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S
pinal cord injury (SCI) is a prevalent problem af-
fecting 17,700 new people every year in the US.44 It 
is estimated that approximately 288,000 people live 

with an SCI in the US. It is important to have quantifiable 
modalities in SCI to provide support for clinical decision 
making. One of those objective modalities is MRI, and 
more specifically diffusion tensor imaging (DTI) in pa-
tients with SCI (Figs. 1 and 2).

DTI was first described by Basser et al. in 1994 in a 
study demonstrating that this imaging modality was sig-
nificantly better at visualizing microstructures than other 

MR sequences, namely T1- and T2-weighted images (Fig. 
3).4,34 DTI measures the direction of diffusion of water 
molecules inside tissues. In the axon, water diffusion is 
mostly limited by the cell membrane and myelin sheath 
barriers; this leads to a gradient with high diffusion in the 
direction parallel to the white matter tracts and low diffu-
sion perpendicular to the white matter tracts.13,20,58 Disrup-
tion of the biological barriers is thought to result in in-
creased radial diffusivity (RD) by providing an alternate, 
perpendicular path for water diffusion.48,50,53

Diffusion is measured in different ways in DTI: the 
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OBJECTIVE Diffusion tensor imaging (DTI) is an MRI tool that provides an objective, noninvasive, in vivo assessment 
of spinal cord injury (SCI). DTI is significantly better at visualizing microstructures than standard MRI sequences. In this 
imaging modality, the direction and amplitude of the diffusion of water molecules inside tissues is measured, and this 
diffusion can be measured using a variety of parameters. As a result, the potential clinical application of DTI has been 
studied in several spinal cord pathologies, including SCI. The aim of this study was to describe the current state of the 
potential clinical utility of DTI in patients with SCI and the challenges to its use as a tool in clinical practice.

METHODS A search in the PubMed database was conducted for articles relating to the use of DTI in SCI. The citations 
of relevant articles were also searched for additional articles.

RESULTS Among the most common DTI metrics are fractional anisotropy, mean diffusivity, axial diffusivity, and radial 
diffusivity. Changes in these metrics reflect changes in tissue integrity. Several DTI metrics and combinations thereof 
have demonstrated significant correlations with clinical function both in model species and in humans. Its applications 
encompass the full spectrum of the clinical assessment of SCI including diagnosis, prognosis, recovery, and efficacy of 
treatments in both the spinal cord and potentially the brain.

CONCLUSIONS DTI and its metrics have great potential to become a powerful clinical tool in SCI. However, the current 
limitations of DTI preclude its use beyond research and into clinical practice. Further studies are needed to significantly 
improve and resolve these limitations as well as to determine reliable time-specific changes in multiple DTI metrics for 
this tool to be used accurately and reliably in the clinical setting.
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two most frequently used measurements are fractional an-
isotropy (FA), the extent to which diffusion is limited to 
specific directions, and mean diffusivity (MD), the overall 
amount of diffusion in a sample or voxel (Fig. 4).7 FA is 
a measure of microstructural integrity because it is sensi-
tive to microstructural changes in the spinal cord, but it is 
not specific to underlying pathological causes.1 In contrast, 
MD is a measure of membrane density and is more sensi-
tive for changes in cellularity, edema, and necrosis.

The purpose of this review was to describe the current 
state of DTI as a potential clinical tool for the assessment 
and management of SCI. We aimed to summarize the 
most up-to-date advances in DTI and its potential utility 
in diagnosis, prognosis, assessment of recovery, and of 
therapeutic interventions.

Methods
This review was prepared using the Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement.42

Search Criteria

The MEDLINE database (via PubMed) was searched 
for articles published between January 2000 and April 
2017 with the following search terms: “diffusion ten-
sor imaging” AND “spinal cord injury”. The search was 
narrowed by selecting the “human” link for species and 
limiting the results. After reviewing title and abstract, the 
articles were then included in the final review. The cita-
tions from the preselected articles were then screened for 
additional relevant articles (Fig. 5).

Inclusion Criteria

Articles that contained information relevant to the use 
of DTI in SCI were included. Articles that discussed the 
limitations precluding the use of DTI in SCI were also 
included.

Data Evaluation

Relevant results from individual articles were extracted 
and organized into the clinically relevant categories of 
diagnosis, prognosis, recovery, assessment of therapeutic 
interventions, and limitations.

Results
Our search resulted in 306 publications that were nar-

rowed to 33 articles based on the inclusion criteria. The 
remaining 41 papers were found by searching the citations 
of identified articles (Fig. 5).

Utility of DTI as a Diagnostic Tool for SCI

DTI can identify the location and severity of injury to 
the spinal cord, and is therefore an important tool for diag-
nosis of SCI.15,27 Postprocessing MR software is available 
to quantify DTI metrics at specified spinal levels and can 
also be used to allow the data to be displayed in a visual 
format that allows easier interpretation (Fig. 6). Several 
metrics in DTI have been studied in SCI, including FA, 

FIG. 1. Representative sagittal T2-weighted MR image (left) acquired 
at 3 T and sagittal CT image (right) (Siemens Healthineers) of a normal 
cervical spine with normal osseous alignment, no fracture or abnormal 
marrow signal, and no abnormal cord signal to indicate an SCI.

FIG. 2. Representative sagittal ADC (A), diffusion-weighted (B), FA (C), 
and reformatted color FA (D) MR images acquired at 3 T of the cervical 
spine in Fig. 1 with uniform cord signal throughout each of the sequenc-
es, which is consistent with absence of an SCI. The FA sequence is a 
gray-scale map of DTI FA values, with brightness corresponding to more 
anisotropy. The reformatted color FA sequence assigns colors that are 
based on anisotropy and direction from the FA data.
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MD, radial anisotropy, RD, and apparent diffusion coef-
ficient (ADC) values.
FA Values

The mean FA value has been consistently found to be 
reduced in both human and animal studies of individuals 
with SCI compared to healthy controls.2,6, 8, 10–12, 14–16, 28, 32–35, 

40, 41, 43, 45, 47, 51, 55, 59, 65, 68, 71,74 With respect to the level of spinal 
injury, D’souza et al. found that the mean FA values in 
cervical spine injury were significantly reduced compared 
to healthy controls at the level of injury but not at levels 
above or below the injury.15 FA levels have been shown to 
decrease with increasing canal stenosis, and several stud-
ies have shown a correlation between FA value reduction 
and severity of SCI.33,46

Asymmetrical FA values between left and right corti-
cospinal tracts were found to moderately correlate with 
laterality of neurological symptoms and American Spinal 
Injury Association (ASIA) scores using tract-specific DTI 
(Fig. 7).38

MD Values

Most commonly, MD values increase following acute 
SCI.10,14,15,40,65 D’souza et al. found a statistically significant 
increase in MD values post-SCI at the injured spinal level, 
but not at the level above or below the injury.15 They also 
found an inverse linear relationship between MD scores at 
the level of injury and clinical SCI assessment; the highest 
MD values represented worse clinical grades Additional-
ly, MD values have been found to change with age, further 
confounding the interpretation of results.64

ADC Values

ADC is a measure of the magnitude of water molecule 
diffusion inside a tissue, and changes in this value rep-
resent a change in the tissue structure. The ADC values 
in SCI vary substantially by study. In their animal study, 

FIG. 4. Representative sagittal ADC (A), diffusion-weighted (B), FA (C), 
and reformatted color FA (D) MR images acquired at 3 T of the ASIA 
grade A SCI in Fig. 3 with signal loss centrally within the cord at C6/
C7 due to cord hemorrhage–related susceptibility artifact and loss of 
anisotropy below C4/C5 on the FA-dependent sequences (C and D). 
The FA sequence is a gray-scale map of DTI FA values with brightness 
corresponding to more anisotropy. The reformatted color FA sequence 
assigns colors that are based on anisotropy and direction from the FA 
data.

FIG. 3. Representative sagittal CT (A), sagittal STIR (B), and T1 (C) MR images at 3 T of an ASIA grade A SCI in the setting of a 
3-column injury with traumatic anterolisthesis of C6 on C7 due to an acute C6/C7 intervertebral disc injury, significant ligamentous 
injuries (anterior longitudinal ligament, posterior longitudinal ligament, and ligamentum flavum tears), fracture of the C7 anterosu-
perior endplate, multiple posterior element fractures (not all shown), and the associated cervical cord injury extending from C4 to 
C7/T1.
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Ellingson et al. found a decreased ADC value at 2 weeks 
after SCI in the cord rostral and caudal to the site of in-
jury, whereas ADC values were only slightly decreased at 
the level of injury.16 In their cohort of patients with SCI, 
Shanmuganathan et al. also found significantly decreased 
ADC values in the cervical spine; however, this study 
found decreases at levels above, below, and at the site of 
injury.51 In contrast, Song et al. found elevated ADC val-
ues in SCI patients relative to controls and Petersen et al. 
found no significant change in ADC values after SCI.47,55 
Importantly, Li et al. found that ADC values in mild SCI 
were elevated compared to healthy controls whereas they 
were decreased in moderate and severe SCI.35

AD and RD Values

Axial diffusivity (AD) is usually high in spinal cord 
DTI due to axon and myelin integrity that inhibits water 
diffusion across the membrane, whereas AD decreases 
with axonal injury.1,29,52,54 In contrast, RD increases with 
increased demyelination and axonal injury.1,52,54,58 Al-
though AD and RD values are a useful metric in DTI, they 
remain too inconsistent on their own to be used exclusive-
ly as a reliable method of diagnosing SCI.

Utility of Cortical DTI for SCI

There is evidence that DTI of cortical and brainstem 
structures demonstrates chronic changes after SCI and 
may contribute to assessing the severity and prognosis of, 

as well as recovery from, SCI.26,49,57,70 Sun et al. demon-
strated significantly reduced FA and increased AD and 
RD values in both the cerebral peduncles and internal cap-
sule in patients with cervical spine ASIA grade A/B SCI.57 
Differences were also noted in cervical spine ASIA grade 
D and thoracic SCI, but were not statistically significant.

Utility as a Prognostic Tool

Postinjury neurological functional outcome is highly 
correlated with axonal injury as determined by histologi-
cal analysis.21,39 DTI metrics correlate with histological 
axonal injury as well as functional recovery.17,18, 30, 31, 46, 72,73 
Ellingson et al. found that the combination of DTI fiber 
tract density, FA values, and MD values were the best pre-
dictor of motor impairment in the modified Japanese Or-
thopaedic Association scores in cervical spondylosis.18 In 
their study, at the site of spinal cord compression, higher 
fiber tract density, lower FA, and higher MD were asso-
ciated with worse neurological function. Similar results 
were found with maximum tract density and modified 
Japanese Orthopaedic Association scores.19

Utility in Assessment of Therapeutic Interventions

Gu et al. described an experiment in which rats under-
went laminectomy with spinal cord contusion and subse-
quent injection of olfactory ensheathing cells. DTI was 
used to demonstrate SCI as well as axonal regeneration at 

FIG. 5. Flow diagram of the search criteria used and the results from the MEDLINE database (via PubMed).
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the injury epicenter, which was corroborated by histopa-
thology.22 The study demonstrated increases in FA values 
and improved Basso-Beattie-Bresnahan scores with time.

In their animal model of SCI, Jirjis et al. used DTI to 
assess changes in histopathology and functional metrics 
at the cervical cord after injury, and compared these to 
changes in DTI after neuronal stem cell transplantation 
into thoracic spinal cord.25 FA, longitudinal diffusion, RD, 
and MD values increased in cervical segments in the stem 
cell–transplanted groups relative to controls. However, 
there was no significant change in functional recovery as 

assessed by Basso-Beattie-Bresnahan scores, suggesting 
that changes in DTI metrics may demonstrate changes 
in white matter recovery but may not always correlate to 
clinical improvement. Similar results were found by Baz-
ley et al., who found increases in FA that correlated with 
improvements in cell survival and somatosensory evoked 
potentials after treatment of SCI with oligodendrocyte 
precursor cell transplantation.6

Other MRI Modalities for SCI Assessment

The Brain and Spinal Injury Center (BASIC) scoring 
system was developed to evaluate T2-weighted MR im-
ages in patients with SCI.60 The BASIC grading system is 

FIG. 7. An example of a sagittal fiber tracking map that is fused onto a 
T2-weighted MR image by using postprocessing software. The image 
demonstrates significant disruption of the fiber tracts in the setting of an 
ASIA grade A SCI.

FIG. 6. An example of sagittal (upper) and axial (lower) images that 
fuse the colored FA map onto a T2-weighted MR image by using post-
processing software (SyngoVia VB30A; Siemens Healthineers) so 
that regions of interest can be selected and quantitative data can be 
acquired.
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based on axial T2-weighted images. The BASIC scale has 
5 points—from 0 (no cord signal abnormalities) to 4 (in-
tramedullary T2 hyperintensity with microhemorrhage). 
The authors of this study found good correlation with a 
high BASIC grade and a worse clinical SCI (higher ASIA 
grade). A limitation of the scale is the high variance of 
T2 signal in images obtained > 24 hours after injury.36,56,60 
Nonetheless, the BASIC system would be easier to imple-
ment because T2 sequences are obtained routinely for pa-
tients with SCI.60

Limitations of DTI Utility in SCI

Inconsistencies in the changes in DTI metrics among 
studies preclude this imaging modality from consistent 
and reliable clinical use. A potentially interesting solution 
to this problem is the use of machine learning via a train-
ing data set of injured and healthy patients that could serve 
to establish different metrics to improve diagnostic accu-
racy of DTI.61

The specificity and sensitivity of DTI decreases with 
increasingly complex tissue.63 SCI results in several pa-
thologies that are difficult to distinguish on DTI, including 
inflammation, edema, demyelination, and hemorrhage.9,57, 
59, 66,67

Li et al. found that changes in ADC and FA values 
could be detected on 3.0-T machines, but changes in ADC 
values were not detected by a General Electric 1.5-T ma-
chine and changes in FA values were not detected by a 
Philips 1.5-T machine.34 A 3.0-T machine may be required 
for the reliable measurements of DTI metrics necessary 
for clinical use.

DT image quality can be significantly reduced and re-
sult in artificial alteration of DTI metrics due to patient 
and physiological motion.7,40,62 Methods to improve motion 
correction have been developed with promising results.3,5, 

23, 24,37,40,69

Conclusions
DTI has great potential to provide an objective, in 

vivo clinical assessment of SCI. Several DTI metrics, 
and combinations thereof, have demonstrated significant 
correlations with clinical function in both animal mod-
els and humans. The applications of this tool encompass 
the spectrum of clinical and functional assessment in SCI 
including diagnosis, prognosis, recovery, and efficacy 
of treatments in both the spinal cord and potentially the 
brain. However, DTI carries several limitations that have 
prevented its transition beyond research into clinical prac-
tice. Further studies are needed to significantly improve 
and resolve these limitations as well as create standard, 
time-specific changes in DTI metrics that will be required 
for accurate and reliable use of DTI in the clinical setting. 
This review is limited by the absence of randomized con-
trolled human trials and reliance on data from animal and 
class II–IV human studies.
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