive indoleamine 2,3-dioxygenase
(IDO) expression in human basal cell carcinoma and enhancing
keratinocyte proliferation, thus potentially reducing the anti-
tumor activity of any infiltrating CXCR3+ effector T cells
(138, 139). Consequently, it is still unclear whether the CXCR3
immune infiltrate in human SCC and BCC is associated with
tumor regression or progression. In a mouse model of skin
epithelial carcinogenesis promoted by DMBA/TPA, gene deletion
of CXCR3 produced a lower incidence of skin tumors (140). Both
CXCR3-expressing CD4 and CD8T cells were seen to infiltrate
the skin and promoted keratinocyte proliferation (140). The
contribution of CXCR3 to tumor development in this mouse
model would be consistent with a known role for inflammation
in promoting DMBA/TPA tumors (141).

In contrast to this tumor model, we have recently
demonstrated that CXCR3 and associated chemokine ligands
are important in attracting an effector T cell population to
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the hyperplastic ear skin of mice transgenic for the human
papillomavirus (HPV16) E7 oncogene (142). In this mouse
model, HPV16E7 protein is expressed in epithelial cells under
the control of a keratin 14 promoter. Intracellular binding of
E7 to the retinoblastoma (Rb) protein leads to a dysregulated
cell cycle within keratinocytes and the subsequent development
of a precancerous, hyperplastic epithelium resembling actinic
keratosis, a precursor lesion which can progress to squamous
cell carcinoma in human patients (143). One feature of the
E7-driven hyperplasia is a chronic inflammatory/wound healing
microenvironment associated with elevated levels of IFN-γ and
immune cell infiltration (144, 145). Chronic IFN-γ production
in the skin, from cells such as infiltrating NKT cells, results in
an immunosuppressed microenvironment via mediators such
as IDO (146–148). The presence of IFN-γ was also shown to
induce CXCL9 and 10 production from CD45− cells in the
epidermis and a resulting infiltrate of CXCR3+ T cells (142).
These CXCR3+ T cells were shown to be effector cells mediating
skin graft rejection in experiments where the E7-expressing graft
was devoid of suppressor lymphocytes. Opposing outcomes
for the role of CXCR3+ T cells between the HPVE7 transgenic
mice and the DMBA/TPA treated mice suggests the need for
SCC models which more closely mimic UV-induced cancer in
humans to resolve the clinical benefit of attracting CXCR3+ T
cells as an immunotherapy. Applying strategies that reduce local
immunosuppression will also be important in SCC/BCC.

CONCLUDING REMARKS

Within the skin, CXCR3 and associated chemokine ligands
form a very important chemotactic response to interferon-
mediated inflammation. Recruitment of CXCR3+ immune cells

can aid in the response to skin infection while also enhancing

autoimmune conditions such as psoriasis. The role of CXCR3
is more complex in skin tumors where expression of this
chemokine receptor on tumor cells can assist in tumor metastasis
or the suppressive microenvironment of the tumor can overcome
recruited CXCR3+ effector T cells. In addition, it is possible
that skin CXCR3+ T cells may promote inflammation-driven
cancer development in some instances. Consequently, the skin
tumor type and a better understanding of the regulation of
expression of human CXCR3 isoforms on skin tumor cells and
their differential responses to CXCL9/10/11 will dictate if this
chemokine receptor/chemokine system can be manipulated to
treat skin cancers. Blockade of CXCR3 on tumor cells, thus
preventing metastasis, combined with increased skin expression
of CXCL9/10/11 might be appropriate in circumstances where
CXCR3+ effector T cells can reduce tumor growth. Changes in
the expression of CXCR3 and its ligandsmay be achieved through
the manipulation of host miRNAs, an approach that warrants
further investigation in animal models. Recruited effector T cells
must also overcome the local suppressive environment generated
by skin tumors and therefore a combination of chemokine
attraction using CXCR3 ligands and modulation of T cell
checkpoint molecules (e.g., PD-1) or IDO may be necessary to
promote tumor regression.
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