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Diet is an important lifestyle factor that is known to contribute in the development of human
disease. It is well established that poor diet plays an active role in exacerbating metabolic
diseases, such as obesity, diabetes and hypertension. Our understanding of how the
immune system drives chronic inflammation and disease pathogenesis has evolved in
recent years. However, the contribution of dietary factors to inflammatory conditions such
as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A
western diet has been associated as pro-inflammatory, in contrast to traditional dietary
patterns that are associated as being anti-inflammatory. This may be due to direct effects
of nutrients on immune cell function. Diet may also affect the composition and function of
gut microbiota, which consequently affects immunity. In animal models of inflammatory
disease, diet may modulate inflammation in the gastrointestinal tract and in other
peripheral sites. Despite limitations of animal models, there is now emerging evidence
to show that anti-inflammatory effects of diet may translate to human gastrointestinal and
inflammatory diseases. However, appropriately designed, larger clinical studies must be
conducted to confirm the therapeutic benefit of dietary therapy.

Keywords: diet, inflammation, gut microbiota, gastrointestinal tract, inflammatory bowel disease, mucosal
immunity, fermented (cultured) dairy products
1 INTRODUCTION

Diet is an important lifestyle factor that can contribute to the development of human disease,
particularly as poor diet contributes to the development of metabolic diseases, such as obesity,
diabetes, and hypertension (1). These may be driven by underlying inflammation, a tightly regulated
immune process, whereby both specialised immune and non-immune cells release inflammatory
mediators, cytokines, and chemokines in response to a pathogen or tissue damage. This
inflammatory cascade drives subsequent recruitment of leucocytes to the site of infection, to
contain and eliminate the infection, clear tissue damage, and eventually initiate resolution of
inflammation. However, if the initial inflammatory stimulus cannot be cleared, a state of chronic
inflammation may develop with ensuing pathology. A wide array of metabolic and immune diseases
have now been linked to a defective inflammatory response (2–4).
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Interactions between the immune system, inflammation, and
diet in driving human metabolic disease have been described (5).
However, the contribution of dietary factors to inflammatory
conditions are poorly defined. Our understanding of the
interactions between dietary factors and gut microbiota that
regulate immune mechanisms is also in its relative infancy. It
is also important to consider gut and broader host physiology
that dictate how nutrients interact with the body and the
microbes that reside within the gastrointestinal tract. This
review aims to outline the evidence that diet may regulate
inflammation that drive human gastrointestinal and
inflammatory disease, both directly by modulating the immune
system and indirectly by interacting with gut microbiota. In
addition, we will assess the current and emerging body of
evidence for using dietary therapy to treat these conditions,
outlining current challenges that must be addressed to achieve
translation into clinical use.
2 EPIDEMIOLOGICAL ASSOCIATIONS
BETWEEN DIETARY PATTERNS AND
INFLAMMATORY DISEASE

A western diet, characterised by high intake of fats and
carbohydrates derived from refined sugars and processed food
with reduced consumption of dietary fibre and whole grains, has
been linked to inflammatory disease (6). This observation
initially derived from epidemiological studies, that compared
overall dietary patterns and disease incidence across the world.
For example, incidence rates of asthma and inflammatory bowel
disease are higher in westernised countries when compared to
non-westernised countries that consume alternative diets (7, 8).
However, these comparisons may not account for other
confounding environmental and lifestyle factors. As such,
studies of dietary patterns in large groups living from similar
regions provide better evidence of a connection between diet and
inflammation. Assessment of dietary patterns using diet quality
scores estimated from food frequency questionnaires highlight
that those who have higher dietary scores and report consuming
healthier foods (e.g. whole grains, nuts/legumes, fruits, and
vegetables), are less likely to develop inflammatory conditions
or experience symptoms of disease (9, 10). In contrast, those who
frequently consume processed foods high in refined sugars, fats,
and oils, record low diet quality scores that are associated with
higher prevalence of disease and display exacerbated clinical
disease scores (11, 12). Low dietary quality scores are also
associated with higher levels of plasma IL-6, E-selectin and
soluble ICAM-1 in healthy people suggesting that a poor diet
may promote a state of subclinical chronic inflammation (13). A
poor diet quality may also predispose individuals to infection,
with poor diet quality scores related to a higher incidence and
severity of COVID-19 (14).

To specifically investigate the relationship between dietary
intake, inflammatory markers and the development of disease,
dietary inflammation scores have also been used to estimate the
overall inflammatory potential of a diet. Measurements such as
the dietary inflammatory index and empirical dietary
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inflammatory pattern (EDIP) incorporate data from
association studies in healthy cohorts linking consumption of
food components with levels of inflammatory cytokine such as
IL-6, IL-1b, IL10, TNF-a and C-reactive protein (CRP) (15, 16).
Consumption of foods high in cholesterol, sugars, and saturated
fats (e.g. processed meats, red meats, soft drinks) are associated
with higher levels of CRP and IL-6 (15–17). In contrast,
consumption of foods containing fibre, vitamins, low levels of
alcohol, herbs, and spices (e.g., leafy green and root vegetables,
fruits, wine) are associated with lower CRP and IL-6 (15, 16, 18).
However, the magnitudes of these associations are small and may
be confounded by adiposity levels.

Compared to healthy individuals, subjects with asthma have
been found to consume a diet with a higher dietary inflammatory
score, which was associated with a more severe phenotype.
Furthermore, reduced forced expiratory volume (FEV1) was
directly correlated with an increased dietary inflammatory
index score, as well as increased serum IL-6 (19). A large study
involving over 200,000 individuals and using EDIP scores
interestingly revealed an increased risk of developing Crohn’s
disease, but not ulcerative colitis, the other major form of
inflammatory bowel disease (IBD) (20). Those with EDIP
scores in the highest quartile were found to have a 51%
increased risk. This association remained after adjusting for
dietary fibre suggesting that other nutrients were involved. An
association with ultra-processed foods (i.e., packaged foods
containing food additives, artificial flavours, and colours) has
also been observed, with higher daily intake associated with
increased risk of IBD, particularly for those who consume >5
serves/day (21). Intake of soft-drinks and processed meats were
also identified as increasing risk in this cohort. Despite
significant correlation with human inflammatory disease, there
are limitations in drawing conclusions from dietary
inflammation scores: they only consider cytokine levels to
define inflammation; include data from in vitro studies and
consumption data is restricted to individual food groups to
calculate the overall inflammatory score.

A range of alternative dietary patterns have been proposed as
having anti-inflammatory properties. These generally differ from
that of an established western diet in that they are low-fat and
high fibre, with limited consumption of processed foods.
Features of these diets and associations with immune
parameters within healthy populations are summarized in
Table 1. Consumption of these dietary patterns is generally
linked to reduced blood inflammatory markers in healthy
people and may also be protective against development of
inflammatory disease as suggested by higher rates of allergy,
asthma and IBD in migrants who adopt a western diet when
moving from a country with a traditional diet (40, 41). Increased
mucosal intraepithelial lymphocytes and lamina propria
macrophages were observed in colonic biopsies taken from
native Africans after 29 days of consuming a western-style
American diet (30). This study supports the notion of a rapidly
induced alteration in mucosal immunity following a major
change in diet, with a particularly strong impact on the colon.

However, aspects of traditional dietary patterns may also
promote inflammation if consumed in excess. Alcohol
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consumption above a 30 g/day moderate threshold was found to
significantly correlate with increased serum inflammatory
markers in those who followed a Mediterranean diet (25, 42).
The high levels of sodium intake (>3200 mg/day) in traditional
Japanese diets may also promote inflammation and exacerbate
kidney disease, as occurs in mice fed a high-salt diet in models of
kidney disease (43–45). Plant-based diets may also require
additional supplementation to ensure adequate intake of
micronutrients such as vitamin B12, calcium, zinc and niacin
that are crucial for immune cell function (46, 47). Furthermore,
anti-inflammatory properties of alternative dietary patterns
likely involve additional non-nutritional factors, such as meal-
timing. The circadian clock exerts an influence on the immune
system, as those with lifestyle patterns that cause chronic
disruption of the circadian rhythm (e.g. shift workers) have
increased susceptibility to inflammatory and metabolic diseases
(48). Circadian misalignment by mistimed feeding and sleeping
resulted in upregulated pro-inflammatory cytokine signalling
and down-regulated antigen presentation in healthy individuals
(49). Furthermore, higher levels of salivary IL-6 and CRP were
observed in Spanish children who consumed their evening meal
later in the evening (after 21:00), when compared to those who
ate earlier in the evening (50).
3 NUTRIENT-IMMUNE SYSTEM
INTERACTIONS IN INFLAMMATORY AND
GASTROINTESTINAL DISEASES

The optimal functioning of the immune system is highly
dependent on a balanced and adequate diet. Specifically, both
Frontiers in Immunology | www.frontiersin.org 3
deficiency or excess of certain nutrients can adversely affect
immune system function, and in turn are linked to
inflammatory diseases. This section will review the direct
effects of both micronutrients and macronutrients on the
immune system, and their potential link to risk of
inflammatory diseases.

3.1 Dietary Fats
Dietary fats are an essential energy source for the body, and a
fundamental part of the structure of immune cells, therefore
playing a key role in modulating the immune response in health
and disease (51). Dietary fats may also contribute to the levels
and composition of adipose tissue. Indeed, increased adipose
tissue contributes to low grade inflammation characterised by
enhanced secretion of pro-inflammatory cytokines, as
extensively reviewed elsewhere (52). A reduction in total fat
intake in men from 30% to 25% was shown to increase T and B
cell proliferation and circulatory numbers (53). In addition,
decreasing total fat intake by 10% was associated with an
increase in the activity of natural killer (NK) cells (54, 55).
Besides the effects of total fat intake, current research suggests
that the type of fat consumed is of particular importance
(Figure 1). Saturated and unsaturated fatty acids regulate
immune function by acting through surface G-protein coupled
receptors, intranuclear receptors and altering membrane
composition and fluidity (56).

An imbalance between saturated and unsaturated (omega-6
and omega-3) fatty acids, has a significant effect on the immune
homeostasis, and have been associated with an increased risk of
developing atherosclerosis, coronary heart disease, obesity and
metabolic syndrome. It is generally accepted that saturated fatty
acids promote an inflammatory response by activating Toll-like
TABLE 1 | Associations between dietary patterns and immune parameters from healthy cohorts.

Dietary
pattern

Countries
associated

Foods Nutrient characteristics Immune parameters Ref.

Western diet UK, USA, Canada,
Australia, Mexico

Processed foods, refined sugars, refined
grains
Low fruit & vegetable consumption

High saturated fat, carbohydrate, salt,
cholesterol
Low fibre, vitamins, minerals

↑ serum CRP, IL-6, E-selectin,
sICAM-1, sVCAM-1
↑ platelet CD41, platelet-
granulocyte aggregates
↑ colonic IL1B, FAS, TNF,
IFNAR1, STAT2 expression

(6, 22)
(23, 24)

Mediterranean
diet

Italy, Greece,
Cyprus,

Fish, cheese, yoghurt, cereals, fruits &
vegetables, wine, olive oil
Meat, milk

Low saturated fat, high
monounsaturated fat intake
High fibre, high vitamin B, C, E and
polyphenols, moderate ethanol intake

↓ serum IL-6, CRP, TNF-a,
ICAM-1

(25–27)

Indigenous
African diet

Burkina Faso,
Tanzania, South
Africa,

unrefined grains, legumes, vegetables High fibre, resistant starch, plant-
derived proteins
low animal protein intake

↓ plasma IL-1b
↓ IFN-g, TNF, IL-6 in response
to whole blood LPS stimulation
↓ macrophages in lamina
propria

(28, 29)
(30)

Traditional
East-Asian diet

Japan, Korea Fermented vegetables, soy, rice, fish High salt, carbohydrate, sodium
low fat

↑ plasma IL-10
↓ serum IL-6, CRP

(31, 32)
(33, 34)
(35)

Plant-based
diet

n/a Whole grains, cereals, fruits, vegetables,
legumes, nuts, low red meat consumption

High fibre, plant-derived proteins, fats
polyphenols
low/no animal derived protein or fats

↓ serum CRP,
↓ overall WBC,
↓ blood neutrophils, monocytes

(36, 37)
(38, 39)
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receptor 4 (TLR4) and promoting pro-inflammatory cytokine
production (57). Conversely, omega-3 polyunsaturated fatty
acids (n-3 PUFA) obtained from fish and plant-based dietary
sources have anti-inflammatory effects (58). The mechanisms of
action for n-3 PUFA immunosuppressive effects may be via their
interaction with T cell signalling, effects on the intestinal barrier
and/or direct effects on pro-inflammatory cytokine production
(59–62). An in vitro model showed that stimulation of T84
intestinal epithelial cells with n-3 PUFAs eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) restored the intestinal
barrier integrity after impairment (63). Supplementation of n-3
PUFA in dextran sulfate sodium (DSS) induced colitis in mice
have been shown to be effective in alleviating disease activity, by
reducing the infiltration of inflammatory cells and the
production of TNF-a and IL-6 (64). In addition, n-3 PUFA
stimulated the polarization of anti-inflammatory M2
macrophages and suppressed the polarization of pro-
inflammatory M1 macrophages in mice (65). These effects of
Frontiers in Immunology | www.frontiersin.org 4
n-3 PUFA onmacrophages were associated with the inhibition of
multiple kinases, including: IkB kinase, Akt, and focal-adhesion
kinase. In both human and animal models, n-3 PUFA
supplementation may also lead to remission of inflammatory
bowel disease (66–69). Whilst the effects of monounsaturated
fatty acids (MUFAs) are not as well documented, they have also
been shown to have anti-inflammatory properties. In an obesity
animal model, a diet rich in MUFAs for 8 weeks was found to
increase the expression of anti-inflammatory mediators, such as
IL-14 and IL-10, and increase the M2 macrophage levels (70). In
human studies, diets rich in MUFAs have been associated with
an improved inflammatory profile, reduced CRP levels,
improved insulin sensitivity and decreased risk of developing
cardiovascular disease (71–73).

In contrast to n-3 PUFA, the consumption of n-6 PUFA,
mainly obtained from oils, meats and cereal based products,
increases the number of eicosanoid inflammatory mediators,
including prostaglandins and leukotrienes, which in turn can
FIGURE 1 | Pro and anti-inflammatory effects of dietary fats. Dietary fats directly and indirectly act as both pro-inflammatory and anti-inflammatory mediators. Saturated fatty
acids are pro-inflammatory in nature, through increased translocation and activation of LPS leading increased TLR4 signalling. n-3 PUFAs may be immunosuppressant through
its effects on immune cells and intestinal barrier integrity. n-6 PUFAs are mainly pro-inflammatory, however can also produce anti-inflammatory eicosanoids. The ratio of n-6/n-
3 PUFAs are important in determining the inflammatory state in the body. Red: pro-inflammatory; Green: anti-inflammatory; Orange: pro- & anti-inflammatory. AA, arachidonic
acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acids; LA, linoleic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; COX,
cyclooxygenase; LOX, lipoxygenase; PG, prostaglandin; LX, lipoxin. Created with BioRender.com.
April 2022 | Volume 13 | Article 866059
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promote cytokine production and the activity of inflammatory
cells (58). Whilst, most eicosanoids are pro-inflammatory, the
lipoxygenase derivative lipoxin has been found to have anti-
inflammatory properties important for resolution of
inflammatory responses (74). A large European cohort study
found a significant correlation between dietary linoleic acid (n-6
PUFA) intake and development of ulcerative colitis (75). In
contrast, dietary intake of the shorter chain n-3 PUFA DHA was
found to be protective against developing ulcerative colitis.
Studies suggest that a reduced omega 6:omega 3 ratio is
associated with an attenuated inflammatory response, and
reduced release of IL-6 (76, 77). This may be impaired in those
who carry single nucleotide polymorphisms (SNPs) in genes
involved in PUFA metabolism. Children who consume a diet
with a higher ratio of n-6:n-3 PUFA intake may be more
susceptible to Crohn’s disease if they also carry SNPs in
Cytochrome P450 Family 4 Subfamily F Member 3 (CYP4F3),
Fatty Acid Desaturase 1 and 2 (FADS1, FADS2) (78). However,
both a large European study and Cochrane review have reported
that n-3 PUFA are ineffective in the maintenance and remission
of Crohn’s disease (79, 80). Furthermore, a recent study
demonstrated that PUFAs induce gut inflammation and
potentially exacerbate Crohn’s disease (81). In patients with
active Crohn’s disease, n-3 and n-6 PUFA instigated epithelial
chemokine expression and a systemic inflammatory stress
signature. The levels of PUFA ingested by the Crohn’s disease
patients correlated with clinical and biochemical disease activity.
Taken together, more research is needed to confirm the effects of
both n-6 and n-3 PUFA on intestinal inflammation.

3.2 Dietary Protein
It is well established that protein deficiency impairs immune
function and increases susceptibility to infectious and
inflammatory diseases (82). Several human studies have
reported a link between high dietary protein intake and
increased risk of IBD and IBD relapse (83–85). Jantchou et al.
reported that the consumption of a high protein diet was
associated with an increased risk of IBD. In addition, the
concentration of dietary protein may affect colitis development:
mice consuming a high protein diet had increased colitis severity
compared to mice consuming a low protein diet (86).
Interestingly, other colitis mice models have shown that a high
protein or moderate-high protein diet could be beneficial in post-
colitis epithelial repair and mucosal healing, respectively (87, 88).
The source of the protein may also be important, with high
animal protein consumption frommeat or fish, but not of eggs or
dairy products associated with increased IBD risk. Murine colitis
models have shown that a diet high in red meat worsens disease
activity index compared to a casein-based protein diet (89).
However, it is not possible to exclude the effects of other meat
components such as heme. In contrast, plant-based soybean
protein have been shown to have anti-inflammatory effects,
particularly in combination with isoflavones (a polyphenol
present in soy) (90–92). Soy protein in its isolated form is not
as well studied, however one murine study showed that
supplementation with soy protein isolate for 5 weeks resulted
in the inhibition of NF-kB and blocked the secretion of pro-
Frontiers in Immunology | www.frontiersin.org 5
inflammatory cytokines (93). In addition, soy protein has been
found to have antioxidant effects in vitro, and moderate DSS-
induced inflammation and loss of gut function in vivo (94).

The role of protein in coeliac disease is well established.
Gliadin, a gluten peptide, can trigger innate and adaptive
immune responses that ultimately lead to coeliac disease in
genetically susceptible individuals. Enterocyte damage happens
rapidly after gluten exposure, with an increase in IL-2 observed
in plasma from patients with coeliac disease 4 hours after gluten
intake (95, 96). Upregulation of IL-15 in both the epithelium and
the lamina propria is a hallmark of coeliac disease and correlates
with the degree of mucosal damage seen in these patients (97–
99). IL-15 acts on innate immunity through dendritic cells that
drive T cells toward a Th1 response, leading to epithelial damage
(100–102). Furthermore, gliadin may be presented by HLA-DQ-
2/8 to CD4+ T cells, which results in a proinflammatory
response, ultimately leading to hyperplasia, villous blunting
and intestinal epithelial cell death (103, 104). Amylase trypsin
inhibitor is another gluten protein that is not fully digested in the
body and may promote an intestinal and extra-intestinal
immune response by activating TLR4 (105, 106).

Specific amino acids have also been identified to modulate the
immune system. Amino acids play an important role in plasma,
including the activation of T and B lymphocytes, NK cells and
macrophages. In addition, they regulate cellular redox state, gene
expression and lymphocyte proliferation, as well as antibody and
cytokine production (82). For example, arginine has been shown
to enhance cellular immune mechanisms (particularly T cell
function) and have immunosuppressant effects (107). Arginine
supplementation results in enhanced T lymphocyte response and
increased CD4+ T helper (Th) cells in postoperative cancer
patients (108). Alanine is a major substrate for hepatic
synthesis of glucose, which is a significant energy source for
leukocytes (109). Further, studies show that alanine
supplementation in mice prevents apoptosis, enhances cell
growth, and increases plasma cell antibody production (110,
111). The amino acid glutamine is also a major energy source
substrate for cells of the immune system, that can be converted to
metabolites such as glutamate, alanine, lactate, and pyruvate.
These substrates are necessary for activation, proliferation and
activity of lymphocytes, macrophages, neutrophils and NK cells
(82). Interestingly, supplementation with dietary arginine and
glutamine significantly reduces colonic IL-17 and TNF-a in a
DSS-induced colitis mice model (112). This was also associated
with changes to colonic NF-kB, PI3K-Akt and MLCK signalling
pathways, suggesting these amino acids have anti-inflammatory
effects in the colon.

In addition, endogenously synthesised tryptophan
metabolites (kynurenines, serotonin and melatonin) as well as
bacterially-derived tryptophan metabolites (as reviewed below)
have significant effects on the gut microbiota and host immune
system (113–117). Dietary sources of tryptophan include milk,
dried prunes, tuna, chicken and peanuts. Serotonin exhibits anti-
inflammatory properties in rodents, regulating gut permeability
and mucosal inflammation (118–120). Indeed, a recent study
showed that elevated serotonin levels in mice inhibited
autophagy and increased susceptibility to colitis, and elevated
April 2022 | Volume 13 | Article 866059
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serotonin levels in humans were associated with worsening
inflammation and Crohn’s disease flareups (121). In a large
IBD cohort study, patients with active disease have increased
levels of tryptophan metabolites, especially quinolinic acid,
suggesting an increase in tryptophan degradation compared to
controls (122). Further research is needed to elucidate if
tryptophan deficiency could contribute to the development of
IBD or aggravate disease activity.

3.3 Dietary Vitamins
Vitamins play an important role in regulating the immune
system, as vitamin deficiencies can adversely affect the immune
system and potentially lead to the development or aggravation of
infectious and inflammatory diseases. For example, vitamin
deficiencies are commonly found in IBD patients, particularly
Crohn’s disease. However, little is known about whether these
vitamin deficiencies are a consequence or risk factor for IBD
(123). Many studies have highlighted the importance of vitamin
D on the immune system and inflammatory response, especially
the active form 1,25 dihydroxy vitamin D3 (124). Vitamin D
deficiency is prevalent amongst patients with inflammatory
diseases, such as: asthma, IBD, atherosclerosis and
arthritis (125).

The beneficial effects of vitamin D on disease activity are
thought to be mediated by the effects of vitamin D on the
immune system. Vitamin D can modulate inflammatory
responses on many different levels. This includes: the
regulation of genes that generate pro-inflammatory mediators
(e.g. COXs); its effects on transcription factors, such as NF-kB,
which regulate inflammatory gene expression; and, the activation
of signalling cascades which regulate the inflammatory response
(124). The active form of vitamin D is generated via ligation of
nuclear vitamin D receptor (VDR), that is present in immune
cells and regulates cellular activity (126). For example, vitamin D
has been shown to induce the production of antimicrobial
peptides from neutrophils and macrophages (127–129). Other
studies show that vitamin D can also enhance the antimicrobial
activity of macrophages by increasing TLR and CD14 expression
(130). Furthermore, it can regulate FOXP3+ regulatory T (Treg)
cells by inducing their differentiation, in turn promoting the
secretion of anti-inflammatory cytokines (131, 132).

Vitamin A also has a crucial role in optimal immune system
function and is known for its anti-inflammatory properties
(124). Whilst vitamin A is important in maintaining the
integrity of gastrointestinal epithelium, it is also key in
regulating the number and function of NK cells, macrophages,
and neutrophils (133–136). Vitamin A regulates the
differentiation of dendritic cell precursors and promotes
secretion of pro-inflammatory IL-12 and IL-23 from these cells
(135). In addition, vitamin A is involved in the antimicrobial
action of macrophages, therefore playing an important role in
the defence against pathogens (137). With regards to adaptive
immunity, the vitamin A metabolite retinoic acid inhibits pro-
inflammatory Th17 cells whilst promoting differentiation and
maintenance of anti-inflammatory Treg cells in mice (138, 139).
Vitamin A deficiency negatively affects B cell function and
impairs antibody responses in mice (140, 141). Finally, vitamin
Frontiers in Immunology | www.frontiersin.org 6
A can activate T cells and influence the expression of membrane
receptors that mediate T cell signalling in mice (142, 143). The
supplementation of vitamin A has been shown to be beneficial in
many diseases, including: broncho-pulmonary dysplasia and
some forms of cancer (124). In contrast, whilst most studies
support the benefits of vitamin A in IBD patients, some studies
suggest that vitamin A stimulates the release of pro-
inflammatory cytokines and aggravate disease activity in IBD
(144). More extensive research is needed to confirm the
mechanisms by which vitamin A influences systematic and
intestinal inflammation.

3.4 Dietary Minerals
Many different minerals have been studied in relation to
inflammation and the immune system. Both human and
animal studies have shown that high salt diets can affect the
immune response by increasing inflammatory macrophages and
T cell responses, and supressing neutrophil-mediated immune
responses (145). A high-salt environment induces Th17 cell
responses by driving p38 MAPK pathway, which also
exacerbates inflammation in a mouse model of multiple
sclerosis (146). Mice fed high salt diets have enhanced
expression of pro-inflammatory genes (e.g. Rac1, Map2K1) and
suppressed cytokine and chemokine genes (Ccl3, Ccl4) in the
colon and small intestine, resulting in more severe DSS and
dinitrobenzene sulfonic acid induced colitis compared to mice
fed control diets (147).

Additionally, the effects of iron homeostasis on immune
function are well established (148, 149). Maintaining iron
homeostasis is extremely important due to both the anti- and
pro-inflammatory potential of iron. Iron is an essential mineral,
that can be found in liver, red meat, beans and nuts, and has been
shown to have multiple direct effects on the immune system by
regulating cytokine production, generating reactive oxygen
species (ROS) which kill pathogens and contributing to the
differentiation and proliferation of T lymphocytes (150–152).

The immune system is also influenced by zinc, which can be
found in animal products such as meat, fish, and eggs, and in
smaller doses in whole grains and legumes. Zinc is an essential
trace element required for critical cellular functions such as
signal transduction, transcription, and differentiation.
Consequently, zinc deficiency may cause dysregulation of
inflammatory responses in immune cells, resulting in oxidative
stress and increased release of pro-inflammatory cytokines (153,
154). In contrast, zinc supplementation inhibits the activation of
NF-kB, resulting in decreased pro-inflammatory cytokine
production. Furthermore, zinc may also inhibit allergen-
induced proliferation of T cells and promote differentiation
toward Treg cells (155). Indeed, human studies have shown
that consumption of 45 mg/day of zinc supplements has been
shown to be effective in decreasing cytokine responses in
mononuclear cells stimulated ex vivo (156) Consumption of
zinc supplements may also inhibit viral activity, which may
shorten the duration of a cold (157, 158).

Selenium, a trace element mainly found in bread, cereals,
meat, fish and dairy products, is also closely linked to immunity.
Studies have shown that selenium deficiency is common in IBD,
April 2022 | Volume 13 | Article 866059
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rheumatoid arthritis and coeliac disease (159–161). In coeliac
disease, selenium has been recommended as a therapeutic
measure to block IL-15, in turn decreasing epithelial damage
and preventing extra-intestinal complications (162). Human
studies show that low selenium levels are associated with
increased CRP levels and increased products of reactive oxygen
species that cause tissue damage and organ failure (163, 164).
Selenium is also a cofactor in 25 different selenoproteins, of
which the antioxidant glutathione peroxidase has critical
functions in maintenance of intestinal mucosal homeostasis
(165, 166).

3.5 Dietary Polyphenols
Polyphenols are naturally occurring compounds in fruits,
vegetables and cereals (167). Consumption of polyphenol-rich
spices such as cinnamon, cumin and ginger have anti-
inflammatory effects. An intervention study providing a 3.3 g/
day of a spice blend observed reduced plasma cytokine
concentrations of Il-6, IL-1b, IL-8 and TNF-a when consumed
for 4 weeks by healthy controls (168). Further, polyphenol
compounds from green tea have also been shown to decrease
pro-inflammatory cytokine levels (IL-17) and increase
immunoregulatory cytokine levels (IL-10), as well as suppress
the pathogenic anti-Bhsp65 antibody response in arthritis rat
models (169).

In the context of inflammation, flavonoids are the most
studied group of polyphenols (170). They are a wide category
of polyphenolic compounds that can be found in plant-based
foods including almost all fruits and vegetables. Research has
focussed on flavonoids, that have several beneficial effects on the
inflammatory response: inhibition of inflammatory mediators
such as ROS; regulation of inflammatory enzyme activity;
reduction in cytokine production and expression; and
modulation of transcription factors such as NF-kB (171, 172).
The therapeutic effects of flavonoids have been explored in both
animal model and clinical trials for IBD. Ulcerative colitis
patients who were given silymarin with standard therapy for 6
months had improved haemoglobin levels, erythrocyte
sedimentation rate and disease activity compared to placebo
group (173). In asthma, supplementation of pycnogenol (a
proprietary mixture of water-soluble bioflavonoids) for 8 weeks
showed significant improvements in serum leukotrienes
compared to placebo (174). Whilst studies have looked at the
benefits of flavonoids in disease, most studies have focused on
animal models. Clinical trials are required to confirm the effects
of flavonoids on inflammatory disease in humans.
4 REGULATION OF INFLAMMATORY
AND GASTROINTESTINAL DISEASE
BY DIET-MICROBIOTA INTERACTIONS
IN THE BOWEL

In addition to directly interacting with immune cells and
receptors, diet indirectly affects inflammation via modulation
of the gut microbiota. Dietary fats, proteins, carbohydrates and
Frontiers in Immunology | www.frontiersin.org 7
other micronutrients all contain components that can act as
substrates for microbiota (175). Non-digestible carbohydrates
(i.e., dietary fibres) are a major energy source for gut microbiota,
with alterations in consumption of dietary fibre observed to
change the structure and function of gut microbiota within days
(176). Species such as Roseburia and Faecalibacterium, more
abundant in those who consume dietary fibre-rich foods (e.g.
legumes, cereals, fruits and vegetables), have been associated with
lower intestinal inflammatory markers, suggesting that dietary
modulation may indirectly regulate inflammation via gut
microbes (177).

Dietary fibre modulates local immune homeostasis in the gut,
with high-fibre diets protective in murine models of IBD (178).
Furthermore, reduced incidence of Crohn’s disease is associated
with increased fibre intake, particularly fibre derived from fruits
(179). Anti-inflammatory effects may be directly mediated by
dietary fibres that form carbohydrate structures that harbour
intestinal pathogens, blocking interaction with colonic epithelial
cells (180). However, the most significant interactions are with
gut microbiota, that utilise dietary fibres as an energy source,
promoting growth of Bifidobacterium and lactobacillus species
(181). In the absence of dietary fibre, gut microbiota may begin
to utilise mucan glycans as an alternative energy source, resulting
in degradation of the mucus layer and subsequent inflammation
(182). In addition, microbial fermentation of dietary fibres
produces metabolites such as short-chain fatty acids (SCFA)
that promote colonic homeostasis (Figure 2). SCFA are a key
energy source that maintains colonic epithelial cell structure and
function, whilst also regulating production of IL-8, IL-17, IL-1b,
IL-6, IL-12 and TNF-a by colonic epithelial cells (183). In
addition, SCFA have a range of immuno-regulatory properties,
as discussed in more detail below. A recent study has also
demonstrated that the microbial-derived SCFA butyrate may
regulate the composition of Bacteroides in the gut, inhibiting
growth of species depending on the sugar substrate available in
the environment (184). This occurs in Bacteroides species that
have increased expression of Acyl-CoA transferase and reduced
expression of Acyl-CoA thioesterase, resulting in an
accumulation of the toxic butyrate metabolite butyryl-CoA
within the cell. Butyrate toxicity may also exacerbate chronic
colitis in mice given high fructo-oligosaccharide diets,
demonstrating that high-fermentable fibres may induce pro-
inflammatory effects when provided at high-doses (185).

Emerging evidence has also shown that dietary-mediated
modulation of gut microbiota may also regulate inflammation
systemically. High fibre diets are protective in animal models of
type 1 diabetes, asthma and arthritis, elicited by an increase in Treg
cells (186–188). Immune changesmay occur rapidly in response to
alterations in gut microbiota. Native Africans who underwent a
high-fat, low-fibre ‘American’ dietary intervention had increased
mucosal inflammation after 2-weeks and changes to microbial
metabolites (30). In contrast, high fat diets are associated with an
increase in Bilophia and Desulfovibrio, as well as increased gut
permeability, which drives chronic inflammation in rodents (189,
190). Indeed, high fat diets exacerbate disease in models of
systemic inflammatory conditions, such as experimental
autoimmune encephalomyelitis (191). Similarly, mice fed a high
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sugar diet have increased colonic IL-1b and TNF-a and develop
more severe colitis in response to DSS treatment (192). Sugar-
microbiota interactions exacerbate inflammation in mice fed 10%
glucose, increasing the abundance of Akkermansia muciniphilia
and Bacteroides fragilis that degrade the colonic mucus lining
(193). Fructose-induced mucosal inflammation may result from
dysregulated intracellular protein transport and secretion, due to a
build-up of toxic fructose-metabolites within colonic epithelial
cells (194). Indeed, this also dysregulates the production of tight
junction proteins claudins and occludin, causing endotoxemia and
liver inflammation. Furthermore, mice fed high fat diets have
increased neutrophils, macrophages, and pro-inflammatory
cytokines in the lung after sensitisation and exposure to house-
dust mite, highlighting that a gut-lung immune axis may be
partially mediated by diet (195). The pro-inflammatory
environment induced by a high fat diet may promote the
differentiation Ly6C+ monocyte precursors into inflammatory
macrophages, that migrate to the lung and worsen pathology
(196). Conversely, a high fibre diet was shown to reduce airway
inflammation and the number of inflammatory neutrophils and
cytokines in the lungs (197).

Diet-induced changes to gut-physiology will also affect the
structure and function of the gut microbiota, which in turn affect
inflammation. Many of these changes occur locally along the
Frontiers in Immunology | www.frontiersin.org 8
gastrointestinal tract in response to meals. Consumption of a
high-fat meal will result in increased bile acid secretion, which
has antimicrobial properties, particularly on gram-positive phyla
such as Bacteroidetes and Actinobacteria (198). Bile acid
secretion and its subsequent metabolism to sulfur-rich
taurocholic acids promote growth of Bilophila wadsworthia, a
gram-negative species that has been associated with gut
inflammation (199, 200). There may also be an association
between gut-physiology and the complexity of microbes within
the bowel. For example, a positive correlation between gut transit
time and microbiome alpha diversity was observed in healthy
individuals, with increased abundance of Akkermansia
muciniphilia in those considered to have longer transit time (>
59 hours) (201). Although acute consumption of non-
fermentable fibres may hasten transit time, it remains unclear
if this may result in long-term changes to the gut microbiota and
if this alters immune homeostasis (202).

Additional components of processed foods, such as
emulsifiers or additives may also directly affect gut physiology,
by integrating with the mucus lining of the gut (203).
Consequently, this may promote encroachment of bacteria to
the gut epithelial lining by physically altering the mucosal layers
that normally protect the gastrointestinal epithelial cells. The
addition of a high-dose (50 mg/kg(body weight)/day) of food
FIGURE 2 | Bioactive compounds produced by gut microbiota. 1) Dietary fibres are fermented by gut microbiota to produce short-chain fatty acids (SCFAs), 2) B
vitamins may be produced from gut microbiota metabolism. 3) Amino acids from dietary proteins may be fermented to produce branched-chain fatty acids (BCFA),
ammonia, phenols, and hydrogen sulfide. 4) Dietary tryptophan is metabolised by gut microbiota to indoles. Pro-inflammatory compounds represented in red, anti-
inflammatory represented in green. These compounds affect host physiology via interactions with gut microbiota, colonic epithelial cells and mucosal immune cells.
ROS: reactive oxygen species, MAIT, mucosal-associated invariant T cell. Created with BioRender.com.
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additive titanium dioxide to the drinking water of mice resulted
in colonic inflammation driven by CD8+ T cells and
macrophages (204). Although, it has not yet been established if
a similar phenomenon occurs in humans who ingest high levels
of additives or emulsifiers, consumption of a high dose (15 g/day)
of the synthetic emulsifier carboxymethylcelluose (CMC) for 11
days has been observed to alter faecal metabolome and increase
microbial encroachment on the epithelium in healthy subjects
(205) In contrast, dietary minerals such as calcium phosphate
have buffering properties within the gut, precipitating toxic bile
acid metabolites and as a consequence maintaining microbial
homeostasis (206). Taken together, food additives and minerals
are likely to play a role in regulating gut microbiota in addition to
major macronutrient substrates. This is particularly important in
IBD, where breakdown of the mucosa and mucus layer
exacerbates disease activity and chronic inflammation.
4.1 Gut Microbiota Metabolites With
Immunoregulatory Properties
4.1.1 Short Chain Fatty Acids
SCFAs are 2-4 carbon chain organic acids produced from the
fermentation of dietary fibre by gut microbiota. These are
predominantly acetate, propionate and butyrate found most
abundantly in the colon, at 10-100 mmol/L (207). SCFAs
maintain colonic epithelial homeostasis, act as a major energy
source for colonocytes and directly regulate inflammatory
cytokine production by colonic epithelial cells (208, 209).
Additionally, they can regulate activity of macrophages,
neutrophils, dendritic cells, T cells and B cells within the
colonic mucosa (183). SCFAs may modulate immune cell
activity via engagement of SCFA specific G-protein coupled
receptors on the cell surface, or within the cell by modulating
epigenetic regulation by inhibiting histone deacetylases (HDAC)
(197, 210). Butyrate may inhibit HDAC in human cell lines at
10-100 µmol/L, with propionate and acetate showing similar
properties at 100-1000 µmol/L (211, 212). SCFA-mediated
HDAC inhibition may result in altered expression of
transcriptional regulators of immune function, depending on
the SCFA concentration present and surrounding immune
milieu. Butyrate-mediated inhibition of HDAC9 and HDAC6
in T cells drives expression of FOXP3 and differentiation to a
Treg phenotype when provided to mice at 100-200 mM in
steady-state conditions (213). In contrast, HDAC inhibition by
butyrate drives T cells to express Tbet and differentiate to a Th1
phenotype in the presence of IL-12 (212).

SCFAs are also processed intracellularly to form metabolic
intermediates such as acetyl-CoA that drive metabolic and
epigenetic changes upon immune cell activation (214).
Immune effects of SCFAs may also be found systemically as
they can be absorbed into the peripheral circulation via portal
veins within the gut and can be detected at a serum
concentration of 2-500 µmol/L (207). Indeed, potent systemic
anti-inflammatory effects have been observed when SCFAs are
given to mice in models of inflammatory disease and allergy
(186, 197, 215, 216). This has been purported to act via
downregulation of pathogenic responses driven by B cells, Th1,
Frontiers in Immunology | www.frontiersin.org 9
Th2 and Th17 subsets with concurrent upregulation of Treg
responses. In addition, butyrate has recently been reported to
promote regulatory B cells and inhibit germinal centre and
plasmablast formation, reducing severity of antigen-induced
arthritis in mice (217).

4.1.2 Protein Catabolites
Breakdown of dietary protein by gut microbiota produces
protein catabolites such as branched-chain fatty acids (BCFA),
ammonia, phenols and hydrogen sulfide (Figure 2) (218).
Protein catabolites may increase in response to increased
dietary protein consumption, particularly if derived from
animal protein sources (219). Amino acid breakdown are
driven by species of Escherichia, Eubacterium, Clostridium and
Enterococcus (220, 221), of which Clostridium perfringens and
Escherichia coli may become opportunistic pathogens in a state
of dysbiosis (222, 223). Indeed, mice fed a high protein diet have
reduced colonic IgG and increased prevalence of E.coli in the gut
(224). Colonic epithelial cells exposed to ammonia and hydrogen
sulfide have impaired growth leading to increased colonic
epithelial cell turnover, upregulated pro-inflammatory cytokine
production and consequent increased epithelial permeability
(185, 225, 226). Furthermore, hydrogen sulfide enhances T
lymphocyte activation and IL-2 production upon T cell
receptor (TCR) stimulation, through interaction with the actin
and tubulin cytoskeleton (227). Hydrogen sulfide treated mice
had increased L-1b, IL-6, TNF-a, MCP-1, and MIP-2 in plasma,
lung and liver after caecal ligation and puncture (CLP)-induced
sepsis (228). In contrast, hydrogen sulfide treatment enhanced
resolution of colonic inflammation in mice, indicative of an anti-
inflammatory role within the colon (229). This may be via
promotion of FOXP3+ Tregs, driven by enhanced expression
of methylcytosine dioxygenases Tet1 and Tet2 by hydrogen
sulfide (230). Secondary metabolism of BCFA by microbes
such as Bacteroides fragilis can also produce lipid a-
galactosylceramides. that regulate the function and number
CD1d restricted natural killer T cells in murine gut tissue (231).

Immune regulation may also be driven by tryptophan
metabolites produced via microbial metabolism of tryptophan.
These include indole and its derivatives; indole-3-aldehyde
(IAld), indole-3-acid-acetic (IAA), indole- 3-propionic acid
(IPA), indole-3-acetaldehyde (IAAld), and indoleacrylic acid
(232). These compounds form ligands to activate the aryl-
hydrocarbon receptor (AhR) found within gut epithelial cells,
intraepithelial lymphocytes, Th17 cells, macrophages,
neutrophils and dendric cells (233). Engagement of AhR
within intraepithelial CD4+ T cells, gd T cells and innate
lymphoid cells increases production of IL-22 whilst
downregulating IL-17 in mice (234, 235). Taken together, this
results in mucosal immune tolerance to gut microbiota and
maintenance of gut epithelial integrity, thus preserving
intestinal homeostasis. Indeed, gut microbiota from patients
with Crohn’s disease and coeliac disease may have a reduced
capacity to metabolise tryptophan, leading to defective AhR
activation (236, 237). Tryptophan metabolite activation of AhR
may also promotion of B-regulatory cells that ameliorate
systemic inflammation in a mouse model of arthritis (217).
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Microbial degradation of immunogenic proteins, such as
gluten and amylase trypsin inhibitors, may also directly affect
the T cell and innate immune response in coeliac disease. Gluten-
peptides produced by Pseudomonas aeruginosa have increased
translocation across the mucosal barrier in mice, whilst also
inducing stronger responses from T cells derived from patients
with coeliac disease (238). In contrast, microbial degradation of
gluten and amylase trypsin inhibitors by Lactobacillus species
produces peptides that are less immunogenic to coeliac disease
patients and gluten-sensitised mice, highlighting that these
species may be protective against inflammation in the context
of coeliac disease (238, 239).

4.1.3 Vitamins
A range of Lactobacillus, Bacteroides and Bifidobacteria species
can synthesise water-soluble B vitamins such as riboflavin
(Vitamin B2), niacin (vitamin B3) and folate (vitamin B9)
(240). Unlike dietary derived vitamins that are mainly
absorbed by the host along the small intestine, microbial-
derived vitamins are absorbed in the colon where they may
interact with mucosal immune cells (Figure 2) (241). Vitamin B2
metabolites are crucial for regulating host defence, as mucosal-
associated invariant T (MAIT) cells recognise Vitamin B
derivatives presented via the MHC like protein (MR1) on
antigen presenting cells in the colon (242). MAIT cells may
directly respond to changes in bacterial growth by responding to
changes in the abundance of riboflavin, increasing expression of
CD69, CD25 and PD-1 expression in response to stimulation
with E. coli in growth phase (243). In mice, niacin may also signal
to colonic CD103+ dendritic cells through engagement of the cell
surface receptor GPR109a, to promote a T-regulatory phenotype
upon engagement of T cells (244). Taken together, this highlights
a significant role for microbial compounds in regulating immune
homeostasis within the colon.
5 UTILISING DIETARY THERAPY
IN THE TREATMENT OF HUMAN
GASTROINTESTINAL AND
INFLAMMATORY DISEASE

To date, the clinical use of dietary therapy to treat human
inflammatory disease has shown the most efficacy in patients
with coeliac disease, in which pathogenesis is inherently linked to
consumption of wheat. Following a strict gluten-free diet
improves coeliac disease pathology characterised by a
reduction in intestinal damage, steatorrhea, diarrhoea and
weight loss (245, 246). However, there is an emerging body of
evidence that highlights clinical value in other gastrointestinal
and peripheral inflammatory diseases.

5.1 Gastrointestinal Disease
Dietary therapy in a form of exclusive enteral nutrition (EEN)
has long been considered as the first-line approach to induce
remission in active paediatric Crohn’s disease preferable to
corticosteroid treatment (247, 248). This liquid-based product
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is formulated to deliver all essential macronutrient and
micronutrients, without the need for consumption of any
whole-foods. EEN is thought to induce anti-inflammatory
effects in the gastrointestinal tract by eliminating most food-
derived antigens and substrates, consequently reducing the
activity of both the immune system and the resident-
microbiota (249). Although some EEN formulas may also
contain emulsifiers such as carboxymethyl cellulose (CMC)
and polysorbate 80, implicated above to trigger inflammation
in pre-clinical models, no differences in disease remission rates
have been observed between those that containing these food
additives and those that do not (250). Hence, the amount of food
additive delivered over the duration of a EEN course is unlikely
to trigger disease. Adult Crohn’s disease patients often have poor
compliance to EEN over a long period due to poor palatability
with good compliance only achieved through delivery via a
nasogastric tube (251). Nevertheless, more evidence is
accumulating to suggest EEN is also effective in treating
mucosal inflammation in adult Crohn’s disease patients
(252, 253).

In addition, whole-food dietary interventions have been
explored as alternative treatment options as summarised in
Table 2. Some of these therapeutic diets involve exclusion of
many food groups:

• Crohn’s disease exclusion diet: heavily restricted diet,
designed to be consumed alongside partial enteral nutrition.
Patients exclude intake of foods such as dairy, wheat,
emulsifiers, maltodextrins and processed foods that may
stimulate the gut microbiota and mucosal immune system
(255). It is also low in animal fat with limited intake of fruits
and vegetables.

• Specific carbohydrate diet: excludes all grains, sugars (except
honey), processed foods, and dairy, aside from specific
fermented yogurt and some hard cheeses (258).

• Low FODMAP (Fermentab l e Ol i gosacchar ide s ,
Disaccharides, Monosaccharides And Polyols) diet: excludes
fermentable carbohydrates (fructans, oligosaccharides,
disaccharides, monosaccharides and polyols), that if
malabsorbed in the small intestine, undergo colonic
fermentation by the microbiota and trigger luminal
distension (264). It is traditionally used to treat patients
with irritable bowel syndrome to relieve gastrointestinal
symptoms (e.g., wind/bloating) and has recently been
explored for its potential benefits in management of
Crohn’s disease.

Although there have been some clinical improvements
reported in prospective observational studies utilising these
exclusion diets to treat IBD patients, many of these studies are
difficult to compare with diverse clinical endpoints, primarily
using subjective symptom-based scoring systems, patient
populations and durations. Results of many other randomised
control trials may also fail to reach statistical significance when
compared to control diets, that can induce clinical response
compared to patient habitual diets (265). Levine et al. reported
that the Crohn’s disease exclusion diet resulted in significantly
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greater corticosteroid-free remission amongst paediatric Crohn’s
disease patients when compared to exclusive enteral nutrition
(256). However, another recent randomised trial found no
difference in patient clinical remission rates between the
Crohn’s disease exclusion diet when compared to partial enteral
nutrition with Crohn’s disease exclusion diet, highlighting the
importance of choosing an appropriate comparator (257).

Indeed, there may also be clinical value in utilising a
traditional dietary pattern as opposed to a restrictive diet. A
Frontiers in Immunology | www.frontiersin.org 11
recent randomised clinical trial by Lewis et al. showed similar
clinical or inflammatory responses in patients who followed a
Mediterranean diet and specific carbohydrate exclusion diet
(262). Besides EEN, the current evidence suggests that these
dietary interventions being explored as potential treatments for
IBD seem to relieve gastrointestinal symptoms. However,
whether they have roles in ameliorating mucosal inflammation
requires further evaluation. This is particularly the case for the
low FODMAP diet, which has been found to reduce
TABLE 2 | Dietary randomized control trials to treat Inflammatory bowel disease.

Diet Study
design

Patient cohort No. Duration Primary endpoint Secondary endpoints Ref.

Crohn’s
disease
exclusion diet

Observational CD patients
unresponsive to
biologics

21 (11
Adult, 10
children)

12
weeks

Clinical response (remission ≤3 HBI) 19/21
(90.4%)

Clinical remission 13/21
(62%)
↓ HBI (P < 0.001)
↓ CRP (P=0.02)

(254)

Observational Paediatric + young
adult CD patients with
active disease

47 6 weeks Remission (≤3 HBI): 70.2% ↓ PCDAI (P < 0.001), ↓ HBI
(P < 0.001)
↓ CRP (P < 0.001)

(255)

RCT Paediatric CD patients 74 12
weeks

↑ Tolerance: CDED+PEN vs. EEN (P < 0.01) ↑ Corticosteroid-free
remission: CDED+PEN vs.
EEN (P=0.01)
↔ Faecal calprotectin CDED
+PEN vs. EEN (P=0.43)

(256)

RCT Adult CD patients with
mild/moderate disease

40 24
weeks

↔ Remission ( < 5 HBI) at wk 6: CDED+PEN
vs. CDED (P=0.46)

↔ Clinical remission at
Wk24 (P=0.11)
↔ endoscopic remission at
Wk24 (P=0.74)
↔ CRP (P=0.79), Faecal
calprotectin (P=0.60)

(257)

Specific
carbohydrate
diet

Observational Paediatric CD and UC
patients with active
disease

12 (10
analysed)

12
weeks

Remission (PCDAI/PUCAI < 10): 80% ↓ PCDAI (-23.5)a

↓ PUDAI (-21.6)a

↓ CRPa, Faecal calprotectina
(258)

Low FODMAP
diet

RCT Quiescent CD and UC
patients

52 (43
analysed)

4 weeks ↔ IBS symptom score: Low FODMAP: -67 vs.
Control: -34 (P=0.075)

↔ disease activity (P=0.8)
↑ IBD control score (P=0.03)
↔ CRP (P=0.25), Faecal
calprotectin (P=0.98),
peripheral blood T cells

(259)

RCT Quiescent/mild CD and
UC patients

55 6 weeks ↔ disease activity (HBI/mayo score): Low
FODMAP vs. control diet (CD patients, P=0.28,
UC patients, P= 0.84):

↔ faecal calprotectin
(P=0.13)
↔ CRP (P=0.64)
↔ IBD control score
(P=0.89)

(260)

Mediterranean
diet

Observational CD patients 58 6 months ↓ BMI: -0.48, P=0.032 ↑ QoL (P < 0.001)
↓ CRP (P=0.04)
↓ Faecal Calprotectin
(P=0.04)

(261)

Observational UC patients 84 6 months ↓ BMI: -0.42, P=0.002 ↑ QoL (P < 0.001)
↓ CRP (P=0.01)
↓ Faecal Calprotectin
(P=0.049)

(261)

RCT CD patients with mild/
moderate disease

191 12
weeks

↔ Symptomatic remission (sCDAI < 150 at
week 6): Mediterranean diet vs. SCD (P=0.77)

↔ clinical remission (P=0.28)
↔ CRP (P=ns)
↔ Faecal Calprotectin
(P=0.44)
↔ QoL (P>0.3)

(262)

Low Fat, High
fibre

RCT Quiescent UC patients 18 (17
analysed)

4 weeks ↑ QoL: Low fat/high fibre vs. control diet
(P=0.04)

↔ CRP, Faecal Calprotectin
(P=ns)
↓ serum amyloid A (P=0.07)

(263)
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RCT, randomised control trial; HBI, Harvey-Bradshaw index; CRP, C-reactive protein; CDED, Crohn’s disease exclusion diet; PEN, partial enteral nutrition; QoL, Quality of life; PCDAI,
Paediatric Crohn’s disease activity index; PUCAI, Paediatric ulcerative colitis activity index. UC, ulcerative colitis.
ano p-value reported.
↑, increased; ↓, decreased; ↔, unchanged; NS, not significant.
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gastrointestinal symptom scores without improving clinical
disease scores or biomarkers in quiescent IBD patients (259).
To date, there is limited data on the effect of altering FODMAPs
on inflammation in the gastrointestinal tract. One preclinical
study found that colonic cytokine levels and histology scores
were similar in mice provided with low and high FODMAP diets
after induction of acute colit is (266). In contrast ,
supplementation of FODMAPs, particularly fructo-
oligosaccharides (FOS) has shown limited success in reducing
disease scores in patients with active Crohn’s disease (267).
However, supplementation of 15 g/day FOS may induce
gastrointestinal symptoms in patients resulting in poor
tolerance (268). Indeed, further studies are required to identify
which subsets of pat ients may most benefi t f rom
fibre-supplementation.

Beyond IBD, exclusive elemental diet is well established as a
treatment for eosinophilic oesophagitis (269). The disease
pathophysiology of eosinophilic oesophagitis is poorly
understood, however it is thought to be caused by a
breakdown in oral tolerance (270). Food antigens may trigger
Th2-mediated inflammation, releasing IL-5, IL-13 and IgE. This
promotes the recruitment and degranulation of eosinophils and
mast cells thought to contribute to tissue damage. Patients who
follow an exclusive elemental diet have reduced symptoms,
endoscopic and microscopic signs of inflammation (271). An
elimination diet approach may also be used to treat eosinophilic
oesophagitis. However, this approach may not be as effective as
an elemental diet due to the wide range of food allergens that
trigger the allergic response (272, 273).

5.2 Peripheral Inflammatory Diseases
There has been limited success in using dietary modification to
treat inflammatory skin conditions. Exclusive enteral nutrition
followed by food reintroduction was found to improve refractory
atopic eczema in a small cohort of children, although 27% of the
cohort did not respond to the treatment (274). Indeed, a
systematic literature review of randomized controls trials to
assess the efficacy of dietary exclusion found it had no
significant benefit in the treatment of atopic eczema (275).
Vitamin D supplementation may reduce skin inflammation in
subsets of atopic dermatitis patients who have recurrent bacterial
infection and pre-existing vitamin D deficiency, however further
placebo-controlled randomised control trials are needed to
confirm these effects in other cohorts (276). A randomised
clinical trial found that patients with asthma and vitamin D
deficiency had significantly improved asthma control after 6
months of weekly oral calcifediol (1,25 dihydroxy vitamin D3)
supplementation compared to placebo (277). Indeed, long-term
supplementation with vitamin D may also be protective against
inflammatory disease. A recently completed randomized
controlled trial showed that supplementation of vitamin D,
with or without omega-3 fatty acids, for five years significantly
reduced the incidence of developing autoimmune diseases (e.g.
rheumatoid arthritis, systemic lupus and psoriasis) in a large
cohort of older adults, compared to no supplementation (278).

Several small dietary intervention trials have also been
conducted in patients with other inflammatory diseases. A study
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using a small group of multiple sclerosis patients (n=20) found
that those who consumed a Mediterranean-style diet, high in
fruits and vegetables, had reduced IL-17 expressing CD4+ T cells
and lower clinical symptom scores after 12 months (279). A
significant increase in the abundance of Lachnospiraceae was also
found, that correlated with further changes to CD14+ monocytes
and FOXP3+ Tregs, suggesting a role for the gut microbiota in
driving immune change. Indeed, significantly lower plasma SCFA
concentrations were seen in another cohort of multiple sclerosis
patients when compared to healthy controls (280). Furthermore, a
cohort of 29 rheumatoid arthritis (RA) patients who consumed a
high-fibre bar each day for 30 days had significantly reduced
serum MCP-1, IL-18 and IL-33, potentially due to an increased
delivery of systemic SCFA (281). However, no changes to clinical
indices were reported. Another high-fibre intervention study in 31
RA patients found increased Th1/Th17 ratio and Treg cells after
28 days of consumption (282). Decreased markers of bone erosion
were also reported, suggesting that high-fibre intervention may
have clinical relevance in RA.

Resistant starch that has been chemically modified to release
additional acetate and butyrate in the colon has recently been
reported to induce a regulatory immune phenotype in a small
cohort of Type-1 diabetes patients (283). Consumption of 40 g/
day of chemically modified high-amylose maize starch for 6
weeks increased the proportion of peripheral blood Treg cells,
CTLA-4 expressing T cells and reduced the proportion of CD86
expressing on dendritic cells. Although, this did not significantly
improve glucose control or insulin requirements. Similarly,
consumption of 12 g of fibre supplement inulin for 7 days was
found to reduce sputum eosinophils and improve asthma
symptom control in a group of 17 asthmatics (284). Studies in
larger patient cohorts are required to clinically validate
favourable anti-inflammatory effects observed in these
pilot studies.

5.3 Fermented Foods in the Treatment of
Inflammatory Disease
Using fermented foods to deliver probiotics and beneficial
microbial metabolites (i.e., postbiotics) has been of recent
interest, particularly as many fermented food products are
readily available to the public. Despite these products being
marketed as anti-inflammatory, there is currently limited
clinical evidence to support this. Consumption of fermented
dairy products such as yoghurt has been associated with reduced
serum CRP in healthy people, although this association may have
been confounded with overall diet quality (285). Indeed,
fermented foods contain a wide range of compounds with
immunomodulatory properties when exposed to cells in vitro
(Figure 3) (213, 286–292). Consumption of fermented foods
could deliver immune-modulatory compounds such as SCFA
systemically, particularly if consumed multiple times per day
(293). They also contain a diverse range of probiotic bacteria that
initiate fermentation, such as lactic acid bacteria, acetic acid
bacteria and Bacillus species [reviewed elsewhere (294)]. Healthy
participants who followed a high fermentable food diet for 10
weeks were found to have reduced serum levels of inflammatory
markers such as Il-6, IL-18 and CXCL10, highlighting potential
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immunomodulatory effects of such foods (295). However, it is
also important to consider the fungal component of fermented
foods, that may have the potential to become opportunistic
pathogens in the context of dysbiosis. Debaryomyces hansenii
is a fungus contained in many fermented cheeses that may be
enriched in inflamed intestinal tissues from Crohn’s disease
patients. Isolates of D.hansenii inhibit intestinal crypt
regeneration in mice models of intestinal injury, suggesting
that they may be pathogenic (296). Taken together, further
studies are needed to elucidate if consumption of fermented
foods could have clinical benefit in the disease setting.

5.4 Challenges of Translating Dietary
Therapy to Clinical Practise
Indeed, there is a clear need to design appropriate clinical trials
to examine if the powerful anti-inflammatory effects of dietary
modifications in pre-clinical models of disease can be translated
in the clinical setting. Dietary modifications in animal models are
often extreme, with large doses of fats or fibre utilised. The
amount of fibre in a high-fibre diet given to a mouse has been
Frontiers in Immunology | www.frontiersin.org 13
estimated to be equivalent to 274 g/day for a human, nearly 10
times that of the recommended daily intake (297). Furthermore,
comparator diets often do not contain any of the macronutrients
of interest (e.g., no-fibre or no-fat diets) which are not realistic
for human consumption. Although some human intervention
studies have highlighted that extreme dietary changes, such as
all-meat or all-vegetable diets may alter the composition of the
gut microbiota within a matter a days, these are unlikely to be
suitable for long-term consumption as they would lead to
deficiencies in vital micronutrients (176). Indeed, short-term
dietary intervention is also unlikely to induce any significant
changes to inflammation. Consumption of a 5-day high fibre diet
(39 g/day) failed to change plasma cytokine levels or circulating
Treg cell frequency despite increasing plasma SCFA levels in
healthy volunteers (298). Therefore, longer-term interventional
studies over weeks to months are required to observe significant
changes. Expression levels of IL-1b, IL-18, TLR-2 and TLR-4
were significantly decreased in individuals with Type 2 diabetes
who consumed oral SCFA for 45 days, suggesting that this may
be a more optimal timeframe for immune modulation (299).
FIGURE 3 | Immune modulating compounds contained within Fermented foods. Bioactive compounds from fermented foods that have anti-inflammatory effects on
the activity and phenotype of innate (macrophages, neutrophils, mast cells) and adaptive (T-cells) immune cells. GABA, gamma-aminobutyric acid. Created with
BioRender.com.
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However, the gold-standard for dietary studies is for a complete
intervention which may be difficult for participants to adhere to
for an extended period (300). A careful trade-off must be made to
design studies of sufficient duration and dose to induce change
with an adequate level of control within a realistic timeframe.

The correct patient subset must also be identified for dietary
intervention. This is particularly important in IBD, as patients
with active disease may be less likely to adhere to a strict dietary
intervention if experiencing symptoms (301). Elimination diets
may only be suitable to treat inflammatory disease in those who
also have an underlying allergy. For example, the use of a gluten-
free diet has been weakly recommended for psoriasis patients
who also test positive for serologic markers of gluten sensitivity
(302). It may also be difficult to control for other lifestyle and
socioeconomic factors, such as exercise and access to fresh foods
attributed to anti-inflammatory effects. Furthermore, low
socioeconomic status may be correlated to poor diet quality
and has also been recently linked to exacerbated COVID-19
infection (14). There is a need for public health initiatives to
improve education and accessibility to fresh produce, so that
those who may be most in need of nutritional improvement can
do so. This may be particularly critical during pregnancy, as
maternal intake of vegetables and grains have been found to be
preventative against development of asthma and allergic rhinitis
in young children (303). This may be via epigenetic modification
of the thymic microenvironment to promote Treg cells that
protect against Th2 cytokine responses, as has been observed in
murine models of allergic airways disease (197, 304).
6 CONCLUSION

There is now a large body of evidence implicating diet in the
development of inflammatory and gastrointestinal disease. This
has been built upon epidemiological associations that identify a
high-fat and low fibre western diet, as a risk factor for the
development of inflammatory disease, particularly when
compared to traditional diets. These effects may be driven by
direct nutrient-immune system interactions with fats, proteins,
vitamins, minerals and polyphenols. Furthermore, nutrients also
modulate the structure and function of the gut microbiota, that
Frontiers in Immunology | www.frontiersin.org 14
indirectly affects local and systemic inflammation. Although
dietary modulation has powerful effects on inflammation in
animal models of human inflammatory disease, there have
been challenges translating these observations into humans.
This is due to inherent differences in physiology between
rodents and humans, as well as extreme diets utilised in animal
models that often use zero-nutrient diets as comparators.

Despite specific dietary therapies that have shown success in
treating coeliac disease and IBD, there remains a paucity of data
to show if dietary therapy may have clinical relevance in other
human inflammatory disease. Recent data from pilot studies
utilising dietary fibre supplements and fermented foods have
shown encouraging anti-inflammatory and clinical effects in
patients with other inflammatory conditions. However, it
remains to be seen if findings from these pilot studies may be
replicated in larger patient cohorts. Future studies must
adequately control for background diet, whilst also providing a
dietary intervention that is tolerable for patients over a long
period. Further advances in microbiome and immunological
profiling may allow for more accurate identification of patient
populations that will most benefit from dietary interventions.
Ultimately, collaboration between immunologists, clinicians,
nutritionists, and dietitians is required to design appropriate
clinical trials to confirm clinical efficacy of dietary therapy to
treat inflammatory disease.
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