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range (30 − 100 Hz) can arise in networks of randomly coupled 

excitatory and inhibitory neurons. The modulation of ongoing 

oscillations in these networks to time-varying external stimuli has 

been shown to agree well with local field potential recordings in 

monkey visual cortex (Mazzoni et al., 2008). Despite their relative 

simplicity, network models of randomly connected spiking neurons 

can therefore reproduce an array of non-trivial, experimentally 

observed measures of neuronal dynamics. How robust are these 

results to changes in the network connectivity?

The particular choice of random connectivity in these net-

work models is one of convenience. The simplest random net-

works, known as Erdös–Rényi networks, can be generated with a 

single parameter p which measures the probability of a connection 

between any two neurons. In large networks, this leads to relatively 

narrow in-degree and out-degree distributions. Specifically, the 

ratio of the SD to the mean of the degree distributions goes to 

zero as the network size increases. This allows for powerful mean-

field techniques to be applied, which makes random networks an 

attractive tool for analytical work. On the other hand, there is little 

physiological data on patterns of synaptic connectivity in real cor-

tical networks due to the technical challenge of measuring actual 

connections between large numbers of neurons. In fact, recent work 

has shown that functional connections between neurons are very 

difficult to predict based on anatomical connectivity and exhibit 

INTRODUCTION

Network models of randomly connected spiking neurons have pro-

vided insight into the dynamics of real neuronal circuits. For exam-

ple, networks operating in a balanced state in which large excitatory 

and inhibitory inputs cancel in the mean, can self-consistently and 

robustly account for the low, irregular discharge of neurons seen 

in vivo (van Vreeswijk and Sompolinsky, 1996, 1998; Amit and 

Brunel, 1997b; Brunel, 2000). Such network models can also explain 

the skewed, long-tailed firing rate distributions observed in vivo 

(Amit and Brunel, 1997a) as well as the elevated, irregular spiking 

activity seen during the delay period in a working memory task 

in monkeys (Barbieri and Brunel, 2007). Networks of randomly 

connected neurons in the asynchronous regime exhibit low pair-

wise spike correlations due to a dynamic balance of fluctuations in 

the synaptic currents (Hertz, 2010; Renart et al., 2010), in agree-

ment with in vivo recordings from rat neocortex (Renart et al., 

2010) and from visual cortex of awake macaque monkeys (Ecker 

et al., 2010). Networks of randomly connected spiking neurons 

also exhibit oscillatory states which are reminiscent of rhythms 

observed in vitro and in vivo. Specifically, networks of inhibitory 

neurons can generate fast oscillations (>100 Hz) in the population-

averaged activity while individual neurons spike irregularly at low 

rates, a phenomenon observed in Purkinje cells of the cerebel-

lum (de Solages et al., 2008). Slower oscillations in the gamma 
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far greater variability than would be expected from the number of 

potential contacts estimated from the axodendritic overlap of cells 

(Shephard et al., 2005; Mishchenko et al., 2010). Given this, the 

weakest assumption that one can make, given that synaptic con-

nections are relatively sparse in local cortical circuits (Holmgren 

et al., 2003), is that of random connectivity in the Erdös–Rényi 

sense. This assumption seems well justified given the success of 

modeling work cited in the previous paragraph.

However, there is reason to go beyond Erdös–Rényi networks, 

which I will call standard random networks, and explore other types 

of random connectivity. Recent multiple intracellular recordings 

of neurons in vitro revealed that the number of occurrences of 

certain types of connectivity motifs is not consistent with a stand-

ard random network (Song et al., 2005). It is therefore of interest 

to study how results from previous work may be affected by the 

presence of additional statistical regularities in the patterns of con-

nections between neurons. A first step in this direction is simply to 

study how the intrinsically generated dynamical state of a spiking 

network is affected by changes in the network connectivity. Here I 

parametrically vary the in-degree and out-degree distribution of 

the network, thereby altering the probability of finding a neuron 

with a particular number of incoming and outgoing connections. 

Thus, while neurons in a standard random network all receive a 

relatively similar number of inputs, here I consider networks in 

which some neurons receive many more inputs than others. The 

same holds true for the out-degree.

In this paper I study the effect of in-degree and out-degree 

distributions on the spontaneous activity in networks of spiking 

neurons. Two distinct networks of randomly connected integrate-

and-fire neurons are studied, the dynamics of both of which have 

been well characterized both numerically and analytically in the 

standard random case. The first network is purely inhibitory 

and exhibits fast oscillations with a period that is a few times the 

synaptic delay (Brunel and Hakim, 1999). While the population-

averaged firing rate may oscillate at >100 Hz, individual neurons 

spike stochastically at low rates. The second network has both 

an excitatory and an inhibitory population of neurons (Amit 

and Brunel, 1997b; Brunel, 2000) and can exhibit oscillations at 

lower frequencies while neurons spike irregularly at low rates. In 

both cases I interpolate between the degree distribution obtained 

in a standard random network and a much broader, truncated 

power-law degree distribution. This is done independently for 

the in-degree and the out-degree. The main findings are twofold. 

First, changes in the in-degree can significantly affect the global 

dynamical state by altering the effective steady state input–output 

gain of the network. In the case of the inhibitory network the gain 

is reduced by broadening the in-degree while in the excitatory–

inhibitory (EI) network the gain is increased by broadening the 

in-degree of the EE connections. This leads to the suppression and 

enhancement of oscillatory modes in the two cases respectively. 

These gain effects can be understood in a simple rate equation 

which takes into account in-degree. Secondly, a topological con-

sequence of broadening the out-degree is to increase the mean 

number of common, recurrent inputs to pairs of neurons. I show 

through simulations that this generally leads to increases in the 

amplitude of current cross-correlations (CC) in the network. 

However, this does not necessarily lead to increased correlations 

in the spiking activity. In the I network, CCs of the voltage are low 

due to low-pass filtering of a noisy fast oscillatory current, and to 

the spike reset. Thus changes in the peak-to-peak amplitude of the 

current CC are only weakly reflected in the spiking CC, which is 

always low in the so-called sparsely synchronized regime (Brunel 

and Hakim, 2008). In the case of the EI network the effect of out-

degree depends strongly on the dynamical state of the network. In 

the asynchronous regime, increases in the amplitude of the excita-

tory current CC due to broadening the out-degree are dynamically 

counter-balanced by increases in the amplitude of the EI and IE 

CCs. The spike-count CC therefore remains unchanged and close 

to zero. In the oscillatory regime, this balance is disrupted and 

changes in the out-degree can have a significant effect on spike-

count correlations and the global dynamical state of the network.

MATERIALS AND METHODS

GENERATING NETWORKS WITH PRESCRIBED DEGREE DISTRIBUTIONS

In neuronal networks, the probability of choosing a neuron in a net-

work at random and finding it has k
in
 incoming connections and k

out
 

outgoing connections is given by f(k
in

, k
out

), the joint degree distri-

bution. Standard neuronal networks with random connectivity are 

generated by assuming a fixed probability p of a connection from a 

node j to a node i. This results in identical, independent, Binomial 

in-degree, and out-degree distributions with mean pN and variance 

p(1 − p)N, where N is the total number of neurons in the network. In 

this paper, I generate networks with prescribed degree distributions 

which may deviate from Binomial. Throughout, I will only consider 

the case of independent in-degree and out-degree distributions, i.e., 

the joint distribution is just the product of the two.

I generate networks of N neurons with recurrent in-degree 

and out-degree distributions f and g which have means m
in

, m
out

 

and variances s
in

2
, s

out

2  respectively, which are independent of N. 

To do this two vectors of length N, u, and v are created, whose 

entries are random variables drawn from f and g respectively. The 

entries of the vectors represent the in-degree and out-degree of 

each neuron in the network and the index of vectors therefore 

corresponds to the identity of each neuron. If the total number of 

incoming and outgoing connections in the network are the same, 

then a network can be made in a self-consistent way. Specifically, 

the edges of the network can be made by connecting each outgo-

ing connection with a unique incoming connection. However, 

in general the total number of incoming and outgoing connec-

tions will not be the same in u and v. In fact, the total number 

of incoming (outgoing) connections U = Σ
j
 u

j
 (V = Σ

j
 v

j
) is an 

approximately Gaussian distributed random number (by the 

Central Limit Theorem) with mean Nm
in

 (Nm
out

) and variance 

N Ns s
in out

2 2
( ). If we take the means to be equal, then the differ-

ence in the number of incoming and outgoing connections for 

any realization of the network is a Gaussian distributed random 

number with zero mean and SD N 1 2 2 2/
.s s

in out
+  The expected 

fraction of “mismatched connections” is just this number divided 

by the expected total number of connections. I define this to be 

the error e introduced in the realization of the degree distribu-

tions in the network

 

e=
1

1 2

2 2

N
/

.
s s

m m

in out

in out

+

+

 (1)
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are made in this way. Other connectivities (II, EI, IE) are standard 

random networks with p = 0.1. If neuron j is excitatory (inhibi-

tory) then, if a synapse is present, J
ij
 = J

E
 (J

I
). External inputs are 

modeled as independent Poisson processes, each with rate n
ext

. PSCs 

are instantaneous with amplitude J
ext

. For all neurons t = 20 ms, 

V
reset

 = 10 ms and u = 20 mV.

i. Inhibitory network: J
I
 = −0.1 mV, D = 2 ms, J

ext
 = 0.04 mV, 

v
ext

 = 30,000 Hz.

ii. Excitatory–inhibitory network: J
E
 = 0.1 mV, J

I
 = −0.45, 

D = 1.5 ms, J
ext

 = 0.12 mV, n
ext

 = 8100 Hz.

MEASURES OF CORRELATION

In several figures CC of synaptic inputs and of spikes are shown. 

The measures I used to generate these figures are given here.

Autocorrelation of the instantaneous firing rate

The spike train of a neuron i, s
i
(t) was 1 if a spike was emitted in a 

time interval (t, t + ∆t), and otherwise 0, where ∆t was taken to be 

1 ms. The instantaneous firing rate of the network r t s t
N i

N

i
( ) ( )= ∑

=

1
1  

where N is the total number of neurons in the network. The auto-

correlation was

This measure goes to zero as N → ∞ as long as the mean degree is 

fixed. Therefore, in large networks only a small fraction of connections 

will need be added or removed in order to make the above prescription 

self-consistent. This is done by choosing u or v with probability 1/2. If 

u (v) is chosen then a neuron i is chosen with probability u
i
/U (v

i
/V). 

If U < V then u
i
 → u

i
 + 1, else u

i
 → u

i
 − 1. This procedure is repeated 

until U = V. This method is similar to the so-called configuration 

model (Newman et al., 2001; Newman, 2003). In the configuration 

model, when U ≠ V then new random numbers are drawn from f and 

g for a neuron at random and this is repeated until U = V. The method 

presented here is faster in general with the trade-off that some error 

is introduced in the sampling of the distributions.

Choice of hybrid degree distributions

The in-degree and out-degree for any neuron i are chosen 

 according to

 
k q k q kB P

in in in in out= − +( ) ,1  (2)

 
k q k q kB P

out out in out out= − +( ) ,1  (3)

where kB is drawn from a Binomial distribution with parameters 

p = m/N and N, and kP is drawn from a (truncated) Power-law 

distribution of the form 1/(ln(L)k) where 1 ≤ k ≤ L and (L − 1)/

ln(L) = m. This last condition ensures that both distributions have 

the same mean. The parameters q
in

 and q
out

 therefore allow one to 

interpolate between a Binomial and a Power-law in-degree and 

out-degree distribution respectively.

Figure 1A shows the in-degree histogram f for a network of 

10,000 neurons using the above prescription where q
out

 = 0 and 

q
in

 = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The theoretical curves are shown for 

the Binomial and Power-law distributions (q
in

 = 0, 1.0) in red. 

Significant deviations from the true distributions are not visible by 

eye, illustrating that the error introduced by the above prescription 

is minimal. Figure 1B shows the neurons ordered by in-degree. If 

the index of the neurons were normalized to lie between 0 and 1, 

this would be the inverse of the cumulative in-degree distribution. 

The inset shows that while the mean has been fixed, increasing q
in

 

dramatically increases the variance of the in-degree distribution.

INTEGRATE-AND-FIRE MODEL AND PARAMETERS

For q
in
 = q

out
 = 0, the I and EI networks are identical to those studied 

in Brunel and Hakim (1999) and Brunel (2000) respectively, with 

the sole exception that the in-degree in Brunel (2000) was a delta 

function and here it is Binomial for q
in

 = 0. This difference has no 

qualitative effect on the dynamics. The membrane potential of a 

neuron i is modeled as

 
t t
V V I t I ti i= − + ( ) + ( )( )syn i ext i, , ,  (4)

with the reset condition V
i
(t+) = V

reset
 whenever V

i
(t−) ≥ u. After 

reset, the voltage is fixed at the reset potential for a refractory period 

t
rp

 = 2 ms. Postsynaptic currents (PSCs) are modeled as delta func-

tions I t J t t Di j ij k j

k

syn , ( ) = ∑ ∑ − −d( ) where J
ij
 is the strength of the 

connection from neuron j to neuron i, t j

k  is the kth spike of neu-

ron j, and D is a fixed delay. Connections are made according to 

the prescription described in the previous section for the hybrid 

degree distributions. In the EI network only the EE connections 

FIGURE 1 | Hybrid degree distributions are generated by interpolating 

between a binomial and a power-law. (A) The histograms of in-degree from 

a network of 10,000 neurons in which the out-degree distribution was 

binomial. Here q
in
 = 0, 0.2, 0.4, 0.6, 0.8, 1.0. Inset: The same, but on a log–log 

scale. The analytical curves for the binomial and power-law distributions are 

shown in red. (B) In the same network as in (A), the neurons are ordered 

according to in-degree. Inset: As q
in
 is varied, the mean in-degree is fixed by 

construction but the variance increases monotonically. m
0
 and s

0

2 are the 

values of the mean and the variance for q
in
 = 0.
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Section “Materials and Methods” for details. The mean in-degree 

and out-degree were fixed at 500. Parameter values were chosen 

such that fast oscillations were present in the network activity for 

q
in
 = q

out
 = 0. In this network, the frequency of oscillations is deter-

mined by the synaptic delay (Brunel and Hakim, 1999) while in more 

biophysically realistic networks the frequency is determined by both 

the synaptic kinetics, the membrane time constant, and the dynam-

ics of spike generation (Brunel and Wang, 2003; Geisler et al., 2005). 

While coherent oscillations are observed in the instantaneous firing 

rate of the network activity, individual neurons fire irregularly at 

rates far below the oscillation frequency (Brunel and Hakim, 1999).

The fast oscillations in the network activity were suppressed 

by broadening the in-degree (increasing q
in

) but were not strongly 

affected by broadening the out-degree (increasing q
out

). This is 

illustrated in Figure 2 which shows rasters of the spiking activity 

of all inhibitory neurons for the standard random network (top), 

with broad in-degree (middle q
in

 = 0.6), and broad out-degree 

(bottom q
out

 = 0.6).

Figure 3 shows the amplitude of network oscillations and the 

mean firing rate in the network as a function of q
in
 and q

out
. Oscillation 

amplitude is defined as the amplitude of the first side-peak in the 

autocorrelation function of the instantaneous firing rate, see Section 

“Materials and Methods.” As suggested by Figure 2, a transition from 

oscillations to asynchronous activity occurs as q
in
 increases, while 

varying q
out

 has little effect on the dynamical state of the network.

A rate model

The effect of the in-degree can be captured in an extension of a 

rate model invoked to capture the generation of fast oscillations 

in inhibitory networks (Roxin et al., 2005). The model describes 

the temporal evolution of the mean activity level in the network 

and consists of a delay-differential equation. The equation cannot 

be formally derived from the original network model, but rather 

is a heuristic description of the network activity, meant to capture 

salient aspects of the dynamics, specifically transitions between 

asynchronous and oscillatory activity.

The equation is

 
r k t r k t J k r t D I( , ) ( , ) ( ) ( ) ,= − 〈 − 〉 +( )− + Φ  (8)

 

AC

r t r t r t r t

r t r t

( ) ,t

t

=
( ) − ( )( ) +( ) − ( )(

( ) − ( )( )
2  (5)

where the brackets denote a time average and the normalization is 

chosen so that the AC at zero-lag is equal to one.

Cross-correlations of synaptic inputs

In the network simulations, inputs consist of instantaneous jumps 

in the voltage of amplitude J
E
 (J

I
) for excitatory (inhibitory) inputs. 

For each neuron i I define I
E,i

(t) (I
I,i

(t)) as the excitatory (inhibi-

tory) input by summing the jumps in bins of 1 ms, i.e., t ∈ {0, 1, 2, 

3, …} ms. Then the CC of the a ∈ {E, I} current in neuron i with 

the b ∈ {E, I} current in neuron j is written

 

CC
I t I t I t I t

I
ij

i i j j

i

ab a a b b

a

t
t

( )
( ( ) ( ) )( ( ) ( ) )

(

, , , ,

,

=
〈 − 〈 〉 + − 〈 〉 〉

〈 (( ) ( ) ) ( ( ) ( ) )
,

, , ,t I t I t I ti j j− 〈 〉 〉〈 − 〈 〉 〉a b b

2 2
 (6)

where the brackets indicate a time average. The CC averaged over 

pairs is then CC C
n n i

n

j i

n

ij

ab ab
t t( ) ( ).

( )
= ∑ ∑

− = ≠ =
1

1 1 1  In all simulations, 

CCs are calculated for n = 300 randomly chosen neurons.

Cross-correlation of spike-count

The spike train s
i
(t) was convolved with a square kernel of duration T 

to yield the spike-count n
i
(t). For the I network T = 10 ms while for the 

EI network T = 50 ms. The CC coefficient of the spike-count was then

 

r
n t n t n t n t

n t n t n
ij

i i j j

i i j

=
〈 − 〈 〉 − 〈 〉 〉

〈 − 〈 〉 〉〈

( ( ) ( ) )( ( ) ( ) )

( ( ) ( ) ) (
2

(( ) ( ) )
,

t n tj− 〈 〉 〉2
 (7)

RESULTS

I performed simulations of large networks of sparsely connected 

spiking neurons with different in-degree and out-degree distribu-

tions. Randomly connected networks were generated with param-

eters q
a
, a ∈ {in, out} which allowed for interpolation between 

Binomial degree distributions (q
a
 = 0) and Power-law degree dis-

tributions (q
a
 = 1) independently for the incoming and outgoing 

connections. For q
in

 = q
out

 = 0, the network was a standard random 

network which results when assuming a fixed probability of con-

nection between any two neurons. I first studied the effect of degree 

distribution on fast oscillations in a network of inhibitory neurons. 

I subsequently studied slower oscillations in a network of excitatory 

and inhibitory neurons, which emerge due to an dynamic imbal-

ance between excitation and inhibition. In both cases the focus was 

on the effect of the degree distribution on the transition between 

asynchronous and oscillatory behavior. This transition was most 

strongly modulated by the in-degree distribution and can be under-

stood by analyzing a simple rate model. Finally, the out-degree 

distribution strongly affected the pairwise CC of synaptic currents 

in the network, but the effect on spiking correlations depended 

crucially on the dynamical state of the network as a whole.

A NETWORK OF INHIBITORY NEURONS

Dynamical states

The network consisted of 10,000 neurons driven by external, excita-

tory Poisson inputs and connected by inhibitory synapses modeled 

as a fixed delay followed by a jump in the postsynaptic voltage, see 

FIGURE 2 | The spiking activity of all neurons in the standard random 

network (top), for broad in-degree (middle) and broad out-degree 

(bottom). Broadening the in-degree suppresses oscillations.
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Φ Φ0 0
′

= ′ =( ).q  The stability of the steady state solution there-

fore depends on the gain of each neuron, weighted by the in-degree 

of that neuron and averaged over the entire network. The function 

f(q) is an in-degree-dependent coefficient which modulates the 

gain of the network compared to the standard random network. 

For simplicity I will call it an effective gain. If q = 0 then all neurons 

have the same gain and f = 1. If f < 1 (f > 1) then oscillations are 

suppressed (enhanced).

For simplicity I first consider the case of a threshold linear 

transfer function, Φ(I) = [I]
+
, i.e., Φ(I) = I for I > 0 and is zero 

otherwise. I choose h(k) = 2k. See the Section “Appendix” for an 

analysis with more general function h(k). In this case, the steady 

state meanfield solution is

 

R =
+

≤ ≤

+ −( )
≤













I

J
q J

I

qJ q
J q

J

q

1
0 1

2 1
1 1

/ ,

( )
/ .<

 (12)

The mean activity increases as q increases beyond q Jcr = 1/ , see 

the black line in Figure 4A (solid for q J< 1/ , dashed for q J> 1/ ).

The effective gain function is

 

f = − −
>









1 1

1 1 1
1

, /

( / )
, / .

q J

q qJ

qJ
q J

<

 (13)

It can be seen upon inspection of Eq. 13 that f(q) always 

decreases as the in-degree broadens, see Figure 4B. For the threshold 

linear function, once q J> 1/ , all neurons with k qJ> 1/ ( ) receive 

inhibition sufficient to silence them, see the Section “Appendix” 

for details. Since the gain of these neurons is zero, and the gain of 

the remaining neurons is independent of k because of the linear 

transfer function, f(q) necessarily decreases.

Figure 5 shows a phase diagram as a function of J  and q for oscil-

lations in Eq. 8 with a threshold linear transfer function. To compare 

with network simulations we fix J  at a value for which oscilla-

tions spontaneously occur, e.g., circle in Figure 5, and increase q. 

This leads to a gradual reduction in oscillation amplitude until the 

steady state solution stabilizes, e.g., square in Figure 5. Space–time 

diagrams of the activity r(k, t) from the rate equation Eq. 8 are 

shown below the phase diagram. Below the space–time plots are 

representative raster plots from network simulations with q
in

 = 0.2 

(left) and q
in

 = 0.8 (right) with the neurons ordered by increasing 

in-degree. Note the qualitative similarity.

The rate model Eq. 8 with a linear-threshold transfer function 

predicts that oscillations are suppressed as the in-degree broad-

ens, in agreement with network simulations. How dependent is 

this result on the form of the transfer function? The steady state 

fI curve of integrate-and-fire neurons is not linear-threshold 

but rather it is concave-up for the range of firing rates in the 

simulations conducted here (Tuckwell, 1988). In fact, this is the 

case in general. For example, the transfer function of Hodgkin–

Huxley conductance based model neurons as well as that of 

real cortical pyramidal neurons driven by noisy inputs is well 

where k is the in-degree index of a neuron, normalized so that 

k ∈ [0, 1]. It can be thought of as the index of a neuron in the 

network once all neurons have been ordered by increasing in-

degree, as in Figure 1B. Therefore, r(k, t) represents the activity of 

a population of cells with in-degree index k at time t, I is an exter-

nal current, D is a fixed temporal delay and 〈 〉 = ∫r t dkr k t( ) ( , ).0

1  

The fact that the input to a neuron is dependent on its in-degree 

is modeled via the function J k J q qh k( ) ( ( )),= − +1  where h(k) 

is a monotonically increasing function in k and q is meant to 

model the effect of q
in

 from the network simulations. Thus, J(k) 

is related to the inverse of the cumulative degree distribution as 

shown in Figure 1B. When q = 0, all neurons receive the same 

recurrent input, while increasing q results in neurons with higher 

index k receiving larger input. Importantly, h(k) is chosen so 

that J k J( ) =  which is equivalent to fixing the mean in-degree 

in the network.

The steady state meanfield solution is given by 〈r〉 = 〈R〉, where

 
〈 〉 = − 〈 〉 +R J k R IΦ( ( ) ) .  (9)

The linear stability of the steady state solution depends only on 

the meanfield 〈R〉 and can be found by assuming a small perturba-

tion of the steady state solution Eq. 9 of frequency v. The critical 

frequency of the instability on the boundary between steady activ-

ity and oscillations is given by the equation v =−tanvD, while the 

critical coupling on this line is determined by the condition

 
J q

D
Φ0

′f
v

v
( ) =

sin
 (10)

where

 

f( )
( , ) ( , )

,q
J k q k q

J
=

〈 ′ 〉Φ

Φ0

′
 (11)

FIGURE 3 | The presence of fast oscillations is strongly dependent on 

in-degree but not on out-degree. Top: The amplitude of the secondary peak 

in the AC of the instantaneous firing rate averaged over all neurons in the 

network during 10 s. Bottom: the firing rate in Hz averaged over all neurons 

and over 2 s. Both q
in
 and q

out
 were varied by increments of 0.1 from 0 to 1 for 

a total of 121 simulations.
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where R
0
 is the steady state solution for q = 0, C JJ

q1 0

1 1
2

= ( )− ∂
∂Φ /

/ ,
a  

C
J J

q2 2 1

2
0
3 3

0
1 1= ( )

−

−+

∂
∂

a

a

a

a

Φ

Φ

/

/
( )

, and C J

q3 2

2
0

2 2

= ( )
−

∂
∂
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 Therefore, consistent 

with the intuitive argument made above, oscillations are suppressed 

for Φ concave up (a > 1) as long as J is large enough, since C
2
/C

3
 ∼ J. 

In fact, at the stability boundary J scales as 1/D for small delays and 

so is much larger than one. The functions 〈R〉 and f are shown 

for the case a = 2 in Figures 4A,B. The solid and dashed lines are 

from the exact solution (dashed once the argument reaches zero 

for k = 1), while the dotted lines are from Eqs. 14 and 15.

Pairwise correlations

Pairwise spiking correlations in neuronal networks can arise from 

various sources including direct synaptic connections between 

neurons as well as shared input (Shadlen and Newsome, 1998; de 

la Rocha et al., 2007; Ostrojic et al., 2009). In the simulations per-

formed here, the average probability of direct connection between 

any two neurons does not change as q
out

 is varied since the mean 

number of connections m
out

 is fixed. However, the number of shared 

inputs is strongly influenced not only by the mean out-degree, but 

also by its variance s
out

2 . In fact, the expected fraction of shared 

inputs for any pair in the network can be calculated straightfor-

wardly from the out-degree. If a neuron l has an out-degree k
l
, 

then the probability that neurons i and j both receive a connection 

from l is just 
k k

N N

l l( )

( )( )
.

−

− −

1

1 2
 One can calculate the expected value of this 

quantity in the network by summing over all neurons and weighting 

fit by a  power-law with power greater than one (Hansel and 

van Vreeswijk, 2002; Miller and Troyer, 2002). Therefore, it is 

important to know how the effective gain f will change as a 

function of q given a concave-up transfer function. In fact, this 

can be understood intuitively. In the I network, for non-zero q, 

neurons with high in-degree receive more inhibition than those 

with low in-degree. Therefore, high in-degree neurons have lower 

firing rates and their gain is less. Since the gain of high in-degree 

neurons is weighted more than that of low in-degree neurons, the 

effective gain will decrease as q increases. Therefore, a concave-up 

transfer function will also lead to the suppression of oscillations 

for increasing q in the I network.

To quantify the above intuitive argument, if q = 1 then one can 

obtain asymptotic formulas for the steady state solution and effec-

tive gain f for arbitrary Φ and J(k), see Section “Appendix.” To take 

a simple example, if the transfer function is a rectified power-law, 

i.e., Φ( ) [ ]x x=
+

a then, assuming x > 0 for all k, which is always true 

for small enough q

 

〈 〉 +
−

+
∂
∂









−R q

J

J

q
~

( )
,

/
Φ

Φ
Φ0
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2
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2

1

1

a a

a
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FIGURE 5 | The phase diagram for an inhibitory network with hybrid 

in-degree distribution and threshold linear transfer function. The 

parameter q interpolates between the case of a standard random network 

and one with broad in-degree distribution. For q J> 1/  the critical strength of 

inhibition J
cr
 (solid curve) increases with increasing q. Two sample color plots 

of the activity are shown below the diagram. The x-axis shows five units of 

time. Raster plots from network simulations with q
in
 = 0.2 (left) and q

out
 = 0.8 

(right) are shown as a qualitative comparison.

FIGURE 4 | Broadening the in-degree distribution in the rate model Eq. 8 

leads to increased mean activity and the suppression of fast oscillations. 

(A) The mean activity as a function of q for a linear-threshold transfer function 

(black) and a quadratic threshold transfer function (red). The dotted line is the 

asymptotic expression for small q for the quadratic case, Eq. 14. (B) The 

effective gain f as a function of q for a linear-threshold transfer function (black) 

and a quadratic threshold transfer function (red). The dotted line is the 

asymptotic expression for small q for the quadratic case, Eq. 15. In (A,B) solid 

and dashed lines are for values of q for which the argument of the transfer 

function is always positive or is negative for some values of k respectively. 

Here J = 3 and I = 0.4,0.616 for the linear and quadratic cases respectively.
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low correlation leads to small spike-count correlations. The distri-

bution of the spike-count correlations at zero-lag in the network 

is shown in the left inset of Figure 6 (bin size of 10 ms), while the 

right inset indicates how the mean of this distribution changes as 

a function of the bin size used to count spikes. Why is the CC of 

the membrane potential so small? Some of the reduction in cor-

relation is due to the low-pass filtering of the noisy oscillatory cur-

rent. Specifically, while the noise amplitude is always reduced (by 

a factor of 1/2) by the low-pass filter, the effect on the oscillation 

amplitude depends on the value of the membrane time constant 

with respect to the oscillation frequency. For t > 1/v the oscilla-

tion amplitude is reduced, and for sufficiently long t it is reduced 

much more than 1/2, see the Section “Appendix” for details. This 

results in reduced correlations since the unnormalized CC (which 

is proportional to the oscillation amplitude) is much less than 

the variance of the signal, which is proportional to the oscillation 

amplitude plus the noise amplitude. For the simulation used to 

make Figure 6 this filtering effect can be estimated to reduce the 

CC of the voltage about threefold compared to the current, see the 

Section “Appendix.” The remaining reduction in the CC must be 

attributable to the reset of the membrane potential after spiking. 

Since spiking is nearly uncorrelated on average between pairs, see 

the left inset of Figure 6, this results in large, nearly uncorrelated 

deflections of the membrane potential, driving down the CC of 

the voltage dramatically. The upshot is that spike-count correla-

tions in networks of sparsely synchronized inhibitory neurons are 

very low. This is consistent with the dynamical regime in which 

neurons spike in a nearly Poisson way, at frequencies much lower 

than the frequency of the population oscillation.

Figure 6B shows how broadening the out-degree distribution 

affects pairwise correlations for q
in
 = 0.8, for which the network activity 

is only very weakly oscillatory. Increasing q
out

 from 0 (black) to 0.5 to 1 

increases the amplitude of the CC of the recurrent inhibitory current 

significantly. However, filtering and reset effects of the model neu-

rons once again reduce overall correlations (dashed line), and lead to 

spike-count correlations which are similar in all three cases, see inset.

Finally, Figure 7 shows the amplitude of the current CC at zero-

lag and the mean spike-count CC as a function of q
in

 and q
out

. When 

the network activity is weakly oscillatory or asynchronous, broad-

ening the out-degree distribution increases the amplitude of the 

current CC as expected. This may account for the slight increase of 

oscillation amplitude for increasing q
out

 when q
in

 > 0.4 in Figure 3. 

However, this has little effect on the mean spike-count CC for the 

reasons described above.

A NETWORK OF EXCITATORY AND INHIBITORY NEURONS

Dynamical states

The network consisted of 10,000 excitatory neurons and 2500 inhibi-

tory neurons driven by external, excitatory Poisson inputs and con-

nected by synapses modeled as a fixed delay followed by a jump in the 

postsynaptic voltage, see Section “Materials and Methods” for details. 

Only the degree distributions of the recurrent excitatory connections 

were varied (mean degree 500), while the other three connectivities 

were made by randomly connecting neurons with a fixed probabil-

ity p = 0.1. The dynamical states of this network for q
in
 = q

out
 = 0 

have been characterized numerically and analytically (Brunel, 2000) 

and it is known that slow oscillations can occur when inhibition is 

by the out-degree of each neuron. This is equivalent to summing 

over all out-degrees, weighted by the out-degree distribution. This 

leads to (for N ? 1)

 
E

N
f ∼

−s m m
out out out

2 2

2

+
.  (16)

In the simulations conducted here, increasing q
out

 from 0 to 1, 

lead to approximately a fourfold increase in E
f
. This increase in the 

fraction of common input may be expected to cause a concomitant 

increase in the correlation of input currents to pairs of neurons. 

However, the degree to which this increase translates into an increase 

in the correlation of pairwise spike-counts is strongly affected by 

both the filtering properties of the membrane potential, as well as the 

spiking mechanism of the model cells, which for integrate-and-fire 

neurons is just a reset. Here spike-count CCs are always very weak 

despite large current CCs. The reasons for this are discussed below.

Here, despite large CCs in the currents, the pairwise CC of the 

membrane potential is very weak. This is shown in Figure 6A, 

where the solid, dashed and dotted lines are the CCs of the inhibi-

tory currents, the total current (inhibitory plus external drive) and 

the membrane potential respectively. It is clear that although the 

noise introduced by the external Poisson inputs reduces the CC of 

the input currents already by a factor of almost two, the CC of the 

membrane potential is an order of magnitude smaller. This very 

FIGURE 6 | (A) Solid line: The average CC of the recurrent inhibitory current 

for q
in
 = q

out
 = 0. Dashed line: The average CC of the total current, including 

noisy external drive. Dotted line: The average CC of the voltage. Left inset: The 

distribution of pairwise spike-count correlations in 1 ms bins and smoothed 

with a 10-ms square window. The mean is given by the dotted line. Right inset: 

The mean pairwise spike-count correlation as a function of the window width 

used for smoothing. (B) The average CC for q
in
 = 0.8 and q

out
 = 0(black), 0.5 

(red), and 1 (green). Increasing the out-degree increases the amplitude of the 

current CC (solid: inhibitory current, dashed: total current). However, 

membrane voltage CCs are much weaker, see dotted lines. Inset: The 

distribution of spike-count correlations is nearly unchanged.
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linear stability of this solution to oscillations can be studied by 

assuming small perturbations of frequency v, see the Section 

“Appendix” for details. On the stability boundary
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where Φ Φ0 0
′ ′

= =( )q  and f(0) = 1.

Again I look at the simple case of a threshold linear transfer 

function. Choosing h(k) = 2k yields for the steady state solution
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the stability of which is determined by
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By inspection, it is clear that f(q) decreases for increasing q. Similar 

to the case of the purely inhibitory network, the reason f decreases 

is that for q J ee> 1/ , neurons with k qJ ee< −1 1/  receive insufficient 

input to be active. Their gain is now zero and that of the active neu-

rons has not changed since the transfer function is linear. Thus for 

a linear-threshold transfer function oscillations are suppressed, in 

contradiction to what was observed in simulations of the EI net-

work. This discrepancy can be explained by considering a concave-up 

transfer function Φ, which more closely resembles the fI curve of 

the integrate-and-fire neurons in the network simulations. Neurons 

 dominant and the external drive is not too strong. This is the case 

here. Nonetheless parameter values were chosen such that the network 

activity was asynchronous and at less than 1 Hz for q
in
 = q

out
 = 0, see 

Figure 8 (top). As for the inhibitory network studied previously, the 

spiking activity of individual neurons is highly irregular.

Slow (25 Hz) oscillations emerged as the in-degree was broad-

ened, see Figure 8 (middle), while broadening the out-degree did 

not, in general, generate oscillations, see Figure 8 (bottom). The 

raster plots show the activity of all 10,000 excitatory neurons.

Figure 9 shows the amplitude of the first side-peak in the AC 

(top), and the firing rate in Hertz (bottom) averaged over all 

excitatory neurons. The presence of oscillations is clearly most 

strongly affected by changes in the in-degree, although there is 

some modulation of oscillation amplitude and firing rate by the 

out-degree.

A rate model

As before, one can understand how the in-degree affects oscillations 

in the network by studying a rate model. The model now includes 

two coupled equations

 
r k t r k t J k r J r I
e e ee e ei i e
( , ) ( , ) ( ) ,= − + 〈 〉( )Φ − +  (17)

 
t r r J r J r I

i i ie e ii i i
= − + 〈 〉 − +[ ]+

,  (18)

where r
e
(k, t) and r

i
(t) represent the activity of neurons in the exci-

tatory and inhibitory populations respectively, 〈 〉 = ∫r t dkr k t( ) ( , )0

1
 

and t is the ratio of the inhibitory to excitatory time constants. 

Here k ∈ [0, 1] represents the normalized index of a neuron in 

the excitatory population, once the neurons have been ordered 

by increasing in-degree, as in Figure 1B. The recurrent excitatory 

weights are written as J k J q qh kee ee( ) ( ( )),= − +1  where 〈 〉 =J k J
ee ee

( ) .

I assume that the external input to the inhibitory population I
i
 is 

large enough that the total input is always greater than zero. Then 

the steady state meanfield activity of the excitatory population is

FIGURE 7 | Spike-count CCs are only weakly dependent on the CCs of 

recurrent inhibitory currents in the I network. Top: The amplitude of the CC 

of the recurrent inhibitory current at zero-lag, see Figure 6 for an example. 

Bottom: The mean spike-count CC using a bin size of 1 ms and convolved with 

a square kernel of 10 ms duration.

FIGURE 8 | The spiking activity of all excitatory neurons in the standard 

random network (top), for broad in-degree (middle), and broad 

out-degree (bottom). Broadening the in-degree generates oscillations.
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square in phase diagram. The resulting states are shown in the 

space–time plots below the phase diagram. Illustrative raster plots 

from network simulations with q
in

 = 0.4 and q
in

 = 0.6 are also 

shown in which the neurons are ordered by in-degree. Note the 

qualitative similarity.

Pairwise correlations

In this network one would expect increasing the variance of the 

out-degree distribution to lead to an increase in the amplitude of 

CC in the recurrent excitatory input. This is indeed the case, as 

can be seen in Figure 12A, which shows the average CC between 

the excitatory component of the recurrent input in a pair of 

neurons. Here q
in

 = 0 and q
out

 = 0 (solid black) 0.2, 0.4, 0.6, 0.8 

(dotted black) and 1 (red). The CC of the inhibitory current 

is unaffected by changes in the out-degree distribution of the 

recurrent excitatory connections as expected, see Figure 12B, 

while the CC between the excitatory component in one neu-

ron and the inhibitory component in another is again strongly 

affected, see Figure 12C. The IE component of the CC is reflec-

tion symmetric about the origin to the EI component and is not 

shown. The pairwise CC of the total recurrent input, shown in 

Figure 12D (solid line) is unchanged as q
out

 increases, indicating 

that the increase in correlation amplitude of the EE component 

is balanced by the increase in the EI and IE components. Also 

shown is the CC of the total current including external inputs 

with high  in-degree in their recurrent excitatory connections fire at 

higher rates. Given a concave-up transfer function, the high in-degree 

neurons will therefore have a higher gain. Since they are weighted 

more than the low in-degree neurons, the effective gain is expected to 

increase, thereby enhancing oscillations. This is now consistent with 

the EI network simulations and is precisely the opposite of what was 

seen in the I network. Here again it is illustrative to look at the case 

q = 1 for arbitrary Φ and J
ee
(k), see Section “Appendix” for the full for-

mulas. Assuming a power-law for the transfer function Φ(x) = xa gives
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where J = 0 for simplicity. It is clear that if a ≥ 2 oscillations will 

always be enhanced. Therefore, although both the threshold linear 

and non-linear, concave-up functions lead to increasing firing rates 

as a function of q, see Figure 10A, the former will suppress oscil-

lations while the latter enhances them, Figure 10B.

Figure 11 shows the phase diagram for a threshold quadratic 

non-linearity as a function of J
ee

 and q, see the figure caption 

for parameters. Specifically, the transfer function is taken to be 

Φ( ) [ ]x x=
+

2  for x < 1 and 2 3 4x − /  for x > 1, which ensures that 

the activity will saturate once the instability sets in. However, the 

steady state value of x is less than one in simulations and hence 

the quadratic portion of the curve determines the stability. As pre-

dicted, the steady state becomes more susceptible to oscillations 

as q is increased. To compare with network simulations, we fix J
ee
 

and increase q, causing the stable steady state solution, e.g., solid 

circle in phase diagram, to destabilize to oscillations, e.g., solid 

FIGURE 9 | The presence of oscillations is strongly dependent on 

in-degree but not on out-degree. The amplitude of the oscillations is 

however significantly modulated by the out-degree. Top: The amplitude of the 

first side-peak in the AC of the instantaneous firing rate averaged over all 

excitatory neurons in the network during 100 s. Bottom: the firing rate in Hz 

averaged over all excitatory neurons and 2 s. Both q
in
 and q

out
 were varied by 

increments of 0.1 from 0 to 1 for a total of 121 simulations.

FIGURE 10 | The effect of in-degree on the effective gain in an EI network 

depends crucially on the shape of the transfer function. (A) Both threshold 

linear and threshold quadratic transfer functions lead to increasing firing rate 

as q increases. (B) The threshold linear transfer function suppresses 

oscillations (decreasing f) while the threshold quadratic transfer function 

enhances them (increasing f). Parameters are J J I
ee

= = =2 0 0 1 0 1, , . , .   for 

the linear and quadratic cases respectively. Black lines: threshold linear 

(dashed for q ≥ 1/J
ee

). Red lines: threshold quadratic. Dotted lines: asymptotic 

formulas Eqs. 24 and 25.
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(dashed line) and the CC of the voltage (dotted lines). Thus 

pairwise correlations of the membrane voltage are weak and 

independent of out-degree. The inset shows the distributions 

of the pairwise spike-count correlations in a bin of 50 ms, and 

over 100 s of simulation time.

Figure 13 shows the CC at zero-lag of the excitatory component 

of the current and the mean pairwise spike-count correlation as a 

function of q
in

 and q
out

. It is clear that despite the strong depend-

ence of the CC amplitude of the excitatory current on out-degree, 

the balancing described above renders the mean spike-count cor-

relation essentially independent of out-degree and weak in the 

asynchronous regime. Mean spike-count correlations do, however, 

increase significantly in the presence of the 25-Hz oscillations, i.e., 

as q
in

 increases beyond a critical value, see the top panel in Figure 9. 

In this regime, the mean spike-count correlation is significantly 

affected by changes in the out-degree distribution. This is likely due 

to the disruption of the dynamical balance which is responsible for 

the cancelation of subthreshold correlations in the asynchronous 

regime (Renart et al., 2010).

In fact, broadening the out-degree distribution can even lead to 

qualitative changes in the dynamical state of the network, as long as 

the system is poised near a bifurcation. This is shown in Figure 14 

for q
in

 = 0.4 (right below the bifurcation to oscillations), which 

for q
out

 = 0 exhibits asynchronous activity (top), while increasing 

q
out

 generates synchronous, aperiodic population spikes (middle 

and bottom).

FIGURE 11 | The phase diagram for the rate equations, Eq. 18 with hybrid 

in-degree distribution and threshold quadratic transfer function. The 

parameter q interpolates between the case of a standard random network and 

one with broad in-degree distribution. The dotted line indicates a rate instability, 

i.e., for v = 0. Two sample color plots of the activity are shown below the 

diagram. The y-axis is k and the x-axis shows five units of time. Parameters are: 

J
ee

 = 2, J
ii
 = 0, J J

ie ei
= = 2, I

e
 = 1, I

i
= 1 2 2/( ), t = 0.8. In the raster plots, only 

neurons 5000–10,000 are shown. The remaining neurons are essentially silent.

FIGURE 12 | Cross-correlations (CC) of the various components of the 

synaptic inputs. (A) The pairwise correlation of the excitatory input. (B) The 

pairwise correlation of the inhibitory component. (C) The correlation of the 

excitatory component in one neuron with the inhibitory component in another, 

averaged over pairs. (D) The pairwise correlation of the total current. Solid line: 

CC of total recurrent input current. Dashed line: CC of total current including 

external input. Dotted line: CC of voltage. Inset: the distribution of pairwise 

spike-count correlations with a bin size of 1 ms. All curves are for q
out

 = 0 (solid 

black line), 0.2, 0.4, 0.6, 0.8 (dotted black curves), and 1 (solid red curve), and for 

q
in
 = 0.
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studied previously in the same network with standard random 

connectivity (Kriener et al., 2008; Tetzlaff et al., 2008), and has 

been observed in networks with synaptic input modeled as con-

ductances (Kumar et al., 2008; Hertz, 2010). Furthermore, low 

spike-count correlations appear to be a generic and robust feature 

of spiking networks in the balanced state (Renart et al., 2010). In 

the simulations conducted here, increasing the fraction of com-

mon input had a significant effect on the amplitude of excitatory 

current CCs. However, in the asynchronous regime, fluctuations 

in excitatory currents were followed by compensatory fluctuations 

in inhibitory currents with very small delay, as evidenced by the 

CCs shown in Figure 12C and resulting in narrow CCs of the total 

current, see Figure 12D. This cancelation left the CCs of the spike-

count essentially unaffected by changes in the out-degree. On the 

other hand, once the network is no longer in the asynchronous 

regime, the fraction of common input has a significant effect on 

spike-count correlations as well as the global dynamical state of 

the network. In this case changes in the out-degree can even drive 

transitions to qualitatively new dynamical regimes, such as the 

aperiodic population bursts seen in Figure 14. These dynamics 

have not been characterized in detail here.

The in-degree and out-degree distributions alone may not be 

sufficient to characterize the connectivity in real neuronal networks. 

As an example, while broad degree distributions lead to an over-

representation of triplet motifs compared to the standard random 

network, e.g., see Figure 11 in (Roxin et al., 2008), the probability 

of bidirectional connections is independent of degree. Therefore, to 

generate a network with connectivity motifs similar to those found 

in slices of rat visual cortex (Song et al., 2005) requires at least one 

additional parameter. Furthermore, correlations between in-degree 

and out-degree, which were not considered in this work, may have 

a significant impact on network dynamics. For example, in net-

works of recurrently coupled oscillators, increasing the covariance 

between the in-degree and out-degree has been shown to increase 

synchronization (LaMar and Smith, 2010; Zhao et al., submitted). 

Introducing positive correlations between in-degree and out-degree 

in the E-to-E connectivity in an EI network, for example, would 

mean that common excitatory inputs to pairs would also tend to 

be those with the highest firing rate. Allowing for such correlations 

would not be expected to significantly alter the dynamics in the 

balanced, asynchronous regime of the EI network due to the rapid 

dynamical cancelation of currents. However, it is likely that the sto-

chastic population bursts observed near the onset to oscillations for 

broad out-degree distributions would be enhanced, see Figure 14.

How should one proceed in investigating the role of connec-

tivity on network dynamics? As mentioned in the previous para-

graph, there are other statistical measures of network connectivity 

which allow one to characterize network topology and conduct 

parametric analyses, e.g., motifs. No one measure is more prin-

cipled than another and they are not, in general, independent. 

Parametric studies, such as this one, can shed light on the role of 

certain statistical features of network topology in shaping dynam-

ics. Specifically, for networks of sparsely coupled spiking neurons, 

the width of the in-degree strongly affects the global dynamical 

state, while the width of the out-degree affects pairwise correla-

tions in the synaptic currents. An alternative and more ambitious 

approach would allow  synaptic connections to evolve according 

DISCUSSION

I have conducted numerical simulations of two canonical networks 

as a function of the in-degree and out-degree distributions of the 

network connectivity. For both the purely inhibitory (I), as well as 

the EI networks, it was the in-degree which most strongly affected 

the global, dynamical state of the network. In both cases, increasing 

the variance of the in-degree drove a transition in the dynamical 

state: in the I network oscillations were abolished while in the EI 

network, oscillations were generated when the E-to-E in-degree was 

broadened. The analysis of a simple rate model, suggests that these 

transitions can be understood as the effect of in-degree on the effec-

tive input–output gain of the network. Specifically, in a standard 

random network with identical neurons, the gain of the network 

in the spontaneous state can be expressed as the slope of the non-

linear transfer function which converts the total input to neurons 

into an output, e.g., a firing rate. This is the approximation made in 

a standard, scalar rate equation. A high gain makes the network more 

susceptible to instabilities, e.g., oscillations. In the case of a network 

with a broad in-degree distribution, each neuron receives a different 

level of input, and the effective gain is now the gain of each neuron, 

averaged over neurons and weighted by the in-degree. In this way 

the stability of the spontaneous state may depend crucially on the 

shape of the transfer function. The transfer function for integrate-

and-fire neurons in the fluctuation-driven regime is concave-up. For 

this type of transfer function, the simple rate equation predicts that 

oscillations will be suppressed in the I network and enhanced in the 

EI network, in agreement with the network simulations. It has been 

shown that the single-cell fI curve of cortical neurons operating in 

the fluctuation-driven regime is well approximated by a power-law 

with power greater than one (Hansel and van Vreeswijk, 2002; Miller 

and Troyer, 2002), indicating that the above argument should also 

be valid for real cortical networks. Furthermore, the heterogeneity 

in gain across neurons need not be due specifically to differences in 

in-degree for the above argument to hold. Thus the rate equation 

studied here should be valid given other sources of heterogeneity 

in gain, e.g., in the strength of recurrent synapses. Although I have 

focused here on the in-degree distribution of the E-to-E connections 

in the EI network, this work suggests that the effect of in-degree in 

the other three types of connections (E-to-I, I-to-I, and I-to-E) can 

be captured just as easily in the firing rate model. A complete analy-

sis in this sense goes beyond the scope of this paper, which sought 

merely to establish the validity of the firing rate model for in-degree.

The out-degree distribution determines the amount of com-

mon, recurrent input to pairs of neurons, and as such may be 

expected to affect pairwise spiking correlations. Yet predicting 

spike correlations based on knowledge of input correlations has 

proven a non-trivial task and can depend crucially on firing rate, 

external noise amplitude, and the global dynamical state of the 

network to name a few factors (de la Rocha et al., 2007; Ostrojic 

et al., 2009; Hertz, 2010; Renart et al., 2010). Here, pairwise spike-

count correlations in the I network were always very low despite 

the relatively high CC of input currents. This is attributable to the 

very low CC of the membrane voltage which, in turn, is due to 

the combined effects of low-pass filtering a noisy, fast oscillatory 

input and large, uncorrelated (across neurons) fluctuations due to 

the spike reset. In the case of the EI network, the drastic decrease 

in CCs from currents to membrane voltage to spike-count was 
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correlation in the excitatory–inhibitory network. CC were averaged over 100 s 

of simulation time.
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dynamical state of the network near a bifurcation. Here, the network is 

poised just below the instability to 25 Hz oscillations (q
in
). When q

out
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population bursts (q
out

 = 0.6, 1 middle and bottom).
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APPENDIX

STEADY STATE AND LINEAR STABILITY IN THE INHIBITORY RATE MODEL

This section provides details to the analysis of the inhibitory rate 

model described in the main text.

i. Threshold linear transfer function

Here I take J k J q q k( ) ( ( ) )= − +1 1+ b
b  and Φ(x) = [x]

+
. The 

meanfield steady state solution of the rate equation, Eq. 8 is 

given by Eq. 9. If the argument of the transfer function is posi-

tive for all k, then since J k J( ) =  one has R I J= /( ).1+  This is 

the case when q qcr< =1/( )bJ  which is obtained from −J(k = 1, 

q
cr
) 〈R〉 + I = 0. For q > q

cr
 the argument goes to zero for k > k∗ 

and so 〈 〉 = ∫ − 〈 〉 +R dk J k R I
k

0

∗

( ( ) ).  Once one solves for 〈R〉, 
k q J∗

=
+

1
1 1

/( )
/( )

b
b  is found from the condition −J(k∗)〈R〉 + I = 0. 

Finally, the steady state meanfield solution can be written

 

〈 〉 =
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≤ ≤

+ +
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where u b
b

=
+

( ) .
/( )

q J
1 1

1≥  Setting b = 1 gives Eq. 9.

The linear stability of the solution 〈R〉 is studied by assuming the 

ansatz 〈 〉 = 〈 〉 + 〈 〉r R r e
i t

d
v  and plugging it into Eq. 8. The resulting 

dispersion relation i J q e i Dv f v
= − +

−
1 0Φ

′
( )  can be separated into real 

and imaginary parts to yield the value of the critical frequency on 

the stability line v =  −tanvD and the criterion which determines 

the critical value of the coupling J
cr

,  Eq. 10. For the threshold linear 

function, the stability function, Eq. 11 reduces to f( ) ( ),q dkJ kJ

k= ∫1
0

∗

 

from which it can be seen immediately that f(q) ≤ 1. Evaluating this 

formula gives
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where setting b = 1 gives Eq. 13.

ii. Asymptotic formulas for small q

The steady state meanfield solution is expanded as 〈R〉 = R
0
 + 

qR
1
 + q2R

2
 and the dependence on in-degree is kept general, i.e., 

J(k) = J(k; q). Plugging these expressions into Eq. 9 and collecting 

terms by orders in q reveals that R
1
 since linear changes in q leave 

the input unchanged, i.e., 〈∂J/∂q〉 = 0. One finds, up to order q2,
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Taking Φ( )x x=
a gives Eq. 14.

The stability function f(q) can be evaluated directly by expand-

ing Eq. 11 in orders of q. This gives
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Taking Φ(x) = xa gives Eq. 15.

STEADY STATE AND LINEAR STABILITY IN THE EXCITATORY–INHIBITORY 

RATE MODEL

This section provides details to the analysis of the excitatory– 

inhibitory rate model described in the main text.

i. Threshold linear transfer function

Here I take J k J q q kee ee( ) ( ( ) )= − + +1 1b
b  and Φ(x) = [x]

+
. The 

meanfield steady state solution of the rate equation, Eq. 18 

is given by Eq. 19. If the argument of the transfer function is 

positive for all k, then since J k J( ) =  one has R I J= −
 /( ).1  

This is the case when q q Jcr ee< = 1/( ) which is obtained from 

− = 〈 〉 + = J k q R Icr( , ) .0 0  For q > q
cr
 the argument goes to zero for 

k < k∗ and so 〈 〉 = ∫ 〈 〉 +R dk J k R I
k

∗
1

( ( ) ).   Once one solves for 〈R〉, k∗is 

found from the condition −J(k∗)〈R〉 + I = 0 and is the solution to the 

polynomial b b
b b

( ) ( )( ) /( ).k k qJ ee
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− + + −
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1 1 1  Finally, the steady 

state meanfield solution can be written
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Setting b = 1 gives Eq. 19.

The linear stability of the solution 〈R
e
〉 is studied by assum-

ing the ansatz (〈r
e
〉, r

i
) = (〈R〉, R

i
) + (〈dre〉, dr

i
)eivwt and plug-

ging it into Eqs. 17 and 18. The resulting dispersion relation 

( ( ))( )i J q i J J Jee ii ei iev f tv+ − ′ ′
1 1 00Φ Φ+ + + 〈 〉 =  gives the expression 

determining the critical coupling J
ee

 on the stability boundary to 

oscillations, Eq. 20. For the threshold linear function, the stability 

function, Eq. 11 reduces to f( ) / ( ),
*

q J dkJ kee

k= ∫1 0  from which it can 

be seen immediately that f(q) ≤ 1. Evaluating this formula gives
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where setting b = 1 gives Eq. 23.

ii. Asymptotic formulas for small q

The steady state meanfield solution is expanded as 

〈R
e
〉 = R

0
 + qR

1
 + q2R

2
 and the dependence on in-degree is kept 

general, i.e., J(k) = J(k;q). Plugging these expressions into Eq. 19 and 

collecting terms by orders in q reveals that R
1
 since linear changes 

in q leave the input unchanged, i.e., 〈∂J/∂q〉 = 0. Solving for orders 

1 and q2 gives Eq. 32. The stability function f(q) can then be evalu-

ated directly to give Eq. 33.
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LOW-PASS FILTERING OF A NOISY, OSCILLATORY INPUT

A more detailed and general description of the role of filtering 

on CCs can be found in Tetzlaff et al. (2008). Here I focus on 

a simple case, relevant for the oscillatory state in the I network. 

In the sparsely synchronized regime of the network of inhibitory 

neurons, each neuron receives a bombardment of synaptic inputs 

which can be approximated as a coherent periodic signal plus a 

Gaussian white noise term, Brunel and Hakim (1999). I assume 

the input to a neuron i to be

 
I t Ae t

i

i t

i
( ) ( ),= +

v
sj0  (34)

where the mean input has already been subtracted off, A and v
0
 are 

the oscillation amplitude and frequency respectively, and j
i
(t) is 

Gaussian white noise with mean zero and variance one. The current 

CC (CCC) of I
i
 and I

j
 normalized by the variance of the signal is then

 

〈 − 〉
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where the brackets indicate an average over time. The voltage obeys 

the following stochastic differential equation
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where j
i
 is a Gaussian random variable with mean zero and unit 

variance with E(ξ
i
(t)ξ

j
(t − t′)) = d

ij
d(t − t′) The solution to this 

equation can be written as
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where h
i
(t) is a Gaussian random variable with mean zero and unit 

variance where E(η
i
(t)η

j
(t − t′)) = d

ij
e−(t − t′)/tH(t − t′) and H(t) is a 

Heaviside function. The autocorrelation of the voltage can be found 

by the Wiener–Khinchin theorem as the inverse Fourier transform 

of |v(v)|2 where v(v) is the Fourier transform of the voltage. In the 

case of exponentially correlation noise with time constant t and 

amplitude s t/ , the Fourier transform yields f i=
+

s t

t v

/

/
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1
 which 

leads to a Lorentzian power spectrum f
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1
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,  the inverse 

transform of which is σ
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t  Finally, the normalized voltage CC 

(VCC) of V
i
 and V
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 is
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Taking the ratio of the voltage CC to the current CC gives

 

VCC
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A
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=
+

+
+
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( / )

( / )
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,
s
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v t  (39)

which is less than one for t > 1/v. In Figure 6A, the CC of the total 

current is about one half that of the inhibitory current alone at 

zero-lag. This implies that s/A ∼ 1, which, together with t = 20 ms 

and v
0
 = 0.14/ms gives (VCC/CCC) ∼ 1/3.
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