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Synopsis

Many densely packed suspensions and colloids exhibit a behavior known as Discontinuous Shear

Thickening in which the shear stress jumps dramatically and reversibly as the shear rate is increased.

We performed rheometry and video microscopy measurements on a variety of suspensions to

determine the mechanism for this behavior. We distinguish Discontinuous Shear Thickening from

inertial effects by showing that the latter are characterized by a Reynolds number but are only found

for lower packing fractions and higher shear rates than the former. Shear profiles and normal stress

measurements indicate that, in the shear thickening regime, stresses are transmitted through frictional

rather than viscous interactions. We come to the surprising conclusion that for concentrated

suspensions such as cornstarch in water which exhibit the phenomenon of Discontinuous Shear

Thickening, the local constitutive relation between stress and shear rate is not necessarily shear

thickening. If the suspended particles are heavy enough to settle, we find the onset stress of shear

thickening smin corresponds to a hydrostatic pressure from the weight of the particle packing where

neighboring particles begin to shear relative to each other. Above smin, dilation is seen to cause

particles to penetrate the liquid–air interface of the sheared sample. The upper stress boundary smax

of the shear thickening regime is shown to roughly match the ratio of surface tension divided by a

radius of curvature on the order of the particle size. These results suggest a new model in which the

increased dissipation in the shear thickening regime comes from frictional stresses that emerge as

dilation is frustrated by a confining stress from surface tension at the liquid–air interface. We

generalize this shear thickening mechanism to other sources of a confining stress by showing that,

when instead the suspensions are confined by solid walls and have no liquid–air interface, smax is set

by the stiffness of the most compliant boundary which frustrates dilation. All of this rheology can be

described by a nonlocal constitutive relation in which the local relation between stress and shear rate

is shear thinning, but where the stress increase comes from a normal stress term which depends on

the global dilation.VC 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4709423]

I. INTRODUCTION

Shear thickening is a category of non-Newtonian fluid behavior in which the viscosity

g ¼ s= _c increases as a function of shear rate _c or shear stress s over some parameter range.

A particularly dramatic manifestation characterized by a sharp jump in stress

with increasing shear rate, often called Discontinuous Shear Thickening [Metzner and
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Whitlock (1958); Hoffman (1972); Barnes (1989); Maranzano and Wagner (2001a)], occurs

in many densely packed suspensions and colloids such as cornstarch in water. These suspen-

sions feel like a thin liquid at low stresses, but become very thick and can even crack like a

solid at higher stresses, and become thin again when the stress is removed. Such materials

are of practical interest for their properties as dampeners and shock absorbers [Lee et al.

(2003); Shenoy et al. (2003); Jolly and Bender (2006)]. While some milder types of shear

thickening can be explained as viscous [Brady and Bossis (1985); Wagner and Brady

(2009); Cheng et al. (2011)] or inertial [Bagnold (1954)] effects, prior approaches have not

been very successful at describing the dramatic effects of Discontinuous Shear Thickening.

Our goal with this paper is to use observations to develop and test a model for Discontinu-

ous Shear Thickening. This problem can be broken down into several questions: under what

conditions will a suspension exhibit Discontinuous Shear Thickening?, what are the scaling

laws that determine the parameter range of shear thickening?, and what is the form of the

constitutive law? We will use a wide variety of rheometry and video microscopy measure-

ments to answer the above questions. Our approach differs from previous work in that we

consider a granular point of view in addition to the traditional hydrodynamic approach by

investigating the source of observed stresses during Discontinuous Shear Thickening, rather

than focusing only on the viscous contribution to the local constitutive relation.

The remainder of this paper is organized as follows. In Sec. II, we review the literature

on shear thickening to characterize Discontinuous Shear Thickening and summarize the

existing models. In Sec. III, we describe the rheometry techniques and suspensions used in

our experiments. In Sec. IV, we show viscosity curves for shear thickening suspensions at

different packing fractions and liquid viscosities. With this, we can test inertial hydrody-

namic scalings which we find to apply in a different parameter regime than Discontinuous

Shear Thickening. In Sec. V, we show measurements of the onset stress smin of shear thick-

ening for different particle sizes and liquid densities and show that for settling suspensions,

the onset of shear thickening occurs when the shear stress becomes large enough to initiate

relative shear between particles, balancing against a gravitational pressure. In Sec. VI, we

show shear profile measurements with different levels of density matching and demonstrate

that the large stress jump that characterizes Discontinuous Shear Thickening is not directly

affected by the local shear rate or gravity-induced inhomogeneities. In Sec. VII, we show

shear and normal stress measurements with different boundary conditions. We show that

the shear stress is coupled to the normal stress as in a frictional constitutive relation, rather

than viscous, and that the rheology is controlled by the normal stress boundary condition.

Combining this with the shear profile measurements, we come to the surprising conclusion

that for concentrated suspensions such as cornstarch in water which exhibit the phenom-

enon of Discontinuous Shear Thickening, the local constitutive relation between stress and

shear rate is not necessarily shear thickening. In Sec. VIII, we show images and movies of a

visible change of the suspension-air boundary as particles penetrate the liquid–air interface

in response to dilation of the granular packing under shear, which coincides with the shear

thickening regime. In Sec. IX, we propose that this change in boundary condition due to di-

lation results in a confining stress from surface tension at the liquid–air interface, providing

the normal stress boundary condition required for the stress jump that characterizes Discon-

tinuous Shear Thickening. We then show that comparisons of the measured stress and

dilation are consistent with this model, and that the confining stress scale from surface ten-

sion agrees with measurements of the maximum stress in the shear thickening regime smax

for a wide variety of suspensions. In Sec. X, we generalize this result to other sources of

confining stress with measurements from a rheometer with solid walls instead of a liquid–-

air interface at the boundary and show that smax is generally set by the stiffness of the

boundary. Finally, in Sec. XI, we discuss a generalization of the stress scales that bound the
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shear thickening regime to parameter regimes where other forces are relevant, the general

constitutive relation, connections to the physics of other types of materials, and summarize

the conditions for the occurrence of Discontinuous Shear Thickening.

II. BACKGROUND

Because of the vast amounts of literature referring to different phenomena and mecha-

nisms which all fall under the category of shear thickening, we first carefully define what

we mean by Discontinuous Shear Thickening. We will suggest based on a literature review

that hydrodynamic models which have been successful for describing other types of shear

thickening have been insufficient for describing Discontinuous Shear Thickening. Rather,

there is significant evidence suggesting that dilation and normal forces play an important

role which leads us to look for sources of stress similar to those in granular systems.

Discontinuous Shear Thickening [Metzner and Whitlock (1958); Hoffman (1972, 1974,

1982); Barnes (1989); Boersma et al. (1990); Laun (1994); Frith et al. (1996); Bender and

Wagner (1996); O’Brien and Mackay (2000); Maranzano and Wagner 2001a, 2001b,

2002); Bertrand et al. (2002); Lootens et al. (2003, 2005); Egres and Wagner (2005); She-

noy and Wagner (2005); Egres et al. (2006); Lee and Wagner (2006); Fall et al. (2008);

Brown and Jaeger (2009); Brown et al. (2010a, 2010b)] can be characterized by a set of

properties, which are observed to be similar in both dense suspensions and colloids. Thus,

we find it convenient to define the phenomenon of Discontinuous Shear Thickening based

on these properties and to distinguish it from other types of shear thickening:

(1) Stress scales: The boundaries of the shear thickening regime are simply described in

terms of stress scales (rather than shear rate) which are mostly independent of pack-

ing fraction [Maranzano and Wagner (2001a); Shenoy and Wagner (2005); Brown

and Jaeger (2009)] and liquid viscosity [Boersma et al. (1990); Frith et al. (1996)].

Consequently, the onset shear rate varies with packing fraction and liquid viscosity

since suspension viscosities increase with both parameters [Brady and Bossis

(1985)]. Shear thinning or Newtonian behavior is found at stresses below the onset

of shear thickening at a stress smin. There is an upper bound of the shear thickening

regime at a stress smax, and shear thinning is usually found at higher stresses.

(2) Diverging slope: The term “Discontinuous” refers to the apparent discontinuous jump

in the stress sð _cÞ by orders of magnitude in the shear thickening regime. This jump is

only observed at very high particle packing fractions / (around 0.5 for nearly spherical

particles). The slope of sð _cÞ is only very steep over a small range in packing fraction

(a few percent), lessening significantly at lower packing fractions [Maranzano and

Wagner (2001a); Egres and Wagner (2005); Brown and Jaeger (2009)]. The packing

fraction dependence of the slope of sð _cÞ can be characterized as a power law diverging

at a packing fraction /c [Brown and Jaeger (2009)]. For / > /c, the system is jammed

meaning, it will not flow for applied stresses below a nonzero yield stress of scale sj.

(3) Reversibility: The Discontinuous Shear Thickening described above is reversible,

meaning viscosity curves are similar whether they are measured with increasing or

decreasing stress histories. Some examples of dramatic shear thickening have been

found to be irreversible because of chemical-attraction-induced aggregation [Osuji

et al. (2008); Larsen et al. (2010)] or occur only in transient behavior [Fall et al.

(2010)] and will not be considered here as they may be different phenomena.

Because the above features of Discontinuous Shear Thickening are similar in both the

suspension and colloid regimes, we refer to data in both regimes even though the domi-

nant forces may be different.
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To facilitate an understanding of Discontinuous Shear Thickening, it may be useful up

front to appreciate a disconnect between local and global viewpoints of rheology. Standard

rheology experiments measure a global mechanical response based on the drag force

required to move two solid surfaces at some speed relative to each other with a fluid in

between. This is in contrast to the hydrodynamic theory of rheology which is based on

continuum equations consisting of local constitutive relations between shear stress and

shear rate. One of the surprising results presented in this paper is that the global and local

viewpoints of rheology lead to drastically different stress vs shear rate relations in the Dis-

continuously Shear Thickening suspensions being investigated. Historically, Discontinu-

ous Shear Thickening has been reported in experiments based on measurements of the

global mechanical response. We will show in Sec. VI that the constitutive relation based

only on the local shear rate can actually be shear thinning instead of shear thickening for

these suspensions. To resolve this apparent contradiction, in Sec. VII, we will show that

most of the shear stress is due to frictional interactions which depend on the normal stress

and can be controlled by the boundary conditions rather than the local shear rate. Because

the two standard viewpoints disagree on whether these dense suspensions are shear thick-

ening or shear thinning, there will be some difficulty with terminology. We chose to con-

tinue using the terminology of Discontinuous Shear Thickening to keep the connection to

the previous literature, where the term is used extensively for similar experimental results.

We have chosen to capitalize “Discontinuous Shear Thickening” to refer to it as a name

for a phenomenon rather than a local description, since from the local viewpoint, it would

not qualify as shear thickening. Toward our goal of understanding Discontinuous Shear

Thickening, our approach is to investigate all sources of the measured stresses rather than

just the hydrodynamic contribution to local constitutive relations.

In contrast to the Discontinuous Shear Thickening described above, there are other types

of shear thickening with different characteristics that have been modeled in hydrodynamic

terms. In the hydrocluster model, shear thickening occurs when an increasing shear rate leads

to particle clustering and consequently increasing viscous stresses [Brady and Bossis (1985);

Wagner and Brady (2009)]. The shear thickening found in this model is relatively very weak

in the sense that the viscosity increases by only a few percent per decade of shear rate [Brady

and Bossis (1985); Melrose and Ball (2004a). Inertial effects can also result in shear thicken-

ing, described in terms of either a Reynolds number or Bagnold number, in which inertial

stresses can be characterized by sð _cÞ / _c2 in the limit of high shear rate [Bagnold (1954)]. In

each of these cases, the onset of shear thickening is characterized by a shear rate, in contrast

to an onset stress for Discontinuous Shear Thickening. Because of the less steep sð _cÞ, such
shear thickening is often called Continuous Shear Thickening. Continuous Shear Thickening

can be observed even at very low packing fractions and has a much weaker packing fraction

dependence than Discontinuous Shear Thickening. In Sec. IV, we will show an example of

inertial shear thickening and characterize the parameter regime where it occurs in so we can

clearly separate Discontinuous Shear Thickening from inertial stresses.

Because of the qualitative differences between Discontinuous and Continuous Shear

Thickening, we suspect that they are different phenomena with different mechanisms and

focus here only on Discontinuous Shear Thickening1. For this reason, we will not assume

1In some of the literature, suspensions and colloids which exhibit discontinuous shear thickening at high packing

fractions are said to exhibit continuous shear thickening at lower packing fractions because the slope of stress

vs shear rate is lower. However, there is usually no qualitative change in behavior or identifiable transition in

scaling when the packing fraction is varied. Thus we do not follow this convention because it does not suggest

different phenomena and still refer to such systems as exhibiting Discontinuous Shear Thickening.
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that results that apply to Continuous Shear Thickening also apply to Discontinuous Shear

Thickening. This is a different approach from much of the literature which has attempted

to apply the hydrocluster model to both Continuous and Discontinuous Shear Thickening

[Brady and Bossis (1985); O’Brien and Mackay (2000); Maranzano and Wagner

(2001a); Gopalakrishnan and Zukoski (2004); Osuji et al. (2008); Wagner and Brady

(2009)]. The idea with the earlier approach has been to start with the hydrodynamic mod-

els of Continuous Shear Thickening which are well-understood at low packing fractions

[Bergenholtz et al. (2002)] and extend them to higher packing fractions. The expectation

is that at higher packing fractions, hydrodynamically induced clusters of particles form in

which nearby particles act transiently as a solid cluster when they get so close to each

other that the lubrication drag force between them blows up [Brady and Bossis (1985);

Farr et al. (1997)]. While this mechanism seems plausible, so far the calculations have

failed to reproduce steep viscosity curves comparable to experimental measurements of

Discontinuous Shear Thickening.

The major success of the hydrocluster model for Discontinuous Shear Thickening is the

calculation of the stress at the onset of shear thickening smin. In early models for Brownian

motion dominated colloids, the onset was described by a critical Peclet number

Pe ¼ 6pg _ca3=kT for a particle size a and thermal energy kT. Shear thickening was

expected to occur for Pe � 1 as the shear stress overcomes thermal diffusion of the par-

ticles [Brady and Bossis (1985); Melrose and Ball (2004a)]. However, observations found

the onset of shear thickening to be determined by the same stress at different packing frac-

tions rather than the same shear rate. This model, when using the suspension viscosity to

convert to a stress scale smin ¼ g _c ¼ kT=6pa3, has been successful at calculating the onset
of both Continuous and Discontinuous Shear Thickening in Brownian colloids [Gopalak-

rishnan and Zukoski (2004); Maranzano and Wagner (2001b)]. For colloids where electro-

static repulsions from a zeta potential f are dominant, the above model had to be modified

[Maranzano and Wagner (2001a)]. In that case, the particular scaling found corresponds to

a stress smin � �f2=a2 for permittivity � which characterizes the electrostatic interactions

between neighboring particles.2 In each regime, the modifications to the hydrodynamic

model required to fit it to the data resulted in completely eliminating any dependence on

hydrodynamic parameters such as viscosity or shear rate. The resulting onset stress scale

is not restricted to hydrodynamic mechanisms, as any type of force transferred through a

continuum system can be expressed in terms of a stress. Not surprisingly, with several rel-

evant forces in colloids and suspensions, each of which could be dominant in different

cases, a variety of different scalings for the onset stress have been found. Depending on

the parameter range, this dominant force could be Brownian motion [Bergenholtz et al.

(2002); Gopalakrishnan and Zukoski (2004)], zeta potential [Maranzano and Wagner

(2001a)], induced dipole attractions [Brown et al. (2010a)], or steric repulsion [Hoffman

(1998)]. Notably, in each case, hydrodynamic terms such as shear rate and viscosity were

found to be absent from the modified scalings required to match the experiments. This

suggests inertia or hydrodynamics-based models are not necessary to determine the onset

of Discontinuous Shear Thickening as initially envisioned by the hydrocluster model.

Another observation that the hydrodynamic models require modification to describe is

the upper stress boundary of the shear thickening regime smax, since for inertial effects,

2While the forces were calculated using a hydrodynamic model with particles interacting by a lubrication force,

the hydrodynamic terms cancel up to a dimensionless coefficient of order 1. Since the model was an order-of-

magnitude calculation, it would have resulted in just as good a fit with the data if the interaction forces were

calculated for a different particle separation distance or with a different mediating mechanism.
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the viscosity increases monotonically with shear rate. It has been suggested that this

could be fixed by accounting for the finite stiffness of particles [Kalman et al. (2009)],

but again this introduces a stress scale that is not necessarily hydrodynamic in origin. We

will address the issue of the upper stress bound smax in Sec. IX.

We could simply approach the problem as a modification of hydrocluster models as

many others have done [Maranzano and Wagner (2001a); O’Brien and Mackay (2000);

Gopalakrishnan and Zukoski (2004); Osuji et al. (2008)]. Instead, here, we focus on the

scaling laws for the stress scales smin and smax to gain insight into the relevant physical

mechanisms and come up with a description that encompasses all of these scalings with-

out the need to refer to a hydrodynamic model. A major advantage of this approach is

that different interactions such as interparticle forces, gravity, and surface tension can be

simply expressed in terms of stress scales, which can be compared to the measured

stresses without the need to reference a base model. Another good reason to try to under-

stand Discontinuous Shear Thickening without reference to hydrodynamic models is that

some features of the rheology suggest a granular rather than hydrodynamic mechanism.

While a granular point of view is not necessarily the only way to understand the phenom-

enon, it will allow us to easily interpret many features.

Granular materials can have properties of solids, liquids, or gases under different con-

ditions [Jaeger et al. (1996)]. For example, randomly packed particles at high enough

packing fractions cannot shear or compress without deforming particles because geomet-

ric constraints force them to be in contact, so they have a yield stress like a solid. At

lower packing fraction, the particles are able to move around each other freely in a

liquid-like state. The transition between these two regimes is sharp and is known as the

jamming transition [Liu and Nagel (1998); O’Hern et al. (2003)]. For shear thickening

suspensions, the divergence of the slope of sð _cÞ at a critical packing fraction /c was

found to correspond to the jamming transition [Brown and Jaeger (2009)].

Forces tend to be transmitted through jammed granular packings along concentrated

paths called force chains [Cates et al. (1998)] such that the distribution of forces is char-

acterized by an exponential tail [Mueth et al. (1998); Majmudar and Behringer (2005);

Corwin et al. (2005)]. Simulations of shear thickening colloids have similarly found con-

tact networks between particles with an exponential distribution of forces under shear

[Melrose and Ball (2004b)].

A feature of granular shear flows with special relevance to shear thickening is dilation

[Reynolds (1885); Onoda and Liniger (1990)]. When a granular packing is sheared, the

particles have to move around each other so the packing dilates, taking up more volume

than it does at rest. It has long been known that dilation occurs along with Discontinuos

Shear Thickening [see Metzner and Whitlock (1958) and references therein]. In fact, in

some of the literature “dilatancy” has been used as a synonym for shear thickening

[Barnes (1989)]. Especially important in understanding this relationship was the paper by

Metzner and Whitlock. They showed that for suspensions of 0.2–1 lm TiO2 particles, di-

lation initiated at stresses close to the onset of shear thickening for a range of packing

fractions. However, they found suspensions of 28–100 lm glass spheres in sucrose solu-

tions dilated but did not shear thicken, showing that dilation was not always equivalent to

shear thickening. For 40þ years following this result, many of the major papers on shear

thickening dropped the focus on dilation as a mechanism in favor of viscous mechanisms

[Hoffman (1982); Brady and Bossis (1985); Maranzano and Wagner (2001a)].

However, there is another possible interpretation of the data presented by Metzner and

Whitlock (1958). They confirmed for several suspensions that the onset of shear thicken-

ing coincided with dilation, as had been seen in many previous results [see Metzner and

Whitlock (1958)]. Taken together with the observation of dilation in the absence of shear
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thickening, this inductively suggests that dilation is necessary but not sufficient for Dis-

continuous Shear Thickening. More recent results have shown that shear thickening can

be hidden by a yield stress or other shear thinning effect [Brown et al. (2010a)]. Specifi-

cally, Metzner and Whitlock used glass beads ranging from 28 to 100 lm in diameter in

a Couette geometry, and such large, heavy particles will jam in a Couette cell because

they settle under gravity, resulting in a yield stress [Fall et al. (2009)]. This can explain

why shear thickening was not observed for the settling particles used by Metzner and

Whitlock. It has only been in the last 10 years that dilation has become prominent again

in the shear thickening literature [O’Brien and Mackay (2000); Lootens et al. (2003,

2005); Fall et al. (2008)]. However, a mechanism by which dilation leads to the dramatic

increase in stress in Discontinuous Shear Thickening has yet to be explained. This is the

subject of Secs. VIII–X.

When dilation of granular shear flows is prevented by confinement, shear is instead

accompanied by normal forces against the walls [Reynolds (1885); Onoda and Liniger

(1990)]. Dilation of packings against boundaries can play a dominant role in the mechan-

ics of granular systems where confining pressures from the boundary are transmitted

through the material [Lambe and Whitman (1969)]. In Discontinuous Shear Thickening

suspensions, normal forces are usually found to be positive, meaning the sample is push-

ing against the rheometer plate as expected for dilation [Jomha and Reynolds (1993);

Lootens et al. (2003, 2005); Fall et al. (2008); Brown et al. (2010b)]. It was proposed by

Fall et al. (2008) that shear thickening cannot occur if the normal stress is taken away.

We will test this in Sec. VII.

III. MATERIALS AND METHODS

A. Suspensions

We studied a wide variety of suspensions with different particle sizes and shapes, liq-

uid viscosities, and density differences among other properties to investigate the mecha-

nism for Discontinuous Shear Thickening. We use this variety as a way to determine

which features are common to all of the suspensions that exhibit Discontinuous Shear

Thickening.

As a prototypical shear thickener, we used cornstarch obtained from Argo. Cornstarch

particles have a mean diameter of 14 lm and density of 1.59 g/ml based on buoyancy in

CsCl solutions. They are very hydrophilic and hard—with a compression modulus on the

order of 1010 Pa—at room temperature. At higher temperatures, the polymers that com-

pose cornstarch particles can gel. To compare suspensions with different liquid viscos-

ities, we suspended cornstarch in either a mixture of 61.5% water and 38.5% CsCl by

weight with a viscosity of 1 mPa s and density of 1.41 g/ml or a mixture of 73.5% glyc-

erol, 13.0% water, and 13.5% CsCl by weight with a viscosity of 80 mPa s and density of

1.34 g/ml. For such small particles, the settling time is several hours even without density

matching.

For a series of suspensions in which we varied particle size we used soda-lime glass

spheres with a density of 2.46 g/ml. We obtained particles with nominal diameter ranges

of 3–10 lm, 10–25 lm, and 15–40 lm from Corpuscular, 45–63 lm, 75–104 lm

(referred to as 100 lm), 177–250 lm, and 400–595 lm from MoSci (Class IV), and

1120–1350 lm and 1900–2100 lm. For polydisperse suspensions, measurements of smin

could be collapsed onto the same curve as monodisperse suspensions [Maranzano and

Wagner (2001a)], suggesting that polydispersity does not need to be accounted for, so we

will compare particle distributions only by their mean diameter. The glass spheres were
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dispersed in various liquids, including water or mineral oil with a viscosity of 58 mPa s

and density of 0.87 g/ml.

For visualization purposes, we used two types of opaque particles. The first, referred

to as ZrO2, were spheres obtained from Glen Mills consisting of 69% ZrO2 and 31%

SiO2. They have a nominal diameter range of 100–200 lm and a density of 3.8 g/ml.

These particles were dispersed in the same mineral oil used for the glass particles. For

experiments with density matched suspensions, we used polyethylene spheres obtained

from Cospheric. These particles have a nominal diameter range of 125–150 lm and den-

sity of 1.01 g/ml. They were dispersed in silicone oil AR 20 with a nominal density of

1.01 g/ml and viscosity of 20 mPa s. When varying the temperature of the suspension, we

found that the settling time was minimized at 19 �C from which we estimated a density

difference of order 10�4 g=ml.

We also include some summary data for particles fabricated into different shapes from

polyethylene glycol (PEG) suspended in liquid PEG-250 from Brown et al. (2011), and

100 lm spheres made of polystyrene dimethyl ether suspended in PEG.

B. Tools

Measurements were performed with an Anton Paar Physica MCR 301 rheometer

which measures the torque T required to shear a sample at a tool angular rotation rate x.

Most measurements were done in a parallel plate setup where normal forces could be

measured. This geometry is shown in Fig. 1(a) and characterized by the plate radius

R ¼ 12:5 or 25 mm and gap size d between the plates. A few measurements were done

with a cylindrical cup-and-bob (Couette) geometry in which the environment is better

controlled. The tool surfaces are smooth stainless steel. The viscosity, indicating the me-

chanical resistance to shear, is defined as g � s= _c in a steady state. For the parallel plate

setup, for example, we represent the global shear stress by

s ¼ 2T

pR3
(1)

and shear rate by

_c ¼ Rx

d
: (2)

FIG. 1. (a) A standard parallel plate rheometer setup. The suspension is confined between the plates by the sur-

face tension of the suspending liquid. (b) A modified parallel plate setup with solid walls around the sample. In

this setup, the use of a suspending liquid is optional, and the wall stiffness can be modified by inserting layers of

different stiffness between the suspension and plate.
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Equations (1) and (2) correspond to the local values at the outer radius of the plate in

the case of a Newtonian shear profile. Since the dramatic feature of Discontinuous Shear

Thickening is the increase in stresses under shear, the reported global shear stress and

shear rate values are meant to characterize this response, in which the viscosity is a mea-

sure of mechanical energy dissipation rather than a local constitutive relation between

shear stress and shear rate. We will show in Sec. VI that the local and global constitutive

relations are quite different for Discontinuous Shear Thickening suspensions. The globally

averaged stress is still appropriate to characterize forces in a way that is independent of

system size so that measurements can be compared to the scale of forces associated with

different physical mechanisms. Since most of the suspensions used are not density

matched and non-Brownian, they can be very inhomogeneous. In this case, the given stress

and shear rate relations may overestimate the average values by as much as 25% depend-

ing on the inhomogenieties. Since the formalism of local hydrodynamic constitutive rela-

tions and normal stress differences assumes homogeniety, we will not assume it applies,

and instead base our interpretations on the gross mechanical response.

In the parallel plate measurements, the upward force on the rheometer tool is meas-

ured and the mean normal stress sN is obtained by dividing this normal force by the plate

cross-sectional area. The standard deviation of the force measured during a static mea-

surement over 10 s intervals with or without sample is 6� 10�4 N, giving an uncertainty

of 0.3 Pa (1.2 Pa) for a 50 mm (25 mm) diameter plate within a single measurement run.

The standard deviation of the average force measured after calibration with no sample is

4� 10�3 N, giving an uncertainty of 2 Pa (8 Pa) for a 50 mm (25 mm) diameter plate

when comparing different runs. The resolution of the shear stress is much better, with an

absolute uncertainty less than 0.001 Pa (0.01) Pa for a 50 mm (25 mm) plate.

The Anton Paar MCR 301 rheometer has special settings for normal force control meas-

urements. Our reported measurements were done with the value of “normal force hys-

teresis” set to 0.001 N. This value controls how much the normal force can deviate from

the set value before the plate moves in response, although in practice, the plate tends not to

move until the normal force deviation exceeds about 0.01 N (20 Pa for the 25 mm plate).

The “normal force dynamics” value was set to 0% (default). This value controls the accel-

eration of the gap size in the feedback loop. Under this setting, the gap responds slowly to

variations in the normal force and produces the most reproducible steady state gap sizes.

The typical parallel plate setup is shown in Fig. 1(a), in which the suspension is held in

place between the parallel plates by surface tension at the liquid–air interface around the

side. Because we saw that particles could penetrate the liquid–air interface (see Sec. VIII)

which we suspected could modify the stresses on the suspension from the interfacial ten-

sion, we desired a different boundary condition with a hard wall for some experiments. To

accomplish this, we machined an aluminum cylindrical cup with inner diameter 25.5 mm

as shown in Fig. 1(b). The cup fits around the tool with a gap small enough to prevent 500

lm diameter particles from slipping through but large enough to allow the tool to rotate

without friction. This cup confined the particles to the volume beneath the plate, while the

liquid could be filled to a higher level or omitted altogether so there was no liquid–air

interface for particles to penetrate. The plates were covered with sandpaper sheets with a

grit size of 100 lm to avoid slip with dry grains. In some cases, we inserted a soft layer in

between the top plate and the sandpaper to modify the compliance of the wall.

C. Measurement procedure

Packing fractions / were calculated as the volume of solid particles over the total vol-

ume of particles plus liquid mixed together. The packing density in terms of the inverse
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of the available free volume per particle may decrease slightly during measurements as

the grain packing dilates. Above the jamming transition, this packing density may also be

less than the measured packing fraction if air bubbles become trapped in the interior. Hu-

midity also has a large effect on the amount of water adsorbed onto dry grains open to

the atmosphere, especially cornstarch which is so hygroscopic that 10–20% of the weight

of the “dry” powder is from water. Comparison of density measurement techniques sug-

gest that cornstarch is porous or that it may absorb CsCl, thus we report mass fractions

/m for cornstarch rather than volumetric packing fractions.

Measurements were made with the rheometer’s bottom plate temperature controlled at

20 �C. The room humidity ranged from 22% to 38%, although during individual experi-

ments the humidity was constant. To minimize evaporation or adsorption of water from

the atmosphere to the suspension during measurements, we used a solvent trap when the

suspending liquid was water, which enclosed the sample and a small amount of air

around it by an extra layer of liquid. The enclosed air equilibrated with the sample to pre-

vent further changes to the suspension.

The gap size d for parallel plate measurements was usually about 1 mm, large enough

to avoid finite-size effects on the viscosity for particles around 100 lm in diameter [Brown

et al. (2010b)]. We measured bulk shear thickening with both rough and smooth plates

and did not find any difference in the shear thickening due to the plate surface. To directly

measure slip, we used video microscopy to observe the shear profile at the outer edge of

the plate. The results of these measurements are shown in Sec. VI. We visually confirmed

for all reported measurements that the suspensions do not spill. Spillage was often the lim-

iting factor in the maximum stress or shear rate applied for our measurements.

Suspensions were first presheared immediately before measurements for at least 100 s

at shear rates above the shear thickening regime where the steady state flow is fully mobi-

lized, then viscosity curves were measured by ramping the control parameter (shear stress

or rate) down and then up to obtain hysteresis loops. To ensure that we obtain steady state

viscosity curves, the measurement ramp should be long enough that the size of the hyster-

esis loop is equal to that of the infinite duration limit. To check this, we show data in

Fig. 2 for a sample of 100 lm glass spheres in mineral oil at / ¼ 0:56, which is a stable

sample over long time periods because the oil does not evaporate. Viscosity curves

shown were taken first with a decreasing stress ramp followed by an increasing stress

ramp for several different ramp durations. Since the control is a logarithmic ramp in

FIG. 2. (a) Apparent viscosity vs stress for 100 lm glass spheres in mineral oil taken with different measure-

ment durations to show hysteresis loops. Open symbols: measurement duration of 40 s per decade of the stress

ramp. Solid symbols: 500 s per decade. Up-pointing triangles correspond to increasing stress ramps, while

down-pointing triangles correspond to decreasing stress ramps. (b) Characterization of the hysteresis as the geo-

metric mean of the viscosity ratio between the decreasing and increasing ramps of the hysteresis loop, plotted

for different ramp durations per decade of stress. Dashed line: a ratio of 1 between increasing and decreasing

ramps corresponding to no hysteresis. Dotted line: ramp rate used for later steady state measurements.
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stress over four decades, the measurement duration is specified in terms of duration per

decade of stress. The hysteresis effect is characterized by the average distance between

the upper and lower branches of the hysteresis loop in gðsÞ on a log–log scale. This is cal-
culated equivalently as the geometric mean of viscosity ratio hg�ðsÞ=gþðsÞ�ig where g�
and gþ are viscosities for decreasing and increasing stress ramps, respectively, and h:::ig
indicates a geometric mean, i.e., averaged on a log–log scale. This average was done

over the stress range of 0.1–8 Pa in the shear thickening regime. The hysteresis initially

decreases with increasing measurement duration, then levels off for long measurements

indicating a steady state limit. The initial duration-dependent behavior is characteristic of

a transient relaxation, and the crossover between the regimes indicates a characteristic

timescale for the sample to reach steady state. The leveling off of the viscosity ratio at a

value of 1 suggests that in this case, there is not a true hysteresis effect. At packing frac-

tions very close to the jamming transition, we sometimes find some nonzero hysteresis

loop even for very long measurements, such that different steady states can be reached

dependent on the shear history. The steady state viscosity curves we report are generally

in the long-duration regime where the viscosity ratio has leveled off; for this sample, we

use a control ramp rate of 500 s per decade of stress. For each steady state measurement,

we ramped the control parameter down and then up at least once, and in some cases up to

five times, but we show only one set of curves for brevity if they were all identical within

typical variations of 10–20% from run to run.

IV. INERTIAL SCALINGS

In this section, we show some examples of viscosity curves for suspensions at differ-

ent packing fractions. While there are already many examples of the packing fraction de-

pendence, here we vary the liquid viscosity and the packing fraction from near the

jamming transition all the way down to zero to compare to hydrodynamic scalings that

apply to suspensions at low concentrations.

We first show measurements of cornstarch suspended in water. These measurements

were made with the Couette geometry. Viscosity is plotted vs shear stress for several

packing fractions in Fig. 3(a). Apparent shear thickening is seen as regions with a posi-

tive slope of the viscosity curve for all packing fractions, including /m ¼ 0 which is pure

water. For pure liquids, this behavior can be quantified in terms of a dimensionless Reyn-

olds number, which represents a ratio of inertial to viscous stresses. This Reynolds num-

ber is usually of the form qld
2 _c=gl for pure liquids, where ql and gl are the density and

dynamic viscosity of the liquid, respectively. Thus, for the pure liquid, the transition

FIG. 3. (a) Viscosity vs stress for suspensions of cornstarch in water. Mass fractions /m are shown in the key;

higher curves correspond to larger /m and /c ¼ 0:56. The solid line corresponds to a constant shear rate. (b) A

rescaling of the data as s=gm _c vs Reynolds number Re ¼ ql _cd
2=gm which should result in a data collapse for

hydrodynamic flows. The line corresponds to a scaling s � _c3=2 in the range 100. Re. 3000.
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from a viscous-dominated regime with a nearly constant viscosity to an inertia-

dominated regime with apparent shear thickening occurs at a fixed shear rate. However,

we find that the sharp transition does not occur at the same shear rate for different pack-

ing fractions; specifically for low packing fractions, the onset shear rate increases with

packing fraction. The contribution of viscous stresses to the viscosity of dense suspen-

sions is much higher than that of the pure liquid [Brady and Bossis (1985)], so the vis-

cous term in the denominator of the Reynolds number should be modified for

suspensions. For the contribution of viscous stresses to suspension viscosity, we do not

take the zero shear rate limit of the viscosity since in this limit suspensions rheology can

be dominated by nonviscous particle interactions which result in shear thinning at low

shear rates [Barnes (1989); Maranzano and Wagner (2001a); Brown et al. (2010a)].

Rather, we take as our best estimate the minimum suspension viscosity gm which occurs

at the onset of shear thickening for each packing fraction. Our suspension Reynolds num-

ber is then Re ¼ ql _cd
2=gm.

In Fig. 3(b), we plot the shear stress normalized by gm _c (corresponding to the viscous

contribution to the stress) vs suspension Reynolds number Re. With this nondimensional-

ization, data for any Newtonian fluid should collapse onto the same curve, which is

nearly flat at low Re in the viscous regime and transitions to a more positive slope at

higher Re due to inertial effects. We find that the lower mass fractions /m . 0:4 indeed

collapse onto a single curve. The very mild increase in effective viscosity for

1 . Re . 100 is typical of hydrodynamic flows in this range of Re where viscous

stresses are dominant but inertial effects start to become measurable [Schlichting (1960);

Kulkarni and Morris (2008)]. The approximate scaling s � _c3=2 for 100 . Re . 3000 as

inertia becomes stronger is also typical of hydrodynamic flows [Donnelly and Simon

(1960)]. The asymptotic scaling s � q _c2d2 expected in the fully inertial regime is usually

not found until Re & 103 [Schlichting (1960)]. The data collapse and scaling for

/m . 0:4 suggests that in this regime, the suspension behaves like a Newtonian fluid. In

contrast, for /m & 0:4, the normalized viscosity curves deviate significantly from this

collapse and scaling, increasing more steeply than inertial or viscous stresses are expected

to be able to grow, and the steep shear thickening onsets at much lower values of Re. The

onset of shear thickening occurs at lower shear rates for larger /, instead of the higher shear

rates which would be required before inertial stresses dominate over viscous stresses.3

Instead, the onset appears to be set by a constant stress scale for /m & 0:4 as seen in

Fig. 3(a). This suggests that inertial stresses are relatively small in this regime where shear

thickening becomes more dramatic. This does not necessarily imply that viscous forces are

dominant in the system, rather the lack of data collapse by the hydrodynamic nondimension-

alization for/m & 0:4 in Fig. 3 suggests that other stresses must be involved.

The scaling seen in Fig. 3 suggests two competing mechanisms for different types of

shear thickening—inertial and Discontinuous—such that only the stronger effect is

observed in a single viscosity curve. To obtain a system where the Reynolds number

remains low in the Discontinuous Shear Thickening stress range even at low packing

fractions, a liquid of higher viscosity can be used. Accordingly, we suspended cornstarch

in a glycerol–water mixture with a viscosity 80 times that of water. The viscosity curves

3For /m & 0:4, gm is likely an overestimate of the viscous contribution to viscosity as the non-Newtonian terms

become larger near the jamming transition and gm likely represents a cross-over between the shear thinning and

shear thickening effects [Brown et al. (2010a)] Regardless, since the viscous contribution to the viscosity

increases while the onset shear rate decreases with packing fraction, the onset Reynolds number still becomes

very low at high packing fractions.

886 E. BROWN and H. M. JAEGER



vs stress for different packing fractions can be seen in Fig. 4. Comparing with the data

for cornstarch in water in Fig. 3(a), we can see that there is similar strong shear thicken-

ing at high packing fractions, but no apparent shear thickening at low packing fractions.

At the same stress, the Reynolds number is lower by about a factor of the ratio of the vis-

cosities squared (	 600) for the suspension with glycerol, thus Re < 100 and inertial

effects remain negligible in the stress range of Discontinuous Shear Thickening even in

the limit of zero packing fraction. We can see the remaining shear thickening uncontami-

nated by inertial effects is now very weak at /m ¼ 0:40, and is almost imperceptible at

/m ¼ 0:30. This is a typical example of Discontinuous Shear Thickening, in which the

region with positive slope of gðsÞ occurs in a stress range that is nearly independent of

packing fraction. This slope increases with packing fraction, approaching g � s (solid

line in Fig. 4) corresponding to a discontinuous stress/shear-rate relation. The bounds of

the shear thickening regime are characterized on the lower end by smin defined as the

onset of a positive slope of gðsÞ, and on the upper end by smax defined as the transition

from positive to negative slope. These transitions are measured as the crossover between

local power law fits on either side. Because of fluctuations typically on the scale of

10–20% in the viscosity, we do not count any features smaller than that threshold as dis-

tinct transitions.

There are several other dimensionless numbers that have been used to describe the in-

ertial effects in particulate flows. In particular, often the system size d is replaced with

the particle size a, for example, leading to a Bagnold number [Bagnold (1954)] or parti-

cle Reynolds number. The distinction between the two types of scalings can be made

with a pure liquid at zero packing fraction, which has the system size scale of d but no

particle length scale. Since the cornstarch-in-water data for /m . 0:4, including /m ¼ 0,

collapse based on a Reynolds number scaling in terms of d, the system size should be

taken as the relevant length scale as is typical in pure fluids, and a dimensionless inertial

number based on particle size would not be able to collapse the data over as wide a

range.

We can qualitatively distinguish inertial flows from Discontinuous Shear Thickening

because the packing fraction, shear rate, liquid viscosity, and gap size dependence of in-

ertial flows all differ from that of Discontinuous Shear Thickening, and the steepest

FIG. 4. Viscosity vs stress for cornstarch in a glycerol–water mixture in which the Reynolds number remains

small. Mass fractions /m are shown in the key; higher curves correspond to larger /m, and /c ¼ 0:58. The solid
line of slope 1 corresponds to a constant shear rate and the steepest possible steady state viscosity curve. The

vertical dashed lines define the stress scales smin and smax that bound the shear thickening regime.
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possible scaling for inertial flows is s � _c2 in the limit of large shear rates [Bagnold

(1954)]. Since the focus of this paper is on Discontinuous Shear Thickening, all of the

following data will be in the high packing fraction regime (equivalent to /m& 0:4) and
for Re < 100 to avoid mixing inertial effects with Discontinuous Shear Thickening.

V. GRAVITYAND THE ONSET STRESS

Suspensions and colloids occupy a region of phase space where many physical forces

may be relevant; these include Brownian motion, gravity, surface tension, and electro-

statics. One consequence of this is that there are different scaling laws for the onset of

shear thickening in different parameter regimes where one of these forces is dominant

[Hoffman (1998); Maranzano and Wagner (2001a, 2001b); Bergenholtz et al. (2002);

Shenoy and Wagner (2005); Brown et al. (2010a)]. Here, we address the case of a

gravity-dominated regime for large particles. This regime is not yet as well-characterized

as the other regimes, but an understanding of the effects of gravity on the onset stress

will make it possible to further generalize the conditions for the onset of shear thickening

with a mechanism that accommodates all of these scalings.

We measured steady state viscosity curves for a series of suspensions of glass spheres

(q ¼ 2:46 g=ml) with diameters ranging from 6 to 2000 lm in diameter in either mineral

oil (q ¼ 0:88 g=ml) or water (q ¼ 1:00 g=ml) at packing fractions ranging from 0.50 to

0.58 These particles are large enough to settle over time since the glass is much denser

than the liquids. In each case, the major features were qualitatively similar to Fig. 4, with

increasingly steep slopes at higher packing fractions and shear thickening occurring in a

relatively fixed stress range. We obtained mean values of smin, corresponding to the onset

of a positive slope of gðsÞ, for each suspension averaged over a range of packing fractions
close to but below /c. The mean values of smin for each particle size are plotted in Fig. 5.

For the largest particles with a 
 500 lm, the suspensions would not remain confined

between the rheometer plates with a vertical boundary because the particles are so heavy

that they can no longer be confined by surface tension. Since this confinement is set by

FIG. 5. The stress at the onset of shear thickening smin for glass spheres of different diameters a in mineral oil

(solid circles, Dq ¼ 1:58 g=ml) or water (open circles, Dq ¼ 1:46 g=ml). Open diamond: polyethylene in sili-

cone oil (Dq 	 0:0001 g=ml). The solid line is the shear stress required to lift particles off the top layer of the

packing against friction and gravity leffDqga=15:3. Dashed line: representative curve for data where gravity is

not the dominant interparticle interaction. Dotted line: bound above which larger particles did not exhibit any

shear thickening regime.
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the interplay between gravitational and surface tension forces, it is no surprise that loss of

confinement occurs for particles on the order of the capillary length or � 1mm. Never-

theless, we could still make measurements with some sample extended outside the area

between the plates to obtain the scales of smin and smax. For the largest glass beads with a

diameter of 2000 lm, we found no shear thickening regime. The significance of this max-

imum particle size for shear thickening will be addressed in Sec. XI B.

It can be seen in Fig. 5 that there are two distinct scaling regimes for smin which meet

at a minimum near a particle size of 40 lm. For smaller particles that approach the colloi-

dal regime, interparticle interactions from various sources including electrostatics and

Brownian motion tend to become large relative to gravity and can affect the onset stress.

One effect which is relevant here is a high particle–liquid interfacial tension which results

in an effective attraction between particles, so they can form force chains that span the

system and jam it. This in turn results in a yield stress and shear thinning even at low

packing fractions, which then can hide shear thickening [Brown et al. (2010a)]. Specifi-

cally for this measurement series, with glass beads 50 lm and larger, the particles will

disperse well and shear thicken in either oil or water. However, the 6 lm glass particles

are effectively hydrophilic. Consequently, in oil, they have a significant yield stress and

shear thickening was not observed at all.

To understand the scaling of smin for the larger particles with a 
 50 lm, we now ana-

lyze the effects of gravity on non-Brownian suspensions. In the limit of zero shear rate,

gravity results in particles settling and resting on the bottom plate. The measured stress

would then come only from shear of the thin fluid layer on top of the settled particles.

The drag force from the shear in the liquid layer above the particles can start to move the

upper layer of particles if it exceeds the static frictional force between particles under

gravity. In a parallel plate geometry, the horizontal cross-section has a uniform area so,

to balance forces, the shear stress s must be on average independent of height. As an esti-

mate for the drag force on a particle in the top layer, we use the drag force on a sphere sit-

ting on a flat surface 2:55psa2 [Goldman et al. (1967)]. The frictional force on one of

these particles is pleffDqga
3=6 for an effective static coefficient of friction leff , density

difference Dq between the particles and liquid, and acceleration of gravity g. Since the

particles are sitting on a pile of beads instead of a flat surface, the effective friction is

enhanced by geometry because of the need for the spheres to rise over the particles in the

layer below. To measure leff , we glued 1 mm glass beads in a monolayer to a glass slide.

We then performed an inclined plane test with this system immersed in water, setting

individual glass beads on top of the bead-covered slide and slowly tilting the slide until

the loose beads started falling down. From this, we obtained leff ¼ 0:860:1. Balancing
the drag and frictional forces gives the stress at the onset of shear between grains to be

leffDqga=15:3. This prediction is plotted in Fig. 5. It is seen to match well the measured

onset stress smin for particles between 50 and 1125 lm in diameter. This confirms that the

onset of shear thickening in the gravity-dominated regime is set by the stress required to

initiate shear of the particles against gravity and friction.

Since the onset scaling for large particles is set by gravity, this suggests that smin can

be lowered by density matching. We tested this by measuring steady state viscosity

curves for 100 lm polyethylene particles in silicone oil with a density difference of about

10�4g=ml. The mean value of smin is shown in Fig. 5 by the open diamond. While Dq

was reduced by a factor of 104 compared to the nondensity matched case, the onset stress

was only reduced by an order of magnitude. In this case, the density-matched data fall

onto a similar scaling as was found for the glass for a � 25 lm. In many cases for par-

ticles even as large as 100 lm, we found density matching can have no effect on the onset

stress due to the significance of interparticle interactions. For cornstarch in water, density
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matching by adding CsCl to the water did not reduce the onset stress. For glass spheres in

a heavy liquid q ¼ 2:46 g=ml (Cargille labs inorganic salt series), we found no measura-

ble decrease in the onset stress compared to mineral oil or water and found shear thinning

below the onset stress as opposed to the Newtonian scaling found for glass suspensions,

whose onset is determined by the gravitational scaling [Brown and Jaeger (2009); Brown

et al. (2010a)]. This suggests that in each of these cases, the stress scale characterizing

interparticle interactions, which is dominant for smaller particles, is very close to the

onset stress if not the dominant factor. These results show that while density matching

can lower the onset stress in the gravity-dominated regime, it cannot do so beyond the

limits set by any other stress scales due to particle interactions. Thus, we generally expect

a larger effect of density matching for larger particles, further into the gravity-dominated

regime.

In this set of experiments with a parallel plate setup, gravity caused particles to settle

and shear thickening required initiating shear so the onset stress smin scaled like a hydro-

static pressure due to the weight of the top layer of particles only. In contrast, in a Couette

cell with vertical walls, a yield stress was found that scales with the same hydrostatic

pressure in the suspension pushing on the walls [Fall et al. (2009)]. We know that such a

yield stress can hide shear thickening if it is larger than the stress from shear thickening

mechanisms [Brown et al. (2010a)]. This implies that the effect of the yield stress from

gravity is shear-geometry dependent because of the directionality of gravity. The fact

that this yield stress can move the onset stress and hide shear thickening if the yield stress

is larger [Brown et al. (2010a)] suggests it works in addition to stresses responsible for

shear thickening, and there is no indication that the shear thickening mechanism itself is

affected by gravity. We will revisit the issue of the significance of the scalings for the

onset stress in Sec. XI B after a mechanism for shear thickening is identified.

VI. SHEAR PROFILE

In this section, we show shear profile measurements of both density matched and non-

density matched suspensions that exhibit Discontinuous Shear Thickening. The inhomo-

geneity due to gravity creates a shear gradient that allows us to separate out the

contributions from viscous forces, gravity, and other forces to the constitutive relation

between stress and shear rate in the shear thickening regime.

To measure the shear profile, we used a video camera with a bellows and magnifying

lens to obtain a pixel size as small as 10 lm. The camera was placed next to the standard

parallel plate rheometer setup and focused on the outer edge of the sample in the plane of

the shear direction and shear gradient. While there is some distortion from looking

through the curved liquid–air interface, we can track individual particle motions to mea-

sure the shear profile at the edge of the sample. Videos were taken for constant shear rate

conditions after the steady state was reached. Steady state shear profiles obtained by

using particle image velocimetry to obtain local particle velocities and averaging the

velocities at each height. A small tilt of the camera caused a smoothing effect over about

4% in the depth.

We first describe results for a settling suspension of 150 lm ZrO2 spheres in mineral

oil at / ¼ 0:53 with a gap d ¼ 890 lm. This suspension is chosen for visualizations

instead of glass because the particles are opaque. The raw particle motions under shear

are shown in supplementary videos 1 and 2 at E-JORHD2-56-011204 for two different

shear rates. Velocity profiles are shown in Fig. 6(a) for a range of shear stresses. The cor-

responding global viscosity curve is shown in Fig. 6(b). Below smin 	 0:3 Pa, we found
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no measurable particle motion up to a resolution of 10�3 times the plate displacement. In

this regime, the particles remained settled due to gravity as expected based on the meas-

urements of smin in Sec. V. Above smin, we found a narrow shear band near the moving

top plate. This also agrees well with the observations that the onset of shear thickening

corresponds to the onset of dilation [Metzner and Whitlock (1958)], since shearing of the

grains is what results in dilation. The width of the shear band increased as the stress was

increased. Layering was clearly observed at higher shear rates, which results in the step-

like shear profiles in Fig. 6(a). Effects of this layering on the measured stress are only

expected for smaller gaps, less than about five layers [Brown et al. (2010b)]. We per-

formed similar measurements with glass particles in mineral oil with a gap 12 particles

wide as opposed to 6 particles with the ZrO2. Results were qualitatively similar to the

ZrO2 data, although layering was less prominent as expected for a finite-size effect,

appearing only clearly in the top two layers.

We next describe results for nearly density-matched 135 lm polyethylene spheres in

silicone oil at / ¼ 0:55 with a gap 850 lm wide. The lighting used to take the videos

heated the silicone oil by several degrees, so there was a slight density difference of about

Dq ¼ �0:01 g=ml such that the particles were slightly buoyant, effectively reversing the

direction of gravity. Because the smaller density difference moves the onset of shear

thickening to very low shear rates, we did not obtain measurements of the shear profile

below smin 	 0:01 Pa. Velocity profiles are shown in Fig. 7(a) for a range of shear

stresses. The corresponding global viscosity curve is shown in Fig. 7(b). In the shear

thickening regime, the velocity gradient in the bulk was relatively small, with a shear

band at the bottom plate and a layered structure at the top plate. In this case, the shear

band appeared at the bottom plate and the direction of curvature of the shear profile was

reversed due to the inversion of gravity. The shear band widened at higher stresses, simi-

lar to the case for the settling ZrO2. Interestingly, for all three suspensions, the layering

was most pronounced near the top (moving) plate despite the gravity inversion.

These measurements also allow us to measure slip directly. When the particles were

settled with the plate moving past, there was not even contact so the difference between

plate and particle motions is technically not slip and so would not be expected to follow

FIG. 6. (a) Shear profiles at the plate edge for settling particles of ZrO2 in mineral oil (Dq ¼ 2:9 g=ml). The

mean velocity v is normalized by the plate edge velocity vp, and the depth h is normalized by the gap d. Shear

stress s for each profile is shown (in Pa) in the key; higher curves correspond to larger s. Dashed line: upper

bound of 10�3 for a measurement at s < smin. Dotted black line: depth equal to 1 particle diameter. Solid lines:

fits of Eq. (5) to the data for s < smax. Inset: same data on log-linear scale. (b) Local viscosity curves based on

the local shear rate from the shear profile. Open circles: local viscosity in bulk region. Solid circles: local viscos-

ity in the shear band near the top plate. Solid line: global viscosity curve.
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slip correction models which usually assume a linear bulk velocity profile. Settling and

slip effects can be distinguished by comparing to the density matched case shown in Fig.

7(a) where the settling rate is much lower than the shear rate for all of the data shown.

The difference between the speed of the top plate and neighboring particles in the more

developed flow regimes is around 25%, roughly independent of shear stress. This does

not change significantly at the boundary between shear thickening and shear thinning

regimes, confirming that those rheological boundaries are not determined by slip. Since

the goal of this paper is to understand the global response of Discontinuous Shear Thick-

ening, we do not “correct” for slip. Making a correction for slip would not significantly

alter the shape of the viscosity curves nor move the regime boundaries in terms of stress

because it only affects the shear rate, although it would slightly shift the magnitude of the

viscosities reported. The lack of contact between the particles and plate with settling is

not problematic in terms of the mechanical response because viscous interactions within

the liquid transmit stress between them just as well as hard contacts. This is confirmed by

our observation that switching from smooth to rough plates does not change the stress

scales or whether Discontinuous Shear Thickening occurs.

A. Local constitutive relations

Here, we use the shear profile to test constitutive relations in the shear thickening re-

gime. Since the shear stress in a parallel plate geometry is independent of height, a local

hydrodynamic constitutive relation sð _clÞ dependent only on a local shear rate _cl would

correspond to a linear velocity profile. To explain a nonlinear steady-state velocity pro-

file, models have been introduced in the past to account for fluctuations in the local shear

rate via an effective kinetic temperature [Nott and Brady (1994); Bocquet et al. (2001)]

and for the effect of local variation in packing fraction on the viscosity [Nott and Brady

(1994); Bocquet et al. (2001); Fall et al. (2010)]. In granular shear flows, the initial inho-

mogeneity is usually attributed to dilation near the moving plate [Mueth et al. (2000)].

Since the curvature of the shear profiles in Figs. 6 and 7 changed with the direction of

effective gravity for the particles, we suggest that here gravity and friction are responsi-

ble for curvature in the shear profile, as in sedimenting flows [Lenoble et al. (2005)]. Spe-

cifically, there can be frictional forces between particles due to the weight of the packing

FIG. 7. (a) Shear profiles at the plate edge for density matched polyethylene in silicone oil (Dq 	 �0:01 g=ml).

The mean velocity v is normalized by the plate edge velocity vp, and the depth h is normalized by the gap d.

Shear stress s for each profile shown in the key; lower curves correspond to larger s. Dotted black line: depth

equal to 1 particle diameter. Solid lines: fits of Eq. (6) to the data for s < smax with the substitution

h=d ! 1� h=d since the particles are lighter than the liquid. (b) Local viscosity curves based on the local shear

rate from the shear profile. Open circles: local viscosity in bulk region. Solid circles: local viscosity in the shear

band near the bottom plate. Solid line: global viscosity curve.
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which increases with depth h into the sample relative to the top plate (for downward

gravity) if the particles remain in contact via force chains. A nonlinear shear profile could

be the result of such an explicit height dependence. The simplest form for a local stress

relation that includes gravity is

s ¼ g� _cl þ sgh=d þ sc; (3)

where g� is the viscous hydrodynamic contribution to the viscosity, the gravitational

stress scale sg � leffDqgd=15:3 from Sec. V, and sc represents any stresses that are inde-

pendent of local shear rate and depth such as interparticle attractions. Rearranging gives

the local shear rate

_cl ¼ ðs� sc � sgh=dÞ=g� : (4)

This implies a critical depth hc=d ¼ ðs� scÞ=sg at which the shear rate equals zero

and beyond which there is no shearing of grains. This suggests that the shear stress must

exceed the sum of gravitational stress and interparticle stresses (included in sc) on the

first layer of particles (sga=d) to shear grains, in agreement with the condition for the

onset of shear thickening shown in Fig. 5 and Brown et al. (2010a), respectively. The ve-

locity profile can be obtained by integrating the local shear rate from Eq. (4) over depth.

There are two solution regimes:

if hc < d, then

v

vp

¼ sg

2s�

hc � h

d

� �2

; (5)

and if hc > d, then

v

vp

¼ s� sc � sg

s�

d � h

d

� �

þ sg

2s�

d � h

d

� �2

; (6)

where the plate velocity vp ¼ d _c and the viscous stress scale is defined by s� � g� _c. The

curvature of the velocity profile characterized by a quadratic term is set by the ratio of

gravitational to viscous stresses sg=s� . The velocity profile becomes linear in the limit

where this ratio goes to zero (hc > d) as expected. These profiles are concave up and

become more linear with increasing s in qualitative agreement with the data in Fig. 6(a).

The equations were written for the case where the effective gravity on the particles is

downward. For the polyethylene data where the effective gravity is upward, we have to

make the substitution h=d ! 1� h=d which reverses the concavity.

Because we are applying a continuum model to a system that is quantized due to layer-

ing, and fluctuations could smooth out mean shear profiles, this model will only be able

to crudely approximate the slope and curvature of the shear profile. To test this model,

we fit the function

v=vp ¼ a1
ðhc � hÞ

d
þ a2

ðhc � hÞ
d

� �2

(7)

to the measured velocity profiles for each shear rate. Some of these fits are shown in

Figs. 6(a) and 7(a). For ZrO2 and glass, it appears that hc < d for s < smax so we fix

a1 ¼ 0 according to Eq. (5). The quadratic coefficient a2 can be compared to the
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prediction of Eqs. (5) and (6) with an estimate for the viscous stress s� . We showed in

Sec. V that at the onset of shear thickening, the viscous stress must be just enough to ini-

tiate shear so s� 	 smin. Since the shear rate increases slowly in the shear thickening re-

gime for Discontinuous Shear Thickening, we will use this estimate for the entire shear

thickening regime. The measured curvature a2 normalized by the predicted value

sg=2smin is plotted in Fig. 8 for each fit for ZrO2, polyethylene, and glass.

In the shear thickening regime (s < smax), the data for all three density differences

collapse onto a single curve with a2=ðsg=2sminÞ 	 1. This value is in agreement with

the model which confirms the curvature of the shear profile is set by a balance of

gravity-induced friction and viscous interactions throughout the shear thickening re-

gime. This balance implies the weight of the packing builds up in deeper layers, which

requires force chains of solid particle contacts must extend from plate to plate. This is a

common feature of granular systems. Since the shape of the shear profile depends on

the specific force balance, the quadratic shear profile prediction is specific to settling

suspensions within this model. Because the data collapse works reasonably well for sys-

tems of different sizes, it rules out the role of finite-size effects in setting the velocity

profile curvature.

The data collapse of the shear profile curvature to a constant value in the shear thick-

ening regime also suggests that the contribution of viscous stresses to the global viscosity

is not increasing significantly in the shear thickening regime and remains close to smin, in

contrast to the expectations of hydrodynamic models for shear thickening. If the stress

increase in the shear thickening regime was due to viscous forces proportional to shear

rate, the reduced curvature would have to follow a slope of �1 in Fig. 8 in the range

s < smax. Rather, the increase in stress in the shear thickening regime must be hidden in

the uniform term sc due to other, so far unspecified forces in Eq. (3).

For s > smax, the different curvature values do not collapse onto a single curve, sug-

gesting either that the model fails in this regime or at least that smin is no longer a good

approximation of s� in this regime. Rather, the profiles appear to be closer to exponential

[see inset of Fig. 6(a)], similar to granular shear profiles of spherical particles [Mueth

et al. (2000)]. This suggests that above smax the shear profile could be that of a fully gran-

ular system where there is no need for a contribution of viscous hydrodynamics.

FIG. 8. Quadratic curvature a2 obtained from fit of Eq. (7) to velocity profiles. The curvature is normalized by

the model prediction from Eq. (6) with smin used as an estimate for the viscous stress s� . Data are fit for different

normalized shear stresses s=smax for glass in mineral oil (solid triangles, Dq ¼ 1:58 g=ml), polyethylene in sili-

cone oil (open circles, Dq ¼ �0:01 g=ml), and ZrO2 in mineral oil (solid circles, Dq ¼ 2:9 g=ml). The data col-

lapse close to a value of 1 for s < smax suggests that the curvature of the shear profile is due to the weight of the

particles on deeper layers which is transferred via frictional contacts, and that the contribution of viscous

stresses to the viscosity does not increase significantly in the shear thickening regime.
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Curvature in the shear profile has been attributed to variations in the local packing

fraction in some other experiments [Fall et al. (2010)]. In a hydrodynamic model, small

changes in packing fraction from dilation and viscous resuspension are significant

because of the viscosity divergence with packing fraction as the viscous lubrication layer

goes to zero at the jamming transition. However, our results on the curvature of the shear

profile suggest that stress is transmitted mostly through frictional contacts rather than vis-

cous interactions. In granular mechanics, frictional contact forces vary by less than about

30% with changes in packing fraction [Lambe and Whitman (1969)], and this

contribution would be small in comparison to the separation of local viscosities seen in

Figs. 6(b) and 7(b) and the variations in curvature in Fig. 8. Another reason to suspect

that viscous forces would not account for the measured stresses in the shear thickening

regime comes from the magnitude of the measured viscosity. Since viscosity values

measured are up to 107 times the solvent viscosity [Brown and Jaeger (2009)], this would

require subatomic gaps in a lubrication model. However, lubrication in molecular liquids

breaks down at two molecular layers, below which the liquid is frictional [Van Alsten

and Granick (1988)]. These issues suggest that the stresses in the shear thickening regime

must be explained by some nonviscous mechanism.

Another model attributes curvature in the shear profile to a gradient in kinetic energy due

to fluctuations in particle motion [Nott and Brady (1994); Bocquet et al. (2001)]. The contri-

bution of this effect to the local stress gradient can be estimated asrs � qvrv � q _c2d using

the observation that the scale of the rms fluctuations in velocity is comparable to the mean

flow velocity in granular flows with solid particle contacts [Bocquet et al. (2001)]. This con-

tribution to the stress gradient is at most on the order of 10�4 times the gravitational contribu-

tion to the stress gradient rs � Dqg even at the maximum stress in the shear thickening

regime for the measurements shown in Figs. 6(a) and 7(a). Thus, we expect the contribution

of the kinetic energy to the shear profile to be negligible in the regime of our measurements.

B. Localized viscosity curves

Here, we investigate the validity of local constitutive relations by plotting local viscos-

ity curves. The local viscosity can be calculated as the ratio of the measured global stress

and the local shear rate from the derivative of the velocity profile. To separate the bulk

region from the shear band regions, we use the mean slope of the velocity profile over

different ranges of depth. For the profiles in Fig. 6(a), we use the range 0:25 < h=d < 0:8
for the bulk and h=d < 0:3 for the shear band at the top plate. For the profiles in

Fig. 7(a), we use the range 0:2 < h=d < 0:8 for the bulk and h=d > 0:85 for the shear

band at the bottom plate. According to the model of Eqs. (5) and (6), the local bulk viscos-

ities roughly approximate the linear term, which corresponds to the viscous contribution to

the viscosity. These local viscosities are plotted in Figs. 6(b) and 7(b), respectively, along

with the global viscosity curves. For each suspension, the shear band shows shear thicken-

ing similar to the global curve, while the bulk region appears to be everywhere shear thin-

ning based on the local viscosity. In the non-density-matched case below smin, the bulk

was observed to be settled (i.e., locally jammed), corresponding to an infinite local viscos-

ity. Thus, the bulk region appears to have a yield stress due to gravity and consequently

exhibits shear thinning but no shear thickening. The region that qualitatively determines

the global rheology is not the bulk but rather the near-wall region where the shearing

occurs. This is not surprising from a granular or solid mechanics point of view, where the

global behavior is often determined by the failure in the weakest region.

Another test of the validity of local constitutive equations comes from comparisons of

measurements in different measuring geometries. For a measurement in a cone and plate
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geometry, the mean shear rate is independent of radius because the plate speed is propor-

tional to the gap height at each point along a radius, while in a parallel plate setup, the mean

shear rate increases with radius because the plate speed is faster near the edge but the gap

remains the same. Thus, assuming a local constitutive relation between shear stress and rate

holds, an apparent viscosity curve measured in a parallel plate rheometer should always be

smoothed out compared to one measured in a cone and plate rheometer. However, a com-

parison of measurements of Discontinuous Shear Thickening in different geometries

showed that the apparent viscosity curve from a parallel plate rheometer was steeper than

that measured with a cone and plate rheometer [Fall et al. (2008)]. This discrepancy

between measuring geometries indicates that the constitutive relation for the stress is not a

function only of the local shear rate, even for that density matched suspension.

In this section, we tested a constitutive relation that attributes the shape of the shear

profile in the shear thickening regime for settling suspensions to the balance between vis-

cous forces and gravitational forces for particles in frictional contact. The onset stress

smin occurs at the onset of particulate shear. However, the remarkable feature of Discon-

tinuous Shear Thickening is the large stress jump in the shear thickening regime. We

found that local constitutive relations between stress and shear rate fail to describe the

stress in the shear thickening regime. Specifically, the collapse of the shear profile curva-

ture values in Fig. 8 for s < smax suggests that the viscous term proportional to local

shear rate is nearly constant in the shear thickening regime, and the stress jump cannot be

attributed to viscous forces or the inhomogeneity due to gravity. Instead, the stress jump

must be hidden within the additional stress term sc from Eq. (3), whose source will be

identified in Sec. VII.

VII. NORMAL FORCES AND THE BOUNDARY CONDITION

In this section, we use measurements of shear and normal stresses under different

boundary conditions to show that the global mechanical response can be described by a

solid frictional constitutive law rather than a viscous law.

A. Frictional scaling

Here, we compare steady state viscosity curves along with normal stress measure-

ments for similar suspensions with different boundary conditions. The sample was 100

lm diameter glass spheres in water at a packing fraction of / ¼ 0:52 (< /c). We first

show results from a standard parallel plate setup [Fig. 1(a)] with a diameter of 50 mm

which results in a better normal stress resolution than smaller plates. The shear stress s

and normal stress sN are shown in Fig. 9(a) as functions of shear rate _c for a measurement

in which the gap size is fixed at 0.72 mm. The region with slope greater than 1 defines

the shear thickening regime. We found positive normal stresses, corresponding to the

sample pushing against the plates, in agreement with other measurements of Discontinu-

ous Shear Thickening [Lootens et al. (2005); Fall et al. (2008)]. The shear and normal

stresses track each other extremely well in functional form and magnitude. The cutoff of

sN at the low end corresponds to the measurement dropping below the relative resolution

of the normal stress of about 0.3 Pa.

We next used the walled rheometer setup without a liquid air interface or room for

expansion, as shown in Fig. 1(b). In this case, a sample of 500 lm glass spheres in water

was used; the larger particles were necessary to avoid them escaping through the gap

between the side wall and top plate. While the values of smin and smax differ with particle

size (see Figs. 5 and 15), otherwise the samples behave in a qualitatively similar way in
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the normal parallel plate setup. The normal force on the top plate was fixed at 1 N

(2040 Pa) and, consequently, the gap size was allowed to vary. The viscosity curve is

shown in Fig. 9(a). In contrast to the standard parallel plate setup, the rheology is that of

a yield stress fluid with no shear thickening regime. Such a dramatic difference in behav-

ior with a change in boundary conditions would be unexpected from a local hydrody-

namic constitutive relation and implies a nonlocal effect. The common feature of both

measurements is the connection of the shear stress to the normal stress. We plot the ratio

of stresses s=sN vs the Reynolds number Re ¼ qld
2 _c=gm for both measurements in

Fig. 9(b). Additionally, we show steady state values for measurements taken at constant

shear rate in the shear thickening regime in which the normal force was recalibrated rela-

tive to the static value before each measurement to optimize resolution of the relative

normal force. The fact that these three data sets under different measurement conditions

collapse onto the same curve suggests a global constitutive relation independent of

boundary conditions. Since s=sN is near unity and constant over five decades of Reynolds

number, this suggests that the measured stresses are compressional in nature. A compres-

sional scaling from either viscous, inertial, or frictional forces in dense suspensions is the

result of the redirection of stress in different directions through the bulk of the suspension

by particle interactions [Nott and Brady (1994); Prasad and Kytömaa (1995); Brady and

Vicic (1995); Jaeger et al. (1996); Sierou and Brady (2002); Deboeuf et al. (2009)]. This

compressive scaling can also account for the constant stress term sc in the constitutive

relation of Eq. (3), since it is independent of local shear rate and height but instead is de-

pendent on the normal stress. A compressional scaling also confirms that the total normal

stress is the relevant physical quantity rather than normal stress differences.

While viscous or inertial stresses can in some cases result in constant s=sN , the stresses
must be proportional to shear rate or shear rate squared, respectively, neither of which is

satisfied for Discontinuous Shear Thickening suspensions as in Fig. 9. Rather, a frictional

explanation in which the forces are transmitted along chains of hard particles via fric-

tional contact [Jaeger et al. (1996)] is supported by the observations (1) that the stresses

have no inherent shear rate dependence and continue to follow this same relation when

additional normal stress is applied at the boundary as shown in Fig. 9, (2) the indication

FIG. 9. (a) Comparison of flow curves measured with different boundary conditions for glass spheres in water

at / ¼ 0:52 (< /c). Solid circles: shear stress s for 100 lm spheres in a fixed gap measurement with the stand-

ard parallel plate setup. Open triangles: normal stress sN from the same measurement. The absolute uncertainty

on the normal stress is 2 Pa, so the normal stress cannot be resolved at the low end. Open circles: s for 500 lm

spheres with a fixed normal stress of 2040 Pa (solid line) in the modified parallel plate setup with a hard wall.

Dashed line: slope 1 corresponding to a Newtonian scaling for reference. (b) Circles: same data with the shear

stress s normalized by normal stress sN vs Re ¼ qd2 _c=gm. Open triangles: constant shear rate measurements in

the standard parallel plate setup in which the normal force was recalibrated before each measurement. Solid

line: s ¼ sN indicating a frictional scaling. Dashed line: s ¼ gm _c corresponding to a viscous scaling.
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from the shear profile that the weight of the packing is transmitted along frictional con-

tacts to build up in lower layers shown in Sec. VI, and (3) the relative smallness of the

expected viscous and inertial forces in the Discontinuous Shear Thickening regime, as

explained in Sec. IV.

B. Transient normal-force-control measurements

We now show that the coupling between shear and normal stress applies even to tran-

sient measurements as the normal force boundary condition changes, and that shear thick-

ening can be eliminated if the normal force is removed from the boundary as suggested

by Fall et al. (2008). To emphasize the generality of these results, we show this result for

a different suspension, cornstarch in water. Both this result and the results of Sec. VII A

were found for both suspensions, but we show only one set of data for brevity.

We performed normal-force controlled experiments modeled after those of Fall et al.

(2008). These measurements were done in the standard parallel-plate setup in a normal-

force controlled mode. The normal-force set-point is zero relative to the rest state, with

an initial gap of d ¼ 1:08mm. The gap size is free to vary during the measurements to

adjust the normal force back to the setpoint via a feedback loop. Initially, the sample of

cornstarch in water at / ¼ 0:55 < /c was at rest; then at time t ¼ 0, the shear rate was

set to a constant nonzero value for the rest of the experiment. Examples of transient time

series of the shear stress and normal stress are plotted in Fig. 10(a) for two different shear

rates. For shear rates below the onset of shear thickening _cc 	 11 s�1, the stress quickly

came to near the steady state value within a fraction of a second and remained there. For

shear rates above _cc, the shear and normal stresses had a large peak initially, exceeding

the steady state value by more than an order of magnitude. Even though the normal force

set point was zero, the normal stress can be nonzero in the transient behavior as the gap

adjusts via a feedback loop. Longer time series are shown in Fig. 10(b) along with the

variation in gap size. Below _cc, the normal force did not exceed the threshold to cause the

gap to move. In contrast, above _cc, the gap increased initially due to the transient normal

force. The shear stress tracked the normal stress quite well throughout the entire transient

process, and they were similar in magnitude. The stresses each decreased as the gap

FIG. 10. (a) Transient time series of shear stress s (circles) and normal stress sN (triangles) in normal-

force-control measurements for cornstarch in water at / ¼ 0:55 < /c. The sample starts at rest, then the shear is

switched on at time t ¼ 0. Solid symbols: shear rate _c ¼ 26 s�1 (above _cc). Open symbols: _c ¼ 8 s�1 (below _cc). (b)

Same data as panel (a) but extended to longer times to see the steady state behavior. Right axis: change in gap size

Dd (squares). (c) Effective viscosity curves obtained from transient measurements. Solid circles: transient shear

stress averaged between 0.4 and 1.0 s after shear starts. Solid triangles: transient normal stress averaged over the

same time. Open circles: steady state shear stress at the end of the time series where sN was below the resolution

limit for each shear rate. Discontinuous Shear Thickening is suppressed when the normal stress at the boundary is

removed. Solid line: stress as a function of shear rate obtained from a steady-state viscosity curve for the same sam-

ple with fixed gap size. Dashed line: Newtonian scaling. Dotted line: normal stress resolution limit.
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increased, and the gap stopped increasing when the normal stress dropped below the

feedback threshold of 20 Pa. Beyond this point, the stresses and gap size remained con-

stant, which was measured for at least 200 s in each experiment to confirm that the sys-

tem was in a steady state.

We summarize the normal-force-control experiments with effective viscosity curves

in Fig. 10(c). We show the transient shear and normal stresses averaged between 0.4 and

1 s after the shear was started as solid symbols. Because the response time of these sam-

ples to dramatic changes is typically a fraction of a second, while the normal force con-

trol feedback loop has a longer timescale, these transient results effectively correspond to

a fixed gap boundary condition. They show the same qualitative shear thickening as

steady state behavior for fixed gap measurements, indicated by the solid line. Differences

between the solid circles and solid line beyond the measurement resolution indicate a dif-

ference between steady state and transient measurements. Stress values taken from the

end of the test, where sN ¼ 0(620 Pa) and the system was in a steady state, are shown as

open circles in Fig. 10(c). The effective viscosity curve based on this data is consistent

with a Newtonian scaling at shear rates below _cc. Above _cc, the shear stress values match

up with the normal stress feedback threshold. This can be understood since a normal

stress of that magnitude is not enough to trigger the normal-force-control feedback loop

so the gap size remained fixed, but the normal stress can still couple to the shear stress.

The strong shear thickening in the fixed gap and transient data are totally absent from the

sN ¼ 0 data. We note that there is no significant dependence of viscosity curves on gap

size in this range [Brown et al. (2010b)], so the difference must be due to the fact that the

normal force is fixed to be zero. This shows that a positive normal stress of comparable

magnitude is required to achieve the shear stress associated with shear thickening. In the

absence of this confining stress, shear thickening cannot occur, as was suggested by Fall

et al. (2008). Without making any assumption about the mechanism for coupling between

the normal and shear stresses at values below the normal stress feedback threshold, the

open circles in Fig. 10(c) put an upper bound on the viscous and other noncompressive

contributions to suspension viscosity and show that they are not responsible for Discon-

tinuous Shear Thickening. This directly shows the surprising result that cornstarch in

water, the prototypical Discontinuous Shear Thickening suspension, is not actually shear

thickening based on the direct constitutive relation between stress and shear rate when

boundary stresses are held constant, and the occurrence of the phenomenon depends on a

changing contribution of normal stresses from the boundary.

We have noted that the normal and shear stresses track each other quite well in normal-

force-controlled measurements. In fact, in all of the various types of experiments on sus-

pensions that exhibit Discontinuous Shear Thickening in which normal stresses and shear

stresses were compared, they tended to track each other quite well. For example, we

attempted measurements with a fixed normal stress sN ¼ 0 and fixed shear stress greater

than the normal stress feedback threshold. Since the shear stress is the dominant control

parameter of the rheometer, the shear stress reached the set value but the measurements

never reached a steady state because the normal stress could not drop, causing the gap to

increase until the top plate detached from the sample. Similarly, in experiments by Loo-

tens et al. (2005) that measured stress fluctuations in the steady state, fluctuations of the

normal stress and shear stress were found to be strongly coupled with a proportionality

close to 1. This helps to explain an earlier result in which an apparent viscosity curve no

longer showed shear thickening when positive fluctuations in the shear stress in the steady

state were removed from the data [Lootens et al. (2003)]. Since the shear stress fluctua-

tions were associated with the normal stress, this was in essence showing an effective vis-

cosity curve with no normal stress. Another example comes from our measurements of
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finite-size effects at very small gap sizes [Brown et al. (2010b)], in which the normal stress

scaled with and was close in magnitude to the shear stress as it varied with gap size.

In this section, we showed that the shear and normal stresses are coupled with a pro-

portionality coefficient close to 1 in the shear thickening regime, and the relationship

between stress and shear rate even changed with the boundary conditions to satisfy this

stress coupling. These results suggest that the stresses responsible for Discontinuous

Shear Thickening are transmitted by frictional compressive forces.

VIII. DILATION

Section VII showed that the normal stress boundary conditions control the shear stress

response. This implies that the normal stress at the boundary must increase dramatically

with shear under typical measurement conditions that produce Discontinuous Shear

Thickening. The compressional scaling implies stresses are redirected through the system

in all directions, so that similar confining pressures must be maintained on the system on

all sides—even a suspension–air interface such as at the perimeter of a parallel plate sam-

ple geometry. In this section, we analyze images of the suspension surface in contact

with air to identify the boundary conditions responsible for the normal stress. In systems

that show Discontinuous Shear Thickening, it has been long known that there can be a

visible change in the surface of suspensions at the onset of shear thickening [Metzner and

Whitlock (1958); O’Brien and Mackay (2000); Smith et al. (2010)]. It was understood

early on that this was due to dilation, which occurs along with normal stresses [Metzner

and Whitlock (1958); Reynolds (1885)]. When wet granular packings dilate under shear,

they take up more space than at rest, and consequently the liquid is then sucked away

from the boundary into the enlarged interstices between grains, so by eye the surface

appears to become rough as the particles poke through.

This visible effect of dilation is shown for a suspension of cornstarch (14 lm) in water

below /c in Fig. 11. The suspension was in a 2.4 mm deep layer and is viewed from

above. One of the side walls could be displaced to shear the suspension. Before shear, the

surface of the suspension looked wet and shiny, as seen in panel a. When the upper right

wall was sheared at a rate exceeding the onset of shear thickening, the nearby suspension

appeared rough, shown in panel b. As soon as the shear rate dropped, the surface

appeared smooth and shiny again. This behavior is shown in supplementary video 3 at

E-JORHD2-56-011204. We observed that the onset of visible dilatancy corresponds

closely to the onset of shear thickening, consistent with previous observations that the

FIG. 11. Top views of a 2.4 mm deep layer of cornstarch in water. (a) Below /c in a shear cell at rest. (b) At a

shear rate above _cc, taken after a shear displacement of dx ¼ 2:5mm relative to panel a. Dilation can be

observed as an increase in surface roughness in the sheared region near the wall.
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onset of shear thickening corresponds to the onset of dilation [Metzner and Whitlock

(1958); Smith et al. (2010)].

Usually, we find suspensions will show Discontinuous Shear Thickening in rheologi-

cal measurements if the surface changes from shiny to rough when sheared, indicating di-

lation. At low packing fractions, the surface remains smooth under shear because the

packing fraction is too low for granular dilation to affect the surface, since volume

changes from dilation are typically only a few percent [Reynolds (1885); Onoda and

Liniger (1990)]. Alternatively, if the suspension has a yield stress, the surface may be

always rough and not change with shear rate, even if the packing still dilates with shear.

Thus, the conditions where a change in the surface from dilation is observed seem to cor-

respond to the conditions for suspensions to show Discontinuous Shear Thickening.

There is a notable exception to the rule that a visible change in the surface from dila-

tion indicates shear thickening. Settling particles in a Couette cell were seen to dilate but

did not shear thicken, and instead a yield stress was measured [Metzner and Whitlock

(1958); Fall et al. (2009)]. However, the inhomogeneity due to gravity can explain this

behavior. The weight of the particles in a vertical column of height H pushes on the mov-

able side walls, resulting in a yield stress on the scale of DqgH, which can be on the order

of kPa for typical rheometer Couette cells [Fall et al. (2009)], well above the shear thick-

ening stress regime we observed for glass spheres from 10 to 100 lm in a parallel plate

geometry (which does not exhibit this yield stress; see Fig. 15). In the case of vertical

walls in the Couette geometry, the side of the suspension is still jammed at rest which

prevents shear thickening, but the top is not, so the suspension falsely appears unjammed

when viewed from the top. A more general conclusion that applies regardless of inhomo-

geneities is that dilation is necessary for Discontinuous Shear Thickening but not suffi-

cient because shear thinning stresses must be small compared to shear thickening stresses

or else the shear thickening will be hidden [Brown et al. (2010a)].

Now that we have established the importance of the boundary conditions, we want to

directly address what the boundary looks like on the particle scale. To this end, we use a

sample of opaque 150 lm diameter ZrO2 particles in mineral oil at / ¼ 0:54 in a standard

parallel plate rheometer setup with a gap size of 890 lm. A video camera was focused at a

point on the surface of the suspension with the line of sight tangent to the surface to best

view any radial variations in the boundary position due to dilation. The sample is shown at

rest in Fig. 12(a), in which case it had a smooth surface. The same sample is shown in panel

b at a steady shear rate of 3 s�1, corresponding to smax at the upper bound of the shear thick-

ening regime. The boundary appears bumpy as particles penetrate the liquid–air interface.

The dynamic behavior is shown in supplementary video 4 at E-JORHD2-56-011204. By ref-

erence to the edge of the rheometer plate (white line), it can be seen that the sample has

expanded radially relative to the rest state by about 50 lm, corresponding to 0:3a or a vol-

ume increase of 0.8%. The penetration of the liquid–air interface by the particles can also be

seen in the shear profile videos of ZrO2 from Sec. VI as texture differences indicating con-

tact lines on particle surfaces in supplementary videos 1 and 2 at E-JORHD2-56-011204.

As long as the particles are between about 1 and 100 lm, then the grains are large

enough to scatter light diffusively and small enough that they cannot be seen individu-

ally, so the surface appears rough by eye. However, we note that for colloidal particles

smaller than around 1 lm, the roughness of the surface becomes smaller than the wave-

length of light and no longer scatters diffusively, so the surface of a colloid may even

appear shiny if the surface is deformed by particles, and dilation would not be clearly

visible. This is confirmed, for example, by observations of stable asperities in a jammed

colloid of 1.6 lm diameter particles—indicating stresses from surface tension—in which

the surface remained shiny [Koos and Willenbacher (2011)].
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In this section, we suggested that the often-observed but unexplained connection

between dilation and shear thickening is that dilation causes suspensions to interact with

their boundaries and causes a change in boundary conditions. This could explain the ob-

servation that the boundary conditions determine the constitutive relation between stress

and shear rate and even whether Discontinuous Shear Thickening is observed at all.

IX. CAPILLARY FORCES

In Sec. VIII we showed that when a dense suspension dilates under shear, the particles

penetrate the liquid–air interface. Here, we propose a model by which dilation changes

the boundary condition to produce a confining stress from capillary forces, which can

provide the normal stress required for Discontinuous Shear Thickening. Indeed, it has

been suggested that capillary forces at boundaries could play an important role in the rhe-

ology of shear thickening suspensions [Holmes et al. (2003, 2005); Cates et al. (2005b)].

Changes in surface roughness similar to those from dilation have been observed in

jammed suspensions [Cates et al. (2005a)], and in free-surface flows, becoming more

apparent at higher applied stresses and at higher packing fractions [Loimer et al. (2002);

Timberlake and Morris (2005); Singh et al. (2006)]. It was argued that these deforma-

tions required normal stresses in the suspensions to balance forces from surface tension

due to the curvature of the liquid–air interface. When dilation causes particles to pene-

trate the edge of the suspension to create a curved liquid–air interface, the scale of the ra-

dius of curvature r of the liquid–air interface with surface tension c becomes comparable

to the particle size a [Loimer et al. (2002)]. This produces a stress from surface tension

pushing on the particles towards the interior of the suspension. We estimate this stress

from surface tension to be on the scale of c=r � c=a � 100 Pa for 100 lm particles, a sig-

nificant stress in the context of the rheological measurements. If the particles did not

interact along stiff force chains, they would be pushed to the interior of the sample by

this stress [assuming the liquid wets the particles, which is also a requirement to observe

shear thickening [Brown et al. (2010a)]]. However, the fact that the particles continue to

FIG. 12. Images a suspension of 150 lm ZrO2 particles in mineral oil in the standard parallel plate setup with a

gap of 890 lm. The camera is focused at a point on the edge of the suspension, with the line of sight tangent to

the surface to view radial variations in the boundary position. The rest of the image is out of focus because of

the large amount of depth in the image. (a) The suspension at rest. (b) The suspension is sheared at constant

shear rate of 3 Hz corresponding to smax. It can be seen that shear results in both radial dilation of the suspension

and increased local curvature at the surface on the particle scale. Vertical lines: reference lines indicating the

plate edge in each image.
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penetrate the surface in the steady state implies that, in the absence of inertial effects (sat-

isfied by the low Re of the experiments), forces must be transmitted all the way through

the packing to balance the stress from surface tension. The stress from surface tension

can then be considered a confining stress which is transmitted and redirected through the

suspension to the rheometer plates according to the compressional stress relation seen in

Figs. 9 and 10. This stress would be the contribution that increases rapidly with shear rate

as the system dilates under shear, which is the characteristic feature of Discontinuous

Shear Thickening. Eventually, this confining stress reaches the limiting scale of c=a from

surface tension, and beyond that point any additional shear stress must come from other

sources, which are likely weak compared to the confining stress if shear thickening is

observed, so the viscosity will drop off beyond the maximum confining stress. Thus, the

maximum confining stress should correspond to smax. Above /c where the suspension is

jammed, particles are seen penetrate the surface even without shear [Brown et al.

(2011)], so the yield stress scale sj should also be set by the confining stress from surface

tension. In the remainder of this section, we quantitatively compare the measured shear

stresses to the confining stress scale from surface tension c=a to test this model.

A. Relating dilation to confining stress

To quantify dilation, we measured the mean radial displacement of the surface during

shear seen in a tangent view as shown in Fig. 12. We did this for several different steady

state shear rates in a sample of opaque 135 lm polyethylene spheres in silicone oil at

/ ¼ 0:56. For each measurement, we started the sample at rest, then sheared at a constant

shear rate until the stress reached a steady state for some time, then stopped the shear to

observe the relaxation to rest. We repeated the cycle of shear followed by resting a total

of five times. The edge of the sample was tracked throughout these measurements. The

dilation d was measured as the mean radial displacement of the edge between the steady

state shear and rest states, averaging over the height of the sample and over at a period of

at least 10 s and a strain of at least two in the steady state for each experiment. The meas-

ured dilation is plotted versus the corresponding steady state stress values in Fig. 13. Plot-

ted error bars correspond to the standard deviation of d measured over the five cycles. All

points shown correspond to stresses above smin. At lower stresses, we could not resolve

any dilation below our resolution limit of 0.5 lm. The upper end of the shear thickening

regime corresponds to smax ¼ 2 Pa for this sample.

Using a geometric model, we can calculate a typical radius of curvature of the liquid–-

air interface as it contracts for a given particle dilation d, given the contact angle and con-

servation of liquid volume. This allows us to estimate a confining stress scale from

surface tension c=rðdÞ. Details of this calculation are shown in the appendix. Briefly, the

initial state with a relatively large radius of curvature corresponds to d ¼ 0. As d

increases, the surface becomes curved as particles penetrate the surface due to dilation,

and the radius of curvature decreases. The corresponding stress scales almost linearly

with d, and the scale of the radius of curvature is set by the particle size when the dilation

is around a particle radius. This model prediction is shown in Fig. 13 where d is plotted

vs the predicted stress scale c=rðdÞ. A free parameter for the scale factor of 0.14 on the

stress scale is used to fit the data. The qualitative agreement in the model slope with the

data in Fig. 13 confirms that the confining stress scaling as c=r is a good estimate for the

measured shear stress. The fit coefficient within an order of magnitude of 1 confirms that

the amount of dilation is on the right scale to provide the measured stress.

The dotted line in Fig. 13 corresponds to the dilation value where the contact line is

expected to reach the second layer of particles from the surface (see Appendix for
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calculation). At this point, the confining stress should increase rapidly as more contacts

are made with small curvature. Because the calculation of confining stress from dilation

is not monotonic around this region, the dilation is not single-valued function of confin-

ing stress. The lower portion of the curve is expected to be unstable since more dilation

would provide less of the stress required to confine the suspension to a smaller volume.

The agreement of the dilation measurements with the dotted line beyond the point where

the calculation becomes multivalued supports this interpretation.

As the dilation increases and the contact line recedes further into the interior, a lower

limit for the value for the curvature must be reached as it is limited by the interstitial gap

size. The corresponding limiting confining pressure has been measured in an analogous

system in which a fluid interface was driven through a porous medium, in which case the

required driving pressure went to 0:7c=a in the limit of zero flow rate [Weitz et al.

(1987)]. This confining stress sets the scale for the upper bound on the component of the

shear stress due to capillary forces on the order of c=a in the limit of large d, although the

exact value of the coefficient should depend on material specific properties such as con-

tact angle and particle roughness. The value of smax ¼ 2 Pa corresponding to the data in

Fig. 13 is significantly below the limiting confining stress regime, suggesting that dilation

by a fraction of a particle width was enough to obtain a fully developed shear flow and

the limiting confining stress is not necessarily reached in the shear thickening regime.

B. Surface tension scaling

To confirm the role of capillary forces, we performed a set of rheological measure-

ments in which we varied the surface tension of the liquid–air interface. To vary this sur-

face tension, we added surfactant to 100 lm glass spheres in water. The surfactant used

was Palmolive dish detergent, which was first mixed in water above the critical micelle

concentration which reduces the surface tension with air by about a factor of 3 compared

to pure water and air. Viscosity curves are shown with and without surfactant and at dif-

ferent packing fractions in Fig. 14. We first compare the viscosity curves for jammed sus-

pensions at / ¼ 0:58 > /c. These viscosity curves correspond to yield stress fluids. The

value of the yield stress is reduced by a factor of 2.4 with the addition of the surfactant,

about the same as the surface tension was reduced.

FIG. 13. Radial dilation d measured as a function of shear stress s for 135 lm polyethylene spheres in silicone

oil. Solid line: predicted relationship between d and s for a model in which there is a confining stress from sur-

face tension s / c=rðdÞ, where the local radius of curvature rðdÞ is calculated geometrically. A proportionality

coefficient of 0.14 shifting the curve horizontally is used to fit the data. Dashed line: dilation value where the

contact line is expected to reach the second layer of particles, resulting in a dramatic increase in confining stress

with dilation.
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We next compare the viscosity curves at / ¼ 0:56 < /c in Fig. 14. The increase in

the viscosity at low shear rates can be attributed to the increase in the zero shear viscosity

with the addition of the surfactant. In terms of stress scales, there is a decrease in smax by

a factor of 2:4 when the surfactant is added, and no resolvable change in smin. The reduc-

tion in both smax and the yield stress sy above /c is comparable to the reduction in surface

tension with the addition of surfactant, again consistent with a model in which these

stresses scale with surface tension.

We note that in principle the addition of surfactant can change other relevant parame-

ters. The stress from surface tension on a boundary typically scales as ðc=rÞ cos h, where
r is the radius of curvature and h is the contact angle, where both c and h can vary with

the addition of surfactant. The addition of a surfactant can reduce h, increasing the stress

from surface tension. However, we start with a liquid that wets glass pretty well, as this

is a requirement to observe shear thickening [Brown et al. (2010a)], so cos h 	 1 even

before the addition of surfactant. The addition of surfactant can also affect the value of

smin in cases where the particle–liquid surface tension is dominant [Brown et al.

(2010a)], but for these 100 lm glass spheres in a wetting liquid the dominant force affect-

ing the onset stress is gravity (Fig. 5).

The results in Fig. 14 suggest that the upper stress scales smax and sj (the scale of the

yield stress for / > /c) scale with the surface tension at the liquid–air interface. To more

generally test the predicted stress scale smax � c=a, including the particle size scaling, we

plot measured values of smax vs c=a for the Discontinuous Shear Thickening suspensions

we have studied in Fig. 15. Each point corresponds to a different suspension, with a wide

range of different particle materials, shapes and sizes, and different liquids. The plotted

value of smax is an average over viscosity curves at several packing fractions. We also

included data from other papers in cases where smax was measured. It is seen that for this

wide variety of suspensions, covering 4 orders of magnitude, smax falls in a band that

scales as the prediction c=a indicated by the solid line. We note that for each Discontinu-

ous Shear Thickening suspension we studied, the two stress scales smax and sj are always

within an order-of-magnitude of each other [as was seen, for example, in Fig. 14 and

Brown and Jaeger (2009)], suggesting that sj also scales with c=a. In many measurements

FIG. 14. Viscosity curves for 100 lm glass spheres in liquids with different values of surface tension. Solid

symbols: particles were suspended in water. Open symbols: particles were suspended in water with surfactant

(above the critical micelle concentration). Triangles: / ¼ 0:58 > /c. Circles: / ¼ 0:56 < /c. Solid line: smax

without surfactant. Dotted line: smax with surfactant. Both smax and the yield stress above /c decreased when the

surface tension was reduced.
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of colloids, the upper end of the shear thickening regime was not reached. If there is an

upper bound, it would have to be above the range measured. This is especially a problem

with colloids because the expected scale of smax for small particles exceeds the measuring

range of many rheometers. For example, our Anton Paar MCR 301 rheometer has an

upper limit of 3800 Pa for the Couette cell or 65 000 Pa for the 25 mm diameter parallel

plate. Such lower bound on smax based on the limited measuring range is illustrated as the

dotted line in Fig. 14, using data from Maranzano and Wagner (2001a) as an example.

There is variation in the value of smax in the band shown in Fig. 15 by about an order

of magnitude. There are many factors that could contribute to the precise value of the

confining stress and the resulting shear stress. For example, the normal stresses do not

have to be exactly the same on each surface as would be the case for a pressure acting on

a fluid. Instead, the stresses are related by a coefficient of order 1 [Janssen (1895); Sperl

(2006)]. Since the confining stress can put a normal stress on the top plate via chains of

particle contacts, a component of the shear stress comes from friction, related to the nor-

mal stress by an effective coefficient of friction as seen in Fig. 9, which can depend on

many factors including particle shape, roughness, and particle interactions. The contact

angle h has been left out of the force equation since it is not known in many cases. The

dependence of dilation on the shear rate must also play a significant role, as seen in Fig.

13. Geometric factors including particle shape and roughness also should play a role that

has not yet been studied. Considering all of these dimensionless factors of order 1 that

can affect the shear stress which are not all known or easily measured, we will not go

beyond using the order-of-magnitude stress scale of c=a as an estimate for smax.

In this section, we proposed that Discontinuous Shear Thickening is due to a confining

stress from surface tension in response to deformation of the liquid–air interface at the

boundary from dilation. We confirmed that the stress increases with dilation, the effect of

FIG. 15. The stress at the upper bound of the shear thickening regime smax for a variety of suspensions plotted

against the confining stress scale from surface tension c=a. Particle materials are listed in the key. Solid sym-

bols: measured by us. Open symbols: polyvinyl chloride [PVC, circles (Hoffman (1972))], polystyrene-

acrylonite [PSAN, down-pointing triangles (Hoffman (1972))], polystyrene [up-pointing triangles (Boersma

et al. (1991))], glass [square (Boersma et al. (1990))], silica [diamond (Bender and Wagner (1996))], CaCO3 [di-

agonal crosses (Egres and Wagner (2005))], PMMA [crossed square (Kalman et al. (2009))], BiOCl [cross (Ber-

trand et al. (2002))], latex [diagonally crossed square (Laun et al. (1991))]. The solid line corresponds to a

scaling smax ¼ 0:1c=a. Dotted line: lower bound on smax for measurements in which smax was not reached [Mar-

anzano and Wagner (2001a)], which often occurs in colloid measurements.
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surface tension, and showed that smax scales with the confining stress scale c=a from sur-

face tension with more than 30 suspensions that cover four decades of particle size.

X. SOLID BOUNDARIES

In Sec. IX, we showed that under boundary conditions such that particles penetrate the

liquid–air interface, surface tension provides the confining stress that is responsible for

Discontinuous Shear Thickening. While a liquid–air interface at the boundary is typical

for rheometer measurements, closed systems with solid walls are also of interest. In this

section, we will use a solid-walled rheometer setup to investigate the role of the confining

stresses in closed systems.

For measurements in a closed system, we used the parallel plate setup with solid walls

shown in Fig. 1(b). The hard walls confined large grains within the container volume

without the need for the surface tension of the liquid. Thus, we can also determine the

role of the liquid by comparing measurements with and without liquid. We first show

stress vs shear-rate curves for shear rate controlled measurements of dry 500 lm glass

spheres in Fig. 16. Without liquid, the packing fraction is determined by the container

volume which can be varied with the gap size. Thus, for a series of measurements with a

fixed volume of particles, the gap height determines the packing fraction, with smaller

gaps corresponding to higher packing fractions. We give packing fraction values accurate

to three decimal places relative to each other to compare curves in Fig. 16, but absolute

uncertainties on packing fractions are still around 0.01.

An important result from Fig. 16 is that the curves show Discontinuous Shear Thick-

ening that is qualitatively similar to measurements of suspensions in standard rheology

setups, despite the fact that there is no liquid. Thus, the interstitial liquid or viscous

stresses are not a necessary component for shear thickening when the grains are confined

by other means.

A large hysteresis loop can be seen for / ¼ 0:625 in Fig. 16. This is the threshold

beyond which—at larger gap sizes, corresponding to lower packing fractions—not only

the yield stress but also the measured shear stress was below the resolution limit, suggest-

ing contact between the plate and grains was lost. This emphasizes that a key role of the

FIG. 16. Stress vs shear rate for 500 lm diameter glass spheres in a solid-walled rhoemeter with no liquid.

Packing fractions / are shown in the key; higher curves correspond to larger /. Discontinuous Shear Thickening

is still seen, confirming that viscous interactions are not necessary.
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liquid is simply to keep contact with the plates and transmit stress between the particles

and the plate.

We repeated these measurements with water as a solvent filling the measurement vol-

ume and the surrounding volume so there was no liquid–air interface near any particles.

With water, contact between the suspension and plates could be maintained at larger gaps

(lower packing fractions). However, no significant difference was seen in the qualitative

aspects of Discontinuous Shear Thickening or in the scale of smax with or without water.

Notably, the scale of smax with the solid wall is almost 2 orders of magnitude higher than

for the same suspension in the parallel plate setup with a liquid–air interface (Fig. 15).

An upper bound on the jamming transition can be identified by the point where the

shear stress drops below the measurement resolution at / ¼ 0:62. The jamming transition

can be at a significantly higher packing fraction dry than with liquid because of the larger

density difference between the particles and surrounding fluid [Onoda and Liniger

(1990)]. With a solid wall, the yield stress did not plateau at high packing fractions like

in the case of a liquid–air interface, but rather increased dramatically as the packing frac-

tion was increased as seen in Fig. 16. This continued up to the maximum stress the rhe-

ometer can apply. This can be expected if the confining stress comes from the stiffness of

either the wall or the particles, in which case the confining stress increases as the solids

are further compressed [O’Hern et al. (2003)]. This is in contrast to the confining stress

from surface tension which is limited by the capillary stress which reaches a plateau

value as packing fraction is increased beyond jamming [Brown and Jaeger (2009)] due to

the fact that the minimum radius of curvature is set by the particle size.

To connect smax to a confining stress for closed systems, we made measurements of

the compressional stiffness of the tool and sample in series. We observed that the rear-

rangement of particles under shear makes the suspensions much more compliant than

under compression alone. Thus, we sheared the samples while measuring the compres-

sional stiffness to better match the usual experimental conditions. The sample was slowly

compressing at a fixed rate of 0.25 lm/s while also shearing at a fixed rate of 1 Hz

(3 mm/s). The shear rate was much faster than the compression rate so that the packing

has time to rearrange as it is being compressed, but slow enough that the shear stress is

still near the zero shear rate limit as seen in Fig. 16. The measured shear and normal

stresses are shown in Fig. 17. We note that the stiffness under shear is much less than the

value obtained by compressing the sandpaper by itself, which is the weakest component

of the wall. Thus, the presence of the grains has a significant effect on the effective stiff-

ness, despite the fact that the material stiffness is much higher than that of the sandpaper.

In the case with a liquid–air interface, we found the confining stress to scale roughly as

�dc=a2 due to linear compression of the boundary from dilation (Fig. 13). If for the solid

walls, the confining stress also comes from compression of the boundary, it should provide

a restoring stress in response to dilation of d@s=@d. To obtain an analog for the surface ten-
sion so that the confining stress scale can be written as dk=a2, we define a stiffness per par-
ticle as k ¼ �a2@s=@d. This differs from the usual definition of stiffness for an elastic

material: rather than being proportional to wall surface area, it is normalized for a wall

whose cross-sectional area is a2, near that of a particle. Since this normalization for the

per-particle stiffness makes it independent of the system size, it is more physically relevant

in discussions of stress scales. We can obtain k from the slope in Fig. 17.

We plot values of smax vs a confining stress scale equal to the boundary stiffness per

particle over particle size k=a in Fig. 18 each for the wet and dry 500 lm glass spheres.

We also measured a set of stress/shear-rate curves and compression curves for the wet

glass spheres with a layer of soft foam rubber inserted between the top plate and sample

as shown in Fig. 1(b), and the corresponding values of smax and k=a are also plotted in
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Fig. 18. We also measured a set of data without sandpaper on the plate surfaces, which

resulted in a much lower stiffness than with the sandpaper, despite having a harder sur-

face, suggesting significant slip. For comparison to the standard parallel plate measure-

ments with a liquid–air interface, we plot smax vs c=a for one such experiment with the

same particles, using the surface tension c as a proxy for the stiffness per particle, which

was also plotted in Fig. 15. As a test comparing to directly observed dilation, we plot

smax vs an effective stiffness per particle taken from Fig. 13 as k ¼ a2ð@d=@sÞ�1
in the

nearly linear regime. All these experiments are consistent with the relationship

smax ¼ 0:05k=a. This scaling confirms that, for a wide range of boundary conditions

including both liquid and solid boundaries, and even when there is a large amount of slip,

the scale of smax is set by the confining stress which is proportional to the per-particle

stiffness of the boundary. The similar values obtained when using k=a or c=a as the effec-
tive stiffness confirms that the per-particle stiffness k generalizes the role of the surface

tension with a liquid–air interface to the case with a solid wall. This means that the slopes

of Figs. 15 and 18 are related, although with the value of the coefficient relating smax and

k=a being suspension dependent. The comparison with direct measurements of dilation

from Fig. 13 confirms that the confining stress could be written directly as sconf ¼ dk=a2

for a linear elastic boundary.

Since k=a represents the restoring stress from the boundary for d ¼ a, and the coupling

coefficient between shear and normal stresses tends to be close to 1 (Fig. 9), the slope of

0.05 between smax and k=a suggests that the restoring stress of the boundary is against a di-
lation of approximately d 	 0:05a at smax. This is the order of the expected dilation

required to mobilize a single layer of shear, for example, to allow spherical particles to

escape out of the wells they can sit it at the interstices between three neighboring particles.

Similarly, dilation on the order of a percent of the sample thickness is typical of measure-

ments of sheared granular packings [Reynolds (1885); Onoda and Liniger (1990)].

In this section, we showed that for closed systems, the maximum stress in the shear

thickening regime smax is determined by the wall stiffness. In the experiments with a

liquid–air interface, the stiffness of that interface determined the confining stress, while in

the solid wall experiments, the stiffness of the top wall with the soft layer determined the

FIG. 17. Shear stress s (open triangles) and normal stress sN (solid circles) vs gap size d for a sample of 500 lm

glass spheres with no liquid under slow compression with solid walls. The sample is compressed at a rate of

0.25 lm/s and sheared at a rate of 1 Hz (3 mm/s). The shear stress is close to the zero shear rate limit, so the

measured s is a good proxy for the yield stress. The solid line is a linear fit used to obtain the per-particle stiff-

ness k of the system of sheared grains and solid wall in series.
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confining stress. In each case, the stiffness of the most compliant boundary determined the

confining stress. This is due to the fact that the stiffness of a collection of materials in series

is determined by the most compliant material. Whether the most compliant boundary is on

the side or the top does not matter, since the compressional relation between shear and nor-

mal stresses suggests that the stresses are similar on all of the boundaries [Janssen (1895)].

XI. DISCUSSION

A. Nonlocal constitutive relation

In this subsection, we combine the results of the previous sections to write the full con-

stitutive relation for the mechanism we have found for Discontinuous Shear Thickening in

dense suspensions. In Sec. VI, we showed a constitutive relation for the shear stress

accounting for viscous and gravitational forces. The shear profile measurements implied

that the dramatic increase in stress associated with Discontinuous Shear Thickening could

not be attributed to a local shear rate dependence from viscous stresses, whose contribu-

tion appeared to be relatively constant in the shear thickening regime. Instead, we showed

in Sec. VII that the shear stress was coupled to the normal stress, with a proportionality

given by an effective friction coefficient l. In turn, the normal stress was shown to come

from the restoring force of the boundary in response to dilation (Secs. IX and X). We can

now fully express the constitutive relation for local shear stress sl based on Eq. (3) with

the uniform term sc explicitly separated into the confining stress contribution as well as a

constant contribution from other particle interactions sint

sl ¼ g�ð/Þ _clf ðReÞ þ sgh=d þ lsconfðdÞ þ sint : (8)

The stress terms represent, from left to right, viscous and inertial hydrodynamics, gravity,

confinement, and particle attractions. The confinement term simplifies to sconfðdÞ ¼ dk=a2

FIG. 18. Maximum stress of the shear thickening regime smax vs the confining stress scale k=a due to the restor-

ing force of the boundary with per-particle stiffness k. Data are for 500 lm glass spheres under several different

boundary conditions. Solid triangle: hard wall rheometer setup, with particles suspended in water. Open triangle:

hard wall, no liquid. Solid square: hard wall with a soft foam rubber insert, with particles suspended in water.

Open circle: in a standard parallel plate setup with a liquid–air interface, where we use the surface tension to

represent the per-particle stiffness (i.e., k ¼ c). Solid circle: polyethylene in mineral oil from Fig. 13 where we

calculate k ¼ a2ð@d=@sÞ�1
. The solid line has a slope of 1, corresponding to a stress response proportional to

the restoring force of the boundary against a typical dilation of the sample by d 	 0:05a.
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for a linear elastic boundary with per-particle stiffness k in response to dilation d (Fig. 18).

The hydrodynamic term varies with Reynolds number such that f ðReÞ ¼ 1 in the viscous

regime where Re < Rec � 100 and f ðReÞ / Re=Rec in the fully inertial regime where

Re � Rec � 102 (Sec. IV).

While this constitutive relation is approximate, its main use is that it allows for simple

estimates of the stress scales smin, smax, and sj in different regimes, and their comparison

can easily determine whether a system will shear thin or thicken. This includes, for exam-

ple, the requirement that the increase in stress in the confinement term in response to dila-

tion must be large compared to any yield stress from the attraction or gravity terms

[Brown et al. (2010a)]. It also delineates the packing fraction regimes that separate iner-

tial and Discontinuous Shear Thickening as seen in Fig. 3. The difference between the

boundary conditions of fixed gap and fixed normal force as in Fig. 9 can be characterized

by whether the confinement term is fixed by the boundary or varies in response to

dilation.

The local constitutive relation can also simply explain observations under different

measuring geometries, for example, in suspensions where gravity is dominant. In a paral-

lel plate geometry, we found settling suspensions to exhibit an apparently Newtonian

scaling behavior below smin because the plate measures the shear stress at a depth h ¼ 0.

In a Couette geometry where the moving wall is on the side, any density mismatch was

found to result in a yield stress scaling as sg � DqgH [Fall et al. (2009)], since the aver-

age depth at the moving wall is hhi ¼ H=2.
It is interesting to note that the direct shear-rate dependence in Eq. (8) is inherently

shear thinning in the low-Re regime where Discontinuous Shear Thickening is observed.

Similarly, we found that the local viscosity in the bulk obtained from shear profile meas-

urements corresponded to shear thinning (Figs. 6 and 7), even for a global mechanical

response that corresponded to shear thickening. The explanation for this apparent contra-

diction is that most of the shear stress is due to frictional contacts and normal stress in

response to frustrated dilation, which only indirectly depends on shear rate. This response

is nonlocal in the sense that the response depends on the global dilation and boundary

conditions. Dilation can be treated as a global rather than local parameter as long as the

boundary is linearly elastic, which is a good approximation for most solid boundaries and

for surface tension where k ¼ c (Fig. 13), so the average normal stress from the boundary

is proportional to the average strain from dilation, regardless of inhomogeneities. Local

variations only need to be accounted for if the boundary stiffness is nonlinear.

It is notable that the boundary conditions can have an uncommonly large effect on the

normal stress term because it is due to a confining stress. From a hydrodynamic point of

view, the large significance of the boundary conditions and difference between local and

global results is unusual, as it is more typical for the boundary conditions to play a

smaller role, requiring only perturbative corrections to translate between the local and

global rheology. One of the surprising consequences of this is that characterizing rheol-

ogy based solely on local, shear-rate dependent constitutive laws or local viscosities in

the bulk would miss the dramatic phenomenon associated with Discontinuous Shear

Thickening.

We cannot yet fully solve the constitutive relation in Eq. (8) because dilation in sus-

pensions is not yet well-characterized in the Discontinuous Shear Thickening regime of

concentrated suspensions. Specifically, the slope of viscosity curves in the shear thicken-

ing regime should depend on how dilation couples with shear rate, stresses, and packing

fraction. Dilation has been characterized in suspensions that are dominated by viscous

interactions and are not so confined as to frustrate dilation [Prasad and Kytömaa (1995);

Sierou and Brady (2002); Deboeuf et al (2009)]. On the other hand, dilation in dry grains
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does not occur until significantly higher packing fractions, at least in the quasistatic limit

[Onoda and Liniger (1990); Jerkins et al. (2008); Kabla and Senden (2009)]. We specu-

late that the hydrocluster models may be able to bridge this gap by describing the transi-

tion from viscous flow to frustrated dilation with frictional contacts [O’Brien and

Mackay (2000)]. Perhaps if hydrodynamically induced particle clusters [Brady and Bos-

sis (1985)] were to become large enough to span the system to become jammed against

the boundaries, they could lead to the frictional contacts and dilation.

The shear profile measurements of Sec. VI suggest a possible connection between

shear banding and dilation. Figure 13 shows a single scaling for the dilation with shear

stress through the transition at smax. Since the stress/shear-rate curve corresponds to Dis-

continuous Shear thickening, this implies the dilation d increases rapidly with shear rate

in the shear thickening regime, then increases less rapidly above smax. Suggestively, this

rapid increase of dilation with shear rate corresponds to the regime where the shear band

is widening (Fig. 6), and the dilation increases less rapidly with shear rate once the shear

band stops widening. We cannot say for sure that these observations are connected, but it

may be that the rapid increase in dilation is required to involve more layers of particles in

the shear flow.

B. Dominant stress scales for the onset

In this subsection, we discuss the different scaling laws for the onset stress smin found

in different parameter regimes, including suspensions dominated by gravity and colloids

dominated by Brownian motion and electrostatic forces. We suggest that different scal-

ings for smin can be understood as the dominant stress scales of particle interactions in

each system, and these observations suggest a more general requirement for the onset of

shear thickening.

We first compare the different scaling laws for the onset stress smin to identify com-

mon features of the different regimes. In Sec. V, we found that for suspensions of par-

ticles large enough to settle the scale of smin is set by gravity such that the onset of shear

thickening required enough shear stress to lift the weight of the top layer of particles to

initiate shear and dilation (Fig. 5). In a previous work, we considered the effect of

induced particle attractions in response to external electric and magnetic fields [Brown

et al. (2010a)]. In each case, the attractions resulted in a yield stress. The scale of smin

was set by the shear stress required to overcome roughly the two-particle attractive force

(per cross-sectional area of a particle) to shear them apart. In both the gravity and attrac-

tion regimes, the shear stress must simply exceed all local stress barriers from any source

that are responsible for preventing relative shear between particles. While this generaliza-

tion is sufficient for frictional systems, hydrodynamic systems can exhibit shear at

stresses significantly below the onset of shear thickening. One such regime is colloids sta-

bilized by an electrostatic zeta potential f. Maranzano and Wagner (2001a) measured

smin for such particles from 80 to 700 nm in diameter. A power law fit to their measure-

ments for the onset of shear thickening gave smin / a�2:1160:16. An electrostatic calcula-

tion of the two-particle repulsive force over the cross-sectional area of spherical particles

gives a stress scale of 16�f2=a2 for a liquid permittivity �. This has both the same scaling

and magnitude within about a factor of 2 of their data, consistent with the idea that the

scaling for the onset of shear thickening is determined by the interaction stress scale. The

same scaling was argued for by Hoffman (1998), although with a somewhat different

mechanism in mind. In another regime dominated by Brownian motion, the onset of

shear thickening has been found to correspond to an onset stress smin ¼ 50kT=3pa3 [Mar-

anzano and Wagner (2001b); Gopalakrishnan and Zukoski (2004)]. This scale is the
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osmotic pressure, which is effectively the pressure which neighboring particles interact

with. The common feature in each of these scaling regimes is that the onset of shear

thickening corresponds to the dominant stress scale at which neighboring particles inter-

act, whether they interact by induced dipoles, gravity, zeta potential, or osmotic pressure,

in each case. With particular relevance to mechanisms for shear thickening, these stress

barriers prevent compressive shear of particles into each other, and once these stress bar-

riers are overcome, compressive interactions are possible which could lead to dilation

against a confining boundary to produce Discontinuous Shear Thickening.

It is notable that the scaling laws for the onset stress smin have been found to work

both for Discontinuous and Continuous Shear Thickening [Maranzano and Wagner

(2001b); Gopalakrishnan and Zukoski (2004)], even though in some cases the mecha-

nisms may be different. We suggest that the generality of the onset law arises because the

scalings for smin come from interaction scales that are not directly responsible for shear

thickening; rather they are preventing it. This is why different proposed models have pre-

dicted the same scaling law for smin in the zeta-potential dominated regime, including the

hydrocluster model [Maranzano and Wagner (2001a)], the order–disorder transition

model [Hoffman (1998)], and the dilational model, even though the proposed mecha-

nisms for shear thickening are very different. The hydrocluster model which describes

Continuous Shear Thickening also requires compressional flow between particles to

occur, and the same stress scales would prevent both mechanisms. Thus, the requirement

for shear thickening that the shear stress exceed the various stress scales of particle inter-

actions that prevent compressive shear seems to be valid for both Continuous and Dis-

continuous Shear Thickening, in both suspensions and colloids, and whether the particle

interactions are frictional or hydrodynamic in nature, as long as the mechanism for shear

thickening requires compressional interactions.

Many of these same stress scales that determine the onset of shear thickening can also

determine the yield stress [Brown et al. (2010a)], with the exception of osmotic pressure.

Just above the yield stress, the confining stress can start to grow as shear causes dilation,

but there must be at least a small shear thinning regime before the confining stress

becomes dominant and shear thickening is seen [Gopalakrishnan and Zukoski (2004);

Brown et al. (2010a)]. Indeed, Metzner and Whitlock (1958) found the onset of dilatancy

at slightly lower shear rates than the onset of shear thickening. In other words, the observ-

able onset of shear thickening corresponds to a transition in the dominance of different

stresses and is not necessarily where the mechanism for shear thickening sets in.

While we have described a mechanism for Discontinuous Shear Thickening that is

based on generic phenomena such as dilation, not all suspensions and colloids exhibit

this behavior at high packing fractions. This can be explained by the relative importance

of different stress scales. If any other particle interaction scales exceed the confining

stress from surface tension, we would expect shear thinning mechanisms to be dominant

over shear thickening [Brown et al. (2010a)]. Some of the interactions that we did not ex-

plicitly mention above include hydrogen bonding [Raghavan et al. (2000)], depletion

[Gopalakrishnan and Zukoski (2004)], or a particle–liquid surface tension [Barnes

(1989); Brown et al. (2010a)]. One reason that many dense suspensions and colloids do

not exhibit shear thickening is that in many of these systems other stress scales exceed

the confining stress scale so they do not have any observable shear thickening regime.

Another example of shear thinning stresses hiding shear thickening can be seen in

Fig. 5 for settling suspensions. The maximum particle size at which shear thickening was

found was about 1000 lm. At such a large scale, the weight of the particles contributes to

a large frictional stress smin � Dqga, which increases with particle size. This can over-

whelm the scale of the confining stress from surface tension smax � c=a, which decreases
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with particle size. The balance between these two stress scales occurs at a particle size

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=ðDqgÞ
p

� 1000 lm, above which the shear thinning stresses dominate, in agree-

ment with the maximum size particle found to shear thicken. This transition scale could

be interpreted as a particle capillary length scale which differs from the usual capillary

length in two ways. First, this particle capillary length depends on the density difference

rather than just a liquid density, so density matching could allow for shear thickening of

larger particles. Second, this particle capillary length depends on particle size rather than

system size. This means surface tension effects can be seen in suspensions on much

larger scales than would be expected based on the usual capillary length. A similar result

was found by the work of Loimer et al. (2002) on free-surface flows of dense suspen-

sions, in which they found effective stresses from surface tension scaling as c=a.

C. Connection to confining stresses in other systems

In this subsection, we discuss similarities of the role of the confining stress to other sys-

tems, including colloids, soil mechanics, and jammed systems. Similar to the case for smin, we

also suggest that different scalings for smax can be understood in a more general framework.

We found the upper end of the shear thickening regime smax to be set by the maximum

confining stress which comes from the restoring force when grains dilate against a bound-

ary, either from surface tension when there is a liquid–air interface (Figs. 14 and 15) or

by the stiffness of the wall when all boundaries are solid (Fig. 18). More generally, this

role of the confining stress requires only compressional interactions between particles

that lead to dilation, whether the forces are transmitted via frictional interactions as we

showed in Sec. VII, or through lubrication interactions as suggested by hydrodynamic

models. The importance of the confining stress can also be independent of what mecha-

nism initiates shear thickening as long as the particle interactions are compressive.

In the discussions of the confining stress so far, the most compliant boundary set the

response. This is because the stiffness of a system of several elements with very different

stiffnesses in series will generally be determined by the most compliant element in the se-

ries. In some systems, the particles could be the most compliant element. This regime

would be relevant when all of the boundaries are hard in comparison to the particles, and

it has been proposed that such a regime may be reached for small colloidal particles,

where the confining stress from surface tension is larger [Wagner and Brady (2009)]. If

there is a lubrication layer of liquid between particles, the maximum confining stress

would be coupled to the viscosity because the particle compression depends on the stress

in the lubrication layer. For solid contacts between elastic spheres, the confining stress

would be limited by a scale of ðd=RÞ3=2Ep where Ep is the compressional modulus of the

particles and d=R corresponds to the compressional strain on the sample. The 3=2 power

comes from the contact between two spherical surfaces as opposed to the power of 1 for

flat surfaces. For the hard particles we used, with Ep � 1010 and d 	 10�2, this scale is of

order 107 Pa, which is much stiffer than the liquid–air interface. Stresses up to about 107

Pa have been observed in the shear thickening regime for silica particles in compressional

flows with solid walls [Lim et al. (2010)], which is consistent with the idea that much

larger confining stresses can be reached for hard walls and particle stiffness becomes the

limiting factor. On the other hand, if the particles are extremely soft, the confining stress

could be below smin. This seems to be the case in a suspension of soft gel particles with

modulus on the order 104 Pa in which only shear thinning was observed instead of shear

thickening as the jamming transition was approached [Nordstrom et al. (2010)]. So far, it

is not certain whether or not Discontinuous Shear Thickening is controlled by a confining

stress in the colloid regime. Despite the comparison between measurements of smax and
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the confining stress from surface tension in Fig. 15 and the arguments for a particle-

stiffness limited confining stress, there is still no direct experimental evidence with a sys-

tematic control of boundary or particle stiffnesses to conclusively determine whether Dis-

continuous Shear Thickening in colloids is limited by a confining stress.

While simulations of suspensions have successfully modeled milder, Continuous Shear

Thickening effects, so far most have failed to produce the large, steady-state stress

increases associated with Discontinuous Shear Thickening [Brady and Bossis (1985); Mel-

rose et al. (1996); Farr et al. (1997); Bergenholtz et al. (2002); Melrose and Ball (2004a,

2004b); Grebenkov et al. (2008)]. These simulations have included viscous interactions as

well as various interparticle interactions. Most have focused on bulk behavior, usually

using periodic boundary conditions, such as Lees-Edwards, to avoid dealing with bound-

ary effects. Now that we have recognized that the boundary conditions and especially the

confining stresses are important, it seems likely that many of these simulations did not find

Discontinuous Shear Thickening because of their treatment of the boundary conditions.

The one simulation we are aware of that has produced Discontinuous Shear Thickening

was a molecular dynamics simulation of two-dimensional granular shear flow with fric-

tional contacts between particles but no liquid or viscous interactions [Otsuki and Haya-

kawa (2010)]. Besides a steep sð _cÞ at packing fractions just below the jamming transition,

the scale of the normal and shear stresses was found to be set by the particle modulus,

which in that simulation was the only scale that could limit a confining stress. This may be

a minimal model for Discontinuous Shear Thickening in two dimensions, since it includes

particle–particle contacts with a restoring force but leaves out the liquid.

While we have described a mechanism for shear thickening due to confining stresses in

shear flows, the same principle could apply to extensional and compressional flows because

stresses tend to be easily redistributed in different directions when the shear and normal

stresses are proportional. Visible dilation at the surface was seen to correspond to shear thick-

ening in an extensional flow [Smith et al. (2010)]. The maximum stress in the shear thicken-

ing regime smax in extensional flows [Chellamuthu et al. (2009); Bischoff White et al.

(2010)] has been found to be about an order of magnitude higher than smax based on shear

measurements, but this could still be consistent with a scale of c=a. While these isolated

result are promising, our model has not yet been extensively tested in extensional flows.

Systems where the mechanics are determined by a confining stress are already well-

known, for example, in granular systems, especially soil mechanics [Lambe and Whitman

(1969)]. One lesson to take away from soil mechanics is that even though the global

response of the system is set by the boundary conditions, the scale of the stress response is

not dependent on sample size or shape. This is because forces will transmit throughout the

bulk across particle contacts, and forces must balance across the system, regardless of how

far across the bulk is. This makes stress the appropriate size-independent force scale as in

other continuum systems. In Discontinuous Shear Thickening suspensions, the same quali-

tative behavior has been seen from as few as two particle layers [Brown et al. (2010b)] to

tens of thousands of layers [Maranzano and Wagner (2001a)]. Quantitatively, the signifi-

cance of the surface area to volume ratio can be checked by varying the gap size in a paral-

lel plate geometry for a fixed volume of sample. For such measurements at constant shear

rate, we found that the percentage change in stress was ð0:2060:22Þ% over a range where

the surface area changed by 17% [Brown et al. (2010b)]. This is consistent with a shear

stress independent of surface area, but inconsistent with a stress proportional to surface

area. Furthermore, similar results have been found when comparing Couette cell measure-

ments with parallel plate measurements [Fall et al. (2008)]. Together, these observations

support the argument that the relevant stress scale for shear thickening is not dependent on

the system size or shape.
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It has been suggested that Discontinuous Shear Thickening is a form of jamming [Farr

et al. (1997); Cates et al. (1998); Hébraud and Lootens (2005); Maranzano and Wagner

(2001a); Fall et al. (2008)]. Visible shear in and above the shear thickening regime shows

that shear thickening is not jamming in the sense of being associated with a yield stress

or static structures (Figs. 6, 7, and 12). Below the onset of shear thickening, the particles

may be settled or stuck together by attractions; in either case this corresponds to a locally

static structure, and in many cases, the system is jammed with a yield stress below the

shear thickening regime. The shear thickening regime can exist where more of the par-

ticles become involved in shear, i.e., becoming unjammed in the above sense, and it is

the resulting dilation against the boundaries under shear which is responsible for Discon-

tinuous Shear Thickening.

One connection between Discontinuous Shear Thickening and jamming comes from

the observation that they are controlled by the same critical packing fraction /c [Brown

and Jaeger (2009)]. The shear rate at the onset of shear thickening goes to zero in the

limit of /c, suggesting the limiting case of shear thickening corresponds to a yield stress,

i.e., a jammed state, which is also what is found on the other side of /c [Brown and

Jaeger (2009)]. It is suggestive that this is also near the critical point for the onset of dila-

tion in dry granular systems [Onoda and Liniger (1990)], and the increase in dilation with

shear rate must become steeper as this critical point is approached for our model to fit the

data. Whether this feature is relevant for understanding dilation at nonzero shear rates in

dense suspensions is unclear at this point. The other connection between Discontinuous

Shear Thickening and jamming, which was hinted at by Holmes et al. (2003, 2005) and

Melrose and Ball (2004b), comes from the stress response, whose scales smax and sj,

respectively, are set by a confining stress due to the penetration of particles through the

liquid–air interface in each case and which is transmitted through the system via force

chains. This occurs with dilation under shear for Discontinuous Shear Thickening (Figs.

12 and 13), and at rest for jammed suspensions [Brown et al. (2011)]. In terms of the

stress response, Discontinuous Shear Thickening could be considered a dynamic exten-

sion of jamming, but so far there is not yet a formalism for describing this.

D. Summary of the mechanism for discontinuous shear thickening

The requirements for Discontinuous Shear Thickening under the mechanism we pro-

posed, not necessarily limited to suspensions, can be summarized as

(1) Dilation: The particle packing must attempt to dilate with increasing shear rate.

(2) Frustration: There must be geometric constraints that at least partially frustrate dila-

tion. These constraints can come from surface tension at a liquid–air interface, the

walls surrounding the system, or the particle stiffness, for example. This frustration

usually requires a high packing fraction, close to the jamming transition.

(3) Confining stress: These constraints must provide a confining stress such that the most

compliant constraint produces a restoring force that increases with dilational strain.

(4) Dominance: This confining stress must significantly exceed all stresses that prevent

shear between grains and dilation, such as interparticle interactions or gravity. Other-

wise, there is not enough stress increase from dilation to result in a positive slope on

a viscosity curve, and the global rheology may be shear thinning instead.

Here, we compare this mechanism to others that have been proposed for colloids and

suspensions. Hoffman (1982) argued that “[Discontinuous Shear Thickening] will occur

in concentrated suspensions whenever the particles can segregate into layers parallel to

planes of constant shear but are constrained from free rotation at levels below some
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critical level of stress.” Our model is in agreement with that of Hoffman (1982) in the

sense that the onset stress is determined by a point where the shear stress is large enough

to shear particles in such a way to cause dilation. Hoffman (1982) argued for the same

onset scaling law with the stress scale corresponding to the interaction between zeta

potentials of neighboring particles. Our proposed scaling for the confining stress smax

also gives the scale measured by Hoffman (1972), whose data are included in Fig. 15.

While Hoffman observed an order–disorder transition along with Discontinuous Shear

Thickening, it was shown that such a transition is not necessary [Maranzano and Wagner

(2002); Egres and Wagner (2005); Egres et al. (2006)], which suggests that the order–-

disorder transition is not the key to explaining the stresses.

Many other papers have supported a hydrocluster mechanism [Brady and Bossis

(1985); Maranzano and Wagner (2001a); Shenoy and Wagner (2005)] based on the abil-

ity of those models to predict some of the scalings for the onset smin. While hydrocluster

models have been successful at predicting weaker, continuous shear thickening, we sug-

gest that for the much higher stress scales found in Discontinuous Shear Thickening to be

reached, an additional mechanism is likely required to introduce another stress scale; for

example, compression against the boundary introduces a confining stress scale from

the boundary stiffness. The hydrocluster model has been successful at describing the

onset stress smin for Discontinuous Shear Thickening in some cases, but we have argued

that the scalings for both smin and smax predicted by different models for shear thickening

can be more simply understood in terms of dominant stress scales, which are not depend-

ent on whether stress transfer is through frictional or hydrodynamic interactions, or

what mechanism initiates shear thickening. In this discussion, we have suggested that the

dilational model based on suspensions could also apply to the colloid regime. While we

have been able to compare our model to known scalings for smin and to measurements of

smax (Fig. 15), more data are needed to directly test the dilational model in the colloid

regime.

XII. CONCLUSIONS

In this paper, we proposed and experimentally validated a model for Discontinuous

Shear Thickening in suspensions, which we briefly summarize here. The onset of shear

thickening smin occurs when the grain packing starts to dilate (Figs. 11 and 12), which

requires that the applied shear stress overcome any interparticle stresses preventing com-

pressive shear between particles (Figs. 5–7). Dilation in turn causes the particles to push

against the boundary, typically the liquid–air interface for suspensions open to the air,

which pushes back with a restoring force to produce a confining stress on the suspension

(Figs. 13–15). The resulting normal stresses are transmitted through the packing via fric-

tional interactions (Figs. 8–10), resulting in a rapid increase in shear stress with shear

rate corresponding to Discontinuous Shear Thickening. We generalized this shear thick-

ening mechanism to other sources of a confining stress by showing that, when instead

grains are confined by solid walls and have no liquid–air interface, smax is set by the stiff-

ness of the most compliant boundary (Figs. 16–18).

These results allowed us to suggest a generalization of the scaling laws for the stresses

that bound the shear thickening regime to systems in other parameter regimes: the stress

required for compressional shear between particles for smin (Sec. XI B) and the confining

stress for smax (Sec. XI C). We find that the experimental results can be described by a

nonlocal constitutive relation where the stress does not come directly from the local shear

rate, but where Discontinuous Shear Thickening comes out of a frictional term from the

confining stress at the boundary, which depends on the global dilation (Sec. XI A).
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APPENDIX: CALCULATION OF CONFINING STRESS AT LIQUID–AIR

INTERFACE FROM DILATION

To connect the confining stress at the liquid–air interface to the measured dilation d, a

model is needed for the interface geometry. For simplicity, we will assume spherical par-

ticles with a contact angle h ¼ 0 at the liquid–solid–air contact line, since to obtain shear

thickening the liquid must wet the particles. For this contact angle, the interface geometry

is equivalent to a sphere of air of radius r in contact with particles at the surface. We will

calculate the geometry for a characteristic radius of curvature as if it is the same at each

interstice between particles, and use these mean single-particle calculations as an esti-

mate for the surface as a whole, ignoring variations in the surface curvature. The point of

contact is defined by an angle a relative to horizontal as shown in Fig. 19. The packing

fraction of particles on the two dimensional surface will be represented by /2D. As an

estimate, we will use the value /2D ¼ 0:84 which corresponds to random close packing

in two dimensions [O’Hern et al. (2002)]. This geometry gives enough constraints to

relate the radius of curvature r to the contact angle. The dilation d can be connected to

this geometry using conservation of volume. The confining stress scale from surface ten-

sion can then be calculated as proportional to c=r as a function of d.

From the geometry in Fig. 19, the vertical components of the dimensions can be used

to relate the radius of curvature to the contact angle via

r sin a ¼ a

2
ð1� sin aÞ þ rm : (A1)

The minimum radius of curvature rm comes from the minimum radius of the interstitial

gap between particles. At an interstice between three particles in contact, this is

rm=a ¼
ffiffiffiffiffiffiffiffi

1=3
p

� 1=2 	 0:26 in three dimensions, while in two dimensions rm would be

zero. The mean confining stress is modeled as

sconf �
c

r
ð1� /2D sin2 aÞ; (A2)

where 1� /2D sin2 a is the fractional cross-sectional area around the outer edge covered

by the liquid–air interface.

Next, we relate the dilation d to a. Conservation of volume requires that the dilation

match the enclosed volume of air per particle DV, up to the maximum penetration of the

particle when using the initial condition that the surface is flat (r ¼ 1) for d ¼ 0 gives

d ¼ 4/2DDVðr; aÞ
pa2

: (A3)

The volume DV can be calculated as

DV ¼ 2Vcap þ Vi; (A4)
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where Vcap is the volume of a spherical cap interior to the point of contact (of which there

are two per particle)

Vcap ¼
pr3

3
ð1� cos aÞ2ð2þ cos aÞ; (A5)

and Vi comes from integrating the fluid volume in the mean surface normal direction

from the furthest point of penetration of the particle up to the point of contact:

Vi ¼
ða

0

pa3

4
sin a0

1

/2D

� sin2 a0
� �

da0 ¼ pa3

4

1� cos a

/2D

� cosð3aÞ � 9 cos aþ 8

12

� �

:

(A6)

With Eqs. (A1)–(A3) relating sconf , d, r, and a, they can be solved numerically to obtain a

relationship between d and sconf , with the result shown in Fig. 13.

These equations may be valid until the point where the contact line reaches the 2nd

layer of particles from the surface, beyond which extra contact lines are made. This starts

when the maximum penetration, defined in Fig. 19 as D ¼ ða=2þ rÞð1� cos aÞ, reaches
ffiffiffi

3
p

a=2, which corresponds to the layer width for a hexagonal packing. This limit is

shown as the dashed line in Fig. 13.
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Hébraud, P., and D. Lootens, “Concentrated suspensions under flow: Shear-thickening and jamming,” Mod.

Phys. Lett. B 19(13–14), 613–624 (2005).

Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions: Observation of a

flow instability,” Trans. Soc. Rheol. 16, 155–173 (1972).

Hoffman, R. L., “Discontinuous and dilatant viscosity behaivior in concentrated suspensions. II. Theory and ex-

perimental tests,” J. Colloid Interface Sci. 46, 491–506 (1974).

Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions. III: Necessary con-

ditions for their occurrence in viscometric flows,” Adv. Colloid Interface Sci. 17, 161–184 (1982).

Hoffman, R. L., “Explanations for the cause of shear thickening in concentrated colloidal suspensions,”

J. Rheol. 42(1), 111–123 (1998).

Holmes, C. B., M. Fuchs, and M. E. Cates, “Jamming transitions in a schematic model of suspension rheology,”

Europhys. Lett. 63(2), 240–246 (2003).

Holmes, C. B., M. E. Cates, M. Fuchs, and P. Sollich, “Glass transitions and shear thickening suspension

rheology,” J. Rheol. 49(1), 237–269 (2005).

Jaeger, H. M., S. R. Nagel, and R. P. Behringer, “Granular, solids, liquids, and gases,” Rev. Mod. Phys. 68,

1259–1273 (1996).

Janssen, Z., “Experiments on corn pressure in silo cells,” Z. Ver. Dtsch. Ing. 39, 1045–1049 (1895).
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