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The role of disc-type crystal shape for
micromechanical predictions of elasticity and

strength of hydroxyapatite biomaterials
BY ANDREAS FRITSCH1, CHRISTIAN HELLMICH1,* AND LUC DORMIEUX2

1Institute for Mechanics of Materials and Structures, Vienna University
of Technology (TU Wien), 1040 Vienna, Austria

2École des Ponts Paris Tech, 77455 Marne-la-Vallée, France

The successful design of ceramic bone biomaterials is challenged by two competing
requirements: on the one hand, such materials need to be stiff and strong, which would
suggest a low porosity (of pore sizes in the 10–100 mm range) to be targeted; on the other
hand, bone biomaterials need to be bioactive (in particular vascularized), which suggests a
high porosity of such materials. Conclusively, reliable information on how porosity drives
the stiffness and strength properties of ceramic bone biomaterials (tissue engineering
scaffolds) is of great interest. In this context, mathematical models are increasingly
being introduced into the field. Recently, self-consistent continuum micromechanics
formulations have turned out as expressedly efficient and reliable tools to predict
hydroxyapatite biomaterials’ stiffness and strength, as a function of the biomaterial-
specific porosity, and of the ‘universal’ properties of the individual hydroxyapatite
crystals: their stiffness, strength and shape. However, the precise crystal shape can
be suitably approximated by specific ellipsoidal shapes: while it was shown earlier
that spherical shapes do not lead to satisfactory results, and that acicular shapes
are an appropriate choice, we here concentrate on disc-type crystal shape as, besides
needles, plates are often reported in micrographs of hydroxyapatite biomaterials. Disc-
based model predictions of a substantial set of experimental data on stiffness and
strength of hydroxyapatite biomaterials almost attain the quality of the very satisfactory
needle-based models. This suggests that, as long as the crystal shape is clearly non-
spherical, its precise shape is of secondary importance if stiffness and strength of
hydroxyapatite biomaterials are predicted on the basis of continuum micromechanics,
from their micromorphology and porosity.

Keywords: micromechanics; hydroxyapatite; disc; needle; strength; elasticity

1. Introduction

The successful design of ceramic bone biomaterials is challenged by two competing
requirements (Pereira et al. 2005; Cancedda et al. 2007): on the one hand, such
materials need to be stiff and strong, which would suggest a low porosity (of pore
*Author for correspondence (christian.hellmich@tuwien.ac.at).
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1914 A. Fritsch et al.

Table 1. Nomenclature.

Ar fourth-order strain concentration tensor of phase r
Aest

r estimate of fourth-order strain concentration tensor of phase r
BHA fourth-order stress concentration tensor for HA crystal phases
C fourth-order homogenized stiffness tensor
Cest estimate of fourth-order homogenized stiffness tensor
C0 fourth-order stiffness tensor of infinite matrix surrounding an ellipsoidal inclusion
Cpoly fourth-order homogenized stiffness tensor of biomaterial made of HA
cHA fourth-order stiffness tensor of single HA crystals within the RVE Vpoly
cr fourth-order stiffness tensor of phase r
d characteristic length of inhomogeneity within an RVE
E second-order macroscopic strain tensor
Eexp experimental Young’s modulus of biomaterial made of HA
EHA Young’s modulus of single HA crystals within the RVE Vpoly
Epoly homogenized Young’s modulus of biomaterial made of HA
Ē mean of absolute error between model predictions and experiments
ES standard deviation of relative error between model predictions and experiments
ē normalized mean error between model predictions and experiments

(‘relative error measure’)
eS normalized standard deviation of errors between model predictions and experiments
e1, e2, e3 unit base vectors of Cartesian reference base frame
e′
1, e′

2, e′
3 unit base vectors of Cartesian local base frame for shear failure definition

ew, e4, er unit base vectors of Cartesian local (spherical) base frame attached to disc
F(S) boundary of elastic domain in space of macrostresses
f ultrasonic excitation frequency
fr volume fraction of phase r
fr (sr ) boundary of elastic domain of phase r in space of microstresses
HA hydroxyapatite
I fourth-order identity tensor
J volumetric part of fourth-order identity tensor I

K deviatoric part of fourth-order identity tensor I

kHA bulk modulus of single HA crystals within the RVE Vpoly
kpoly homogenized bulk modulus of biomaterial made of HA
L characteristic length of a structure built up by material RVEs
� characteristic length of RVEs
M mass of an HA biomaterial sample
N vector within the plane of one disc-type crystal phase
Nr number of phases within an RVE
n vector perpendicular to N
P0

r fourth-order Hill tensor characterizing the interaction between the phase r
and the matrix C0

P
poly
disc fourth-order Hill tensor for disc-like inclusion in matrix with stiffness Cpoly

P
poly
sph fourth-order Hill tensor for spherical inclusion in matrix with stiffness Cpoly

q̄exp mean value of experimental data
RVE representative volume element
r , s index for phases
S

esh,0
r fourth-order Eshelby tensor for phase r embedded in matrix C0

Sesh
disc fourth-order Eshelby tensor for disc-like inclusion embedded in isotropic matrix

with stiffness Cpoly
Sesh

sph fourth-order Eshelby tensor for spherical inclusion embedded in isotropic matrix
with stiffness Cpoly

(Continued.)
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Table 1. (Continued.)

tr trace of a second-order tensor
V volume of an HA biomaterial sample
VRVE volume of an RVE
v ultrasonic wave propagation velocity within an HA biomaterial sample
w index denoting weakest phase
x position vector within an RVE
b ratio between uniaxial tensile strength and shear strength of pure HA
dij Kronecker delta (components of second-order identity tensor 1)
3HA second-order strain tensor field within single HA crystals
3r second-order strain tensor field of phase r
w latitudinal coordinate of spherical disc-specific coordinate system (ew, e4, er )
w′ latitudinal coordinate of local shear failure-defining coordinate system (e′

1,e
′
2,e

′
3)

l ultrasonic wavelength
mHA shear modulus of single HA crystals within the RVE Vpoly
mpoly homogenized shear modulus of biomaterial made of HA
nexp experimental Poisson’s ratio of biomaterial made of HA
nHA Poisson’s ratio of single HA crystals within the RVE Vpoly
npoly homogenized Poisson’s ratio of biomaterial made of HA
x displacements within an RVE and at its boundary
rHA mass density of pure HA
rs mass density of an HA biomaterial sample
S second-order macroscopic stress tensor
S

ult,t
poly model-predicted uniaxial tensile strength of biomaterial made of HA

S
ult,c
poly model-predicted uniaxial compressive strength of biomaterial made of HA

S
ult,t
exp experimental uniaxial tensile strength of biomaterial made of HA

S
ult,c
exp experimental uniaxial compressive strength of biomaterial made of HA

Sref component of uniaxial stress tensor S imposed on boundary of
biomaterial made of HA

sHA(4, w) second-order stress tensor within disc-type HA crystal phases
sHA,NN (4, w; j) normal component of stress tensor sHA(4, w) in direction N
sHA,Nn shear component of stress tensor sHA(4, w) acting in planes orthogonal

(4, w; j; u) to the disc plane
s

ult,t
HA uniaxial tensile strength of pure HA

s
ult,s
HA shear strength of pure HA

sr second-order stress tensor averaged over phase r
4 longitudinal coordinate of spherical disc-specific coordinate system (ew, e4, er )
4′ longitudinal coordinate of local shear failure-defining coordinate system

(e′
1, e

′
2, e

′
3)

f volume fraction of pores within RVE of porous HA biomaterial
j angle defining vector N in ew, e4-plane
u angle defining vector n in e′

1, e′
2-plane

vV boundary of an RVE
1 second-order identity tensor
〈(·)〉V = average of quantity (.) over volume V

1/V
∫

V ()̇dV
· first-order tensor contraction
: second-order tensor contraction
⊗ dyadic product of tensors
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sizes in the 10–100 mm range) to be targeted; on the other hand, bone biomaterials
need to be bioactive (in particular vascularized), which suggests a high porosity
of such materials. Conclusively, reliable information on how porosity drives the
stiffness and strength properties of ceramic bone biomaterials (tissue engineering
scaffolds) is of great interest, and as exploration of porosity–mechanical property
relationships on a purely experimental basis is likely to become laborious and
uneconomic, mathematical models are increasingly being introduced into the
field. Most of them rely on computer tomography (CT) in combination with the
finite element (FE) method, relying on reasonably guessed homogeneous material
properties for the bulk phase (Lacroix et al. 2006), or on X-ray physics-based
and micromechanics-derived inhomogeneous material properties (Scheiner et al.
2009). However, such approaches aim at translation of comprehensive CT-based
geometrical information, rather than at predicting mechanical properties for poro-
sities which have not yet been realized (and CT scanned). Also, such approaches
are typically restricted to the linear elastic regime of material behaviour
(FE-based biomaterial strength predictions are rarely documented—if at all).

Quite recently, continuum micromechanics formulations (Hill 1963; Zaoui 2002)
have turned out as a valuable alternative for predicting porosity–mechanical
property relationships on the basis of microstructural mechanical interactions in
ceramic bone biomaterials (Fritsch et al. 2007, 2009; Malasoma et al. 2008): such
models do not resolve all details of the materials’ microstructure (which, as a rule,
are not known anyway), but consider essential morphological features (shapes) of
homogeneous subdomains (phases) within a representative volume element (RVE)
of the investigated biomaterial. In our case, both the intercrystalline pores and the
ceramic crystals are modelled as ellipsoidal inclusions in an infinite matrix with
stiffness properties of the overall biomaterial (self-consistent approach; Hershey
1954; Kröner 1958). This matrix is subjected to strains at infinity which—
thanks to the Eshelby–Laws solutions (Eshelby 1957; Laws 1977)—can be semi-
analytically related to the strains in the ellipsoidal inclusions. The aforementioned
strains at infinity are chosen such that the spatial average of the pore and crystal
(inclusion) strains are identical to the strains which are subjected homogeneously
to the boundary of an RVE of the considered biomaterial, in order to mimic
the fact that the spatial average of any kinematically compatible (real) strain
field within the RVE is identical to homogeneous (macroscopic) strains at the
RVE’s boundary. This leads to semi-analytical expressions for the biomaterial’s
stiffness, as a function of the biomaterial’s porosity and of the crystal stiffnesses
(and depending on their shape), but also for the concentration tensors relating
the macroscopic strains to the phase strains. The latter allow for relating the
crystal strains associated with brittle crystal failure to the corresponding overall
macroscopic strain states related to the biomaterial’s failure—hence, they allow
for predicting the biomaterial’s strength as a function of the biomaterial’s
porosity, as well as of the single crystals’ stiffness, strength and shape.

While it was known for a while that the traditional assumption of simply
considering spherical phase shape for the crystals neither allows for biomaterial
stiffness predictions of low porosity materials, nor for strength predictions
at any porosity (which has led to the premature conclusion that continuum
micromechanics approaches might be generally too ‘crude’ for modelling
biomaterials), it turned out recently that consideration of non-spherical crystal
shapes oriented in all space orientations does deliver very satisfactory elasticity
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and strength predictions of brittle biomaterials based on hydroxyapatite (HA).
Specifically, this was shown for needle-type crystals (Fritsch et al. 2009). However,
while it is understood that the considered crystal shape needs to be non-
spherical, the question arises whether the shape necessarily needs to be acicular,
in particular given the fact that, in micrographs, the crystals sometimes appear
to be more plate-shaped. The present paper aims at contributing to answer this
question, by developing a micromechanics representation based on coin-shaped
ceramic crystals, and comparing the model predictions both to experiments and
to predictions of needle-based representations.

After recalling the fundamentals of continuum micromechanics (§2), we
describe a disc-shape-based micromechanical representation of porous HA
biomaterials for predicting these materials’ elastic and strength properties (§3).
To assess the quality of such predictions, the model is then carefully validated
against experimental results (§4). Finally, typical model features are discussed—
and compared with our earlier results (Fritsch et al. 2009) based on needle-type
crystal morphology.

2. Fundamentals of continuum micromechanics

(a) RVE and phase properties

In continuum micromechanics (Hill 1963; Hashin 1983; Suquet 1997; Zaoui
2002), a material is understood as a macrohomogeneous, but microheterogeneous
body filling an RVE with characteristic length �, � � d, d standing for the
characteristic length of inhomogeneities within the RVE, and � � L, L standing
for the characteristic lengths of geometry or loading of a structure built up by the
material defined on the RVE (figure 1). Table 1 contains all mathematical symbols
and abbreviations used throughout the article. In general, the microstructure
within one RVE is so complicated that it cannot be described in complete detail.
Therefore, Nr quasi-homogeneous subdomains with known physical quantities are
reasonably chosen. They are called material phases (figure 1a).

Quantitative phase properties are volume fractions fr of phases r = 1, . . . , Nr ,
as well as elastic and strength properties of phases. As regards phase elasticity,
the fourth-order stiffness tensor cr relates the (average microscopic) second-order
strain tensor in phase r , 3r , to the (average microscopic) second-order stress tensor
in phase r , sr ,

sr = cr : 3r . (2.1)

As regards phase strength, brittle failure can be associated to the boundary of
an elastic domain fr(s) < 0,

fr(s) = 0 (2.2)

defined in the space of microstresses s(x), x being the position vector for locations
within or at the boundary of the RVE.

Also, the spatial arrangement of the phases needs to be specified. In this
respect, two cases are of particular interest: (i) one or several inclusion phases with
different shapes are embedded in a contiguous ‘matrix’ phase (as in a reinforced
composite material) or (ii) mutual contact of all disorderly arranged phases (as
in a polycrystal).
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(a) (b)

d

RVE

RVE

Figure 1. (a) Loading of an RVE, built up by phases r with stiffness cr and strength properties
fr (sr ) = 0, according to continuum micromechanics (Hashin 1983; Zaoui 2002): displacements
x, related to a constant (homogenized) strain E, are imposed at the boundary of the RVE;
(b) structure built up of material defined on RVE (a).

(b) Averaging—homogenization

The central goal of continuum micromechanics is to estimate the mechanical
properties (such as elasticity or strength) of the material defined on the RVE (the
macrohomogeneous, but microheterogeneous medium) from the aforementioned
phase properties. This procedure is referred to as homogenization or one
homogenization step. Therefore, homogeneous (macroscopic) strains E are
imposed onto the RVE, in terms of displacements at its boundary vV :

∀x ∈ vV : x(x) = E · x . (2.3)

As a consequence, the resulting kinematically compatible microstrains 3(x)
throughout the RVE with volume VRVE fulfil the average condition (Hashin 1983),

E = 〈3〉 = 1
VRVE

∫
VRVE

3 dV =
∑

r

fr3r (2.4)

providing a link between micro- and macrostrains. Analogously, homogenized
(macroscopic) stresses S are defined as the spatial average over the RVE, of the
microstresses s(x),

S = 〈s〉 = 1
VRVE

∫
VRVE

s dV =
∑

r

frsr . (2.5)

Homogenized (macroscopic) stresses and strains, S and E, are related by the
homogenized (macroscopic) stiffness tensor C,

S = C : E, (2.6)

Phil. Trans. R. Soc. A (2010)

 on April 1, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The role of disc-type crystal shape 1919

which needs to be linked to the stiffnesses cr , the shape and the spatial
arrangement of the phases (§2a). This link is based on the linear relation
between the homogenized (macroscopic) strain E and the average (microscopic)
strain 3r , resulting from the superposition principle valid for linear elasticity, see
equation (2.1) (Hill 1963). This relation is expressed in terms of the fourth-order
concentration tensors Ar of each of the phases r

3r = Ar : E. (2.7)

Insertion of equation (2.7) into equation (2.1) and averaging over all phases
according to equation (2.5) leads to

S =
∑

r

frcr : Ar : E. (2.8)

From equations (2.8) and (2.6), we can identify the sought relation between the
phase stiffness tensors cr and the overall homogenized stiffness C of the RVE,

C =
∑

r

frcr : Ar . (2.9)

The concentration tensors Ar can be suitably estimated from Eshelby’s
(1957) matrix–inclusion problem, relating the strains in an ellipsoidal inclusion
surrounded by an infinite matrix of stiffness C0 to the strains E0 imposed at
infinity to the latter matrix. Approximating the strains in all phases r by such
inclusion strains (as sketched in figure 3 for the considered HA biomaterials)
delivers

3r = [
I + P

0
r : (cr − C

0)
]−1

: E0, (2.10)

where I, Iijkl = 1/2(dikdjl + dildkj), is the fourth-order unity tensor, dij (Kronecker
delta) are the components of second-order identity tensor 1, and the fourth-order
Hill tensor P0

r accounts for the shape of phase r , represented as an ellipsoidal
inclusion embedded in a fictitious matrix of stiffness C0. For isotropic matrices
(which is the case considered throughout this article), P0

r is accessible via the
Eshelby (1957) tensor

S
esh,0
r = P

0
r : C

0 (2.11)

(see also §3). Insertion of equation (2.10) into equation (2.4) allows for expression
of E0 in terms of E, and re-insertion of this result into equation (2.10) delivers
the sought estimate for the strain concentration tensor as (Benveniste 1987;
Zaoui 2002)

A
est
r = [

I + P
0
r : (cr − C

0)
]−1

:

{∑
s

fs
[
I + P

0
s : (cs − C

0)
]−1

}−1

. (2.12)

Backsubstitution of equation (2.12) into equation (2.9) delivers the sought
estimate for the homogenized (macroscopic) stiffness tensor, Cest, as

C
est =

∑
r

frcr :
[
I + P

0
r : (cr − C

0)
]−1

:

{∑
s

fs
[
I + P

0
s : (cs − C

0)
]−1

}−1

. (2.13)
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Choice of matrix stiffness C0 determines which type of interactions between
the phases is considered: for C0 coinciding with one of the phase stiffnesses
(Mori–Tanaka scheme; Mori & Tanaka 1973), a composite material is represented
(contiguous matrix with inclusions); for C0 = Cest (self-consistent scheme;
Hershey 1954; Kröner 1958), a dispersed arrangement of the phases is considered
(typical for polycrystals).

As long as the average phase strains 3r are relevant for brittle phase
failure, resulting in overall failure of the RVE, concentration relation (2.7)
allows for translation of the brittle failure criterion of the weakest phase
r = w into a macroscopic (homogenized) brittle failure criterion, according to
equations (2.1), (2.2), (2.6) and (2.7),

fw(s) = 0 = fw(cw : 3w) = fw(cw : Aw : E) = fw(cw : Aw : C
−1 : S) = F(S). (2.14)

Fourth-order tensor operations such as the ones occurring in equations (2.1)
and (2.6)–(2.13) can be suitably evaluated in a vector/matrix-based software,
through a compressed vector/matrix notation with normalized tensorial basis,
often referred to as the Kelvin or the Mandel notation, see Cowin & Mehrabadi
(1992), Cowin (2003) and Helnwein (2001) for details.

3. Micromechanical representation of porous HA biomaterials, based
on disc-shaped crystals—stiffness and strength estimates

In the line of the concept presented in §2, we envision biomaterials made of HA as
porous polycrystals consisting of (i) discs or coins (a coin being the limit case of
an oblate inclusion) with stiffness cHA and volume fraction (1 − f), being oriented
in all space directions, and of (ii) spherical (empty) pores with vanishing stiffness
and volume fraction f (porosity; see figures 2 and 3).

(a) Stiffness estimate

In a reference frame (e1, e2, e3), the HA disc orientation vector er (normal
vector of the disc) is given by Euler angles w and 4 (figure 2). Specification of
equation (2.13) for C0 = Cest = Cpoly (self-consistent scheme) and for an infinite
number of solid phases related to orientation directions er(w, 4), which are
uniformly distributed in space (4 ∈ [0, 2p]; w ∈ [0, p]), yields the homogenized
stiffness of the porous HA biomaterial depicted in figure 3 (Fritsch et al. 2006)

Cpoly = (1 − f)cHA :
〈[

I + P
poly
disc : (cHA − Cpoly)

]−1
〉
:

{
(1 − f)

〈[
I + P

poly
disc : (cHA − Cpoly)

]−1
〉
+ f

(
I − P

poly
sph : Cpoly

)−1
}−1

(3.1)

with the angular average〈[
I + P

poly
disc : (cHA − Cpoly)

]−1
〉
=

∫ 2p

4=0

∫p

w=0

[
I + P

poly
disc (w, 4) : (cHA − Cpoly)

]−1

× sinw dw d4

4p
, (3.2)
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e3

e2
0

e1 ϕ

ϑ

ψ

ψ

ω

N

N

n

N = e′3

eϕ

eϕ

eϑ

eϑ

er

er

e′1
e′2

Figure 2. Disc-like representation of HA crystals with normals oriented along vector er , inclined
by Euler angles w and 4 with respect to the reference frame (e1, e2, e3); local base frame (er , e4,
ew) is attached to the disc; another local frame (e′

1, e′
2, e′

3) is introduced for definition of the shear
stress direction (see appendix A for more details).

por

por

poly

disc

sin dϑ dϕ

poly

sph

Figure 3. Self-consistent phase interaction within RVE of porous biomaterial made of HA: uniform
orientation distribution of oblate (disc-like) HA inclusions (with stiffness cHA and volume fraction
(1 − f)) and spherical (empty) pores (with zero stiffness and volume fraction f), in fictitious infinite
matrix with stiffness Cpoly of overall porous polycrystal and vanishing volume fraction, subjected
at infinity to homogeneous strains E0, such that strain average rule (∗), see also equation (2.4), is
fulfilled.

where P
poly
sph and P

poly
disc are the fourth-order Hill tensors for spherical and disc-

like inclusions, respectively, in an isotropic matrix with stiffness Cpoly = 3kpolyJ +
2mpolyK; J, Jijkl = 1/3dijdkl , is the volumetric part of the fourth-order unity tensor
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I, and K = I − J is its deviatoric part. The Hill tensors are related to Eshelby
tensors via equation (2.11). The Eshelby tensor Sesh

sph corresponding to spherical
inclusions (pores in figure 3) reads as

S
esh
sph = 3kpoly

3kpoly + 4mpoly
J + 6(kpoly + 2mpoly)

5(3kpoly + 4mpoly)
K. (3.3)

In the base frame (ew, e4, er) (1 = w, 2 = 4, 3 = r , see figure 2 for Euler angles 4

and w), attached to individual solid discs, the non-zero components of the Eshelby
tensor Sesh

disc corresponding to oblate inclusions read as

S esh
disc,3333 = 1,

S esh
disc,3311 = S esh

disc,3322 = npoly

1 − npoly

and S esh
disc,2323 = S esh

disc,3232 = S esh
disc,3223 = S esh

disc,2332 = S esh
disc,3131

= S esh
disc,1313 = S esh

disc,1331 = S esh
disc,3113 = 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

with npoly as Poisson’s ratio of the polycrystal,

npoly = 3kpoly − 2mpoly

6kpoly + 2mpoly
. (3.5)

Following standard tensor calculus (Salencon 2001), the tensor components
of P

poly
disc (w, 4) = Sesh

disc(w, 4) : C
−1
poly, being related to differently oriented inclusions,

are transformed into one, single base frame (e1, e2, e3), in order to evaluate the
integrals in equations (3.1) and (3.2).

(b) Strength estimate

Strength of the porous polycrystal made up of HA discs (see figure 3 for
its RVE) is related to brittle failure of the most unfavourably stressed single
disc. Therefore, the macroscopic stress (and strain) state needs to be related to
corresponding stress and strain states in the individual disc-type crystal solid
phases. Accordingly, we specify the concentration relations (2.7) and (2.12) for
the biomaterial defined through equations (3.1)–(3.5), resulting in

3HA(4, w) =
[
I + P

poly
disc (4, w) : (cHA − Cpoly)

]−1
:{

(1 − f)
〈[

I + P
poly
disc (4, w) : (cHA − Cpoly)

]−1
〉

+ f
(
I − P

poly
sph : Cpoly

)−1
}−1

: E. (3.6)

When applying phase elasticity (2.1) to HA, and overall elasticity (2.6) to the
porous biomaterial according to equation (3.1), concentration relation (3.6) can
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be recast in terms of stresses

sHA(4, w) = cHA :

{[
I + P

poly
disc (4, w) : (cHA − Cpoly)

]−1
:

{
(1 − f)

〈[
I + P

poly
disc (4, w) : (cHA − Cpoly)

]−1
〉

+ f
(
I − P

poly
sph : Cpoly

)−1
}−1

}
: C

−1
poly : S

= BHA(4, w) : S, (3.7)

with BHA(4, w) as the so-called stress concentration tensor of the disc-shaped
HA phase with orientation er(4, w). We consider that disc failure is governed
by the normal stress sHA,NN (4, w; j) acting in the plane of the disc, and by the
shear stress acting on planes orthogonal to the disc plane, sHA,Nn(4, w; j; u) (see
figure 2):

sHA,NN (4, w; j) = N (j) · sHA(4, w) · N (j) (3.8)

and

sHA,Nn(4, w; j; u) = N (j) · sHA · n(u), (3.9)

whereby the orientation vector N is defined through angle j in the plane of
the disc (see figure 2 and appendix A for its components in the reference base
frame), and direction n being orthogonal to N and specified through angle u
(see figure 2 and appendix A for its components in the reference base frame). For
the criterion describing failure of one single disc-type solid phase, we consider
interaction between tensile strength s

ult,t
HA and shear strength s

ult,s
HA , so that this

disc-specific failure criterion reads as

w = 0, . . . , p, j = 0, . . . , 2p, u = 0, . . . , 2p :

fHA(s) = max
w

[
max

j

(
b max

u
|sHA,Nn | + sHA,NN

)]
− s

ult,t
HA = 0 (3.10)

with b = s
ult,t
HA /s

ult,s
HA being the ratio between uniaxial tensile strength s

ult,t
HA and the

shear strength s
ult,s
HA of pure HA. Use of equations (3.7)–(3.9) in equation (3.10)

yields a macroscopic failure criterion in the format of equation (2.14),

F(S) = max
w

{
max

j

[
b max

u
|N (j) · BHA(4, w) : S · n(u)|

+ N (j) · BHA(4, w) : S · N (j)
]}

− s
ult,t
HA = 0 (3.11)

and a corresponding elastic domain,

F(S) < 0 (3.12)
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Table 2. Universal (biomaterial-independent) isotropic phase properties of pure HA.

Young’s modulus EHA 114 GPa from Katz & Ukraincik (1971)
Poisson’s ratio nHA 0.27 from Katz & Ukraincik (1971)
uniaxial tensile strength s

ult,t
HA 52.2 MPa from Akao et al. (1981) and Shareef et al. (1993);

see §4b for details
uniaxial shear strength s

ult,s
HA 80.3 MPa

with BHA according to equation (3.7). We will also evaluate the criterion (3.11) for
uniaxial macroscopic stress states S = ±Srefe3 ⊗ e3: insertion of these stress states
into equation (3.11), while considering equations (3.7)–(3.10), yields an equation
for Sref , the corresponding results S

ult,t
poly and S

ult,c
poly being model predictions of

macroscopic uniaxial strengths as functions of (microscopic) crystal strength and
biomaterial porosity (see figures 6 and 7, §4 and appendix A for further details).

4. Model validation

(a) Strategy for model validation through independent test data

In the line of Popper, who stated that a theory—as long as it has not been
falsified—will be ‘the more satisfactory the greater the severity of independent
tests it survives’ (cited from Mayr 1997, p. 49), the verification of the
micromechanical representation of HA biomaterials (equations (3.1)–(3.5) for
elasticity, and equations (3.6)–(3.12) for strength) will rest on two independent
experimental sets, as has been successfully done for other material classes such
as bone (Hellmich & Ulm 2002; Hellmich et al. 2004; Fritsch & Hellmich
2007) or wood (Hofstetter et al. 2005, 2006). Biomaterial-specific macroscopic
(homogenized) stiffnesses Cpoly (Young’s moduli Epoly and Poisson’s ratios npoly),
and uniaxial (tensile and compressive) strengths (Sult,t

poly and S
ult,c
poly), predicted by

the micromechanics model (3.1)–(3.12) on the basis of biomaterial-independent
(universal) elastic and strength properties of pure HA (experimental set I,
table 2) for biomaterial-specific porosities f (experimental set IIa, tables 3 and 4),
are compared with corresponding biomaterial-specific experimentally determined
moduli Eexp and Poisson’s ratios nexp (experimental set IIb-1, table 3) and
uniaxial tensile/compressive strength values (experimental set IIb-2, table 4).
Because we avoided introduction of micromorphological features that cannot
be experimentally quantified (such as the precise crystal shape), all material
parameters are directly related to well-defined experiments.

(b) Universal mechanical properties of (biomaterial-independent)
HA—experimental set I

Experiments with an ultrasonic interferometer coupled with a solid media
pressure apparatus (Katz & Ukraincik 1971; Gilmore & Katz 1982) reveal
the isotropic elastic constants of dense HA powder (f = 0), Young’s modulus
EHA = 114 GPa, and Poisson’s ratio nHA = 0.27 (equivalent to bulk modulus
kHA = EHA/3/(1 − 2nHA) = 82.6 GPa and shear modulus mHA = EHA/2/(1 + nHA) =
44.9 GPa).
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Table 3. Experimental Young’s modulus Eexp and Poisson’s ratio nexp of HA biomaterials, as a
function of porosity f.

reference f (%) Eexp (GPa) nexp

Akao et al. (1981) 2.8 88
3.9 85
9.1 80

19.4 44

de With et al. (1981) 3 112 0.275
6 103 0.272
9 93 0.265

17 78 0.253
22 67 0.242
27 54 0.238

Arita et al. (1995) 6 88
28 41
33 32
35 29
50 14
52 10

Liu (1998) 8 93
17 78
21 66
32 44
44 22
54 18

Charrière et al. (2001) 44 13.5

The authors are not aware of direct strength tests on pure HA (with f = 0).
Therefore, we consider one uniaxial tensile test, Sult,t

exp = 37.1 MPa, and one
uniaxial compressive test, Sult,c

exp = 509 MPa, on fairly dense samples (with f =
12.2% and 2.8%, respectively), conducted by Shareef et al. (1993) and Akao
et al. (1981), respectively (table 4). From these two tests, we back-calculate, via
evaluation of equations (3.7)–(3.11) for S = Sult,t

exp e3 ⊗ e3 and S = −Sult,c
exp e3 ⊗ e3,

the universal tensile and shear strength of pure HA, s
ult,t
HA and s

ult,s
HA (table 2).

(c) Biomaterial-specific porosities—experimental set IIa

Porosity of HA biomaterials is standardly calculated from mass M and volume
V of well-defined samples on the basis of the mass density of pure HA, rHA =
3.16 g cm−3 (Dorozhkin & Epple 2002),

f = 1 − M
V rHA

. (4.1)

Corresponding porosity values have been reported by different investigators
(Peelen et al. 1978; Akao et al. 1981; de With et al. 1981; Shareef et al. 1993;
Arita et al. 1995; Martin & Brown 1995; Liu 1998; Charrière et al. 2001), see
tables 3 and 4.
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Table 4. Experimental compressive strength S
ult,c
exp and tensile strength S

ult,t
exp of HA biomaterials,

as functions of porosity f.

reference f (%) S
ult,c
exp (MPa) S

ult,t
exp (MPa)

Peelen et al. (1978) 36 160
48 114
60 69
65 45
70 30

Akao et al. (1981) 2.8 509
3.9 465
9.1 415

19.4 308

Shareef et al. (1993) 12.2 37.1
16.1 32.8
20.6 31.8
24.8 24.2
27.3 23.6
29.2 20.0

Martin & Brown (1995) 27.0 172.5
39.0 119.0

Liu (1998) 20.2 25.5
26.8 20.0
29.0 16.8
32.6 13.9
39.6 14.4
42.8 11.1
50.9 7.2
54.5 8.0

(d) Biomaterial-specific elasticity experiments on HA
biomaterials—experimental set IIb-1

Elastic properties of HA biomaterials were determined through uniaxial quasi-
static mechanical tests (Akao et al. 1981; Charrière et al. 2001), but also through
ultrasonic techniques (de With et al. 1981; Liu 1998), or resonance frequency tests
(Arita et al. 1995).

In uniaxial quasi-static experiments, the gradient of the stress–strain curve
gives access to Young’s modulus. Respective experimental results are documented
for cuboidal specimens (Akao et al. 1981) and hollow cylindrical specimens
(Charrière et al. 2001), see table 3 and figure 4.

In ultrasonic experiments (Ashman et al. 1984, 1987), the time of flight of an
ultrasonic wave travelling through the specimen with a certain frequency f is
measured. The calculated velocity of the wave, v, together with material mass
density of the sample, gives access to the elastic constants (Kolsky 1953; Carcione
2001). Because the ultrasonic wavelength l, l = v/f , is a measure for the loading of
the structure (l ≈ L in figure 1), the mechanical properties are related to an RVE
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Figure 4. Comparison between model predictions (Epoly; equations (3.1)–(3.5)) and experiments
(Eexp) for Young’s modulus of different porous biomaterials made of HA, as a function of porosity
f. Unfilled circle, exp-static: Akao et al. (1981); diamond, exp-ultra: de With et al. (1981); star,
exp-ultra: Gilmore & Katz (1982); plus, exp-res: Arita et al. (1995); asterisk, exp-ultra: Liu (1998);
cross, exp-static: Charriére et al. (2001); solid line, disc model; dashed line, needle model (ultra,
ultrasonic tests; res, resonance frequency tests; static, quasi-static uniaxial tests).

with characteristic length � � l. Respective experimental results are documented
for bar-shaped specimens (Liu 1998) and cylindrical samples (de With et al. 1981),
see table 4 and figures 4 and 5.

In resonance frequency tests (Schreiber et al. 1973), beam type specimens are
excited in the flexural vibration mode, and the corresponding free vibration
gives access to the fundamental resonance frequency. The latter allows for
determination, via the mass density and the geometry of the sample, of Young’s
modulus of the sample. Respective experimental results are documented for
disc-shaped biomaterial samples (Arita et al. 1995), see table 3 and figure 4.

(e) Comparison between biomaterial-specific stiffness predictions
and corresponding experiments

The stiffness values predicted by the homogenization scheme (3.1)–(3.5) (see §3
and figure 3) for biomaterial-specific porosities (§4c, experimental set IIa) on the
basis of biomaterial-independent (universal) stiffness of HA (§4b, experimental
set I) are compared with corresponding experimentally determined biomaterial-
specific stiffness values from experimental set IIb-1 (§4d). To quantify the model’s
predictive capabilities, we consider the mean and the standard deviation of the
absolute error E between stiffness predictions and experiments,

Ē = 1
n

n∑
i=1

Ei = 1
n

n∑
i=1

qpred
i − qexp

i (4.2)
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Figure 5. Comparison between model predictions (npoly; equations (3.1)–(3.5)) and experiments
(nexp) for Poisson’s ratio of different porous biomaterials made of HA, as a function of porosity f.
Diamond, exp-ultra: de With et al. (1981); star, exp-ultra: Gilmore & Katz (1982); solid line, disc
model; dashed line, needle model (ultra, ultrasonic tests).

and

ES =
[

1
n − 1

n∑
i=1

(Ei − Ē)2

]1/2

, (4.3)

where q has to be replaced by the quantity in question, E or n, and with
summation over n stiffness values (tables 3 and 4). These error measures are
normalized with respect to the mean value of all experimental data,

q̄exp = 1
n

n∑
i=1

qexp
i , (4.4)

yielding the error measures ē and eS in the form

ē = Ē
q̄exp

and eS = ES

q̄exp
. (4.5)

Insertion of biomaterial-specific porosities (table 3) into equation (3.1) delivers,
together with equations (3.2)–(3.5), the biomaterial-specific stiffness estimates for
the effective Young’s modulus Epoly and the effective Poisson’s ratio npoly. These
stiffness predictions are compared with corresponding experimental stiffness
values (figures 4 and 5). We observe a certain overestimation of experimental
stiffnesses for porosities larger than 0.4 (figure 4), quantified through overall
prediction errors of 15.3 ± 15.2% (mean value± standard deviation according
to equation (4.5)), while Poission’s ratios are virtually perfectly predicted
(−0.2 ± 2.7%; see figure 5).
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Figure 6. Comparison between model predictions (equations (3.1)–(3.11)) and experiments for
tensile strength of different porous biomaterials made of HA, as a function of porosity f. Circle, exp:
Shareef et al. (1993); diamond, exp: Liu (1998); dashed line, disc model; solid line, needle model.

(f ) Biomaterial-specific strength experiments on HA biomaterials
(experimental set IIb-2 )

In uniaxial compressive quasi-static tests, a sharp decrease of stress after a
stress peak in the stress–strain diagram (Akao et al. 1981; Martin & Brown 1995)
indicates brittle material failure, as observed for all biomaterials described herein,
and the aforementioned stress peak is referred to as the ultimate stress or uniaxial
strength Sult,c

exp . Respective experimental results are documented for cylindrical
samples (Peelen et al. 1978) and bars (Akao et al. 1981), see table 4 and figure 7.

In three-point bending tests, a force Fs is applied to the centre of a beam
specimen, and the maximum normal stress Sult = Sulte3 ⊗ e3 in the bar-type
sample is calculated according to beam theory as

Sult,t
exp = 3Fsls

2bsh2
s
, (4.6)

with ls, bs and hs as the length, width and height of the specimen with
rectangular cross-section, respectively. Respective experimental results (Liu 1998)
are depicted in table 4 and in figure 6.

In the Stanford ring bursting test, ring-shaped specimens are pressurized
internally, in order to generate a tensile hoop stress in the ring. The pressure
is increased until the sample fails. The tensile stress in the ring is calculated
according to

Sult,t
exp = rspi

ds
, (4.7)

with rs as the inner diameter of the ring, pi as the internal pressure and ds as the
wall thickness of the ring. Respective experimental results (Shareef et al. 1993)
are depicted in table 4 and figure 6.
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Figure 7. Comparison between model predictions (equations (3.1)–(3.11)) and experiments for
compressive strength of different porous biomaterials made of HA, as a function of porosity f.
Cross, exp: Peelen et al. (1978); circle, exp: Akao et al. (1981); square, exp: Martin & Brown
(1995); solid line, disc model; dashed line, needle model.

(g) Comparison between biomaterial-specific strength predictions
and corresponding experiments

The strength values predicted by upscaling relation (3.11), together with
equations (3.7)–(3.10) and (3.3)–(3.5), see §3 and figure 3, for biomaterial-specific
porosities (§4c, experimental set IIa) on the basis of biomaterial-independent
(universal) uniaxial tensile and compressive strengths of HA (§4b, experimental
set I) are compared with corresponding experimentally determined biomaterial-
specific uniaxial tensile and compressive strength values from experimental set
IIb-2 (§4f ).

Insertion of biomaterial-specific porosities (table 4) into equation (3.11),
together with equations (3.7)–(3.10) and (3.3)–(3.5), delivers, together with
EHA, nHA, s

ult,t
HA and s

ult,s
HA (table 2), biomaterial-specific strength estimates for

uniaxial tensile strength (Sult,t
poly) and uniaxial compressive strength (Sult,c

poly). These
strength predictions are compared with corresponding experimental strength
values (figures 6 and 7). We observe a certain overestimation of experimental
tensile strength for porosities larger than 0.4, which is quantified through
error measures of 24.2 ± 15.2% (mean value ± standard deviation), while the
predictions of the biomaterials’ compressive strengths are remarkably better
(−14.5 ± 13.5%).

5. Discussion of model features—comparison with needle-based models

It is interesting to evaluate the spatial orientation of the disc-shaped crystal
phases initiating overall failure by fulfilling local failure criterion (3.10), measured
through critical angle wcr from the macroscopic loading direction e3, for
tensile and compressive uniaxial macroscopic loading, as a function of porosity
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Figure 8. (a) Orientation of crystal disc initiating overall failure by fulfilling local failure criterion
(3.10), measured through critical angle wcr from the loading direction, for tensile (dashed line) and
compressive (solid line) uniaxial macroscopic loading, as a function of porosity f; (b) typical disc-
shaped crystal phase failing under uniaxial tension (macroscopic loading direction e3); (c) typical
disc-shaped crystal phase failing under uniaxial compression (macroscopic loading direction e3).

f—together with the critical stresses occurring then in these phases (figures 8
and 9). Under tensile uniaxial macroscopic loading, failure occurs in crystal
discs with normals er being oriented exactly perpendicular to the macroscopic
loading direction (wcr = p/2, see dashed line in figure 8a), for the entire range of
biomaterial porosities. Within these failure-governing disc-shaped crystal phases,
the maximum critical stress (b maxu |sHA,Nn | + sHA,NN , compare equation (3.10))
occurs at angle j = 0, i.e. exactly in the macroscopic loading direction (see
figure 8b). In contrast, compressive uniaxial macroscopic loading induces failure in
disc-shaped crystals with normals being oriented closely to the loading direction,
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Figure 9. Stress state in disc-shaped crystal phases fulfilling local failure criterion (3.10), in terms
of (a) normal stresses and of (b) shear stresses in planes perpendicular to the direction of normal
stress, for tensile (dashed line) and compressive (solid line) uniaxial macroscopic loading, as a
function of porosity f.

and the more so the higher the porosity (16◦ ≥ wcr ≥ 0, see solid line in figure 8a).
Within these failure-inducing, disc-shaped crystal phases, the maximum critical
stress (b maxu |sHA,Nn | + sHA,NN , compare equation (3.10)) occurs again at angles
j = 0 (or j = p), i.e. the critical direction belongs to planes through the
macroscopic loading axis (figure 8c). As regards the crystal stresses at failure,
normal tensile stresses in the failing disc phase prevail under tensile macroscopic
loading (see dashed line in figure 9a), while the shear stresses in the failing disc
phase are much smaller (see dashed line in figure 9b). In contrast, both tensile and
compressive normal stresses may occur under uniaxial compressive macroscopic
stress states, the former for porosities higher than 10 per cent, the latter for
porosities lower than 10 per cent (see solid line in figure 9a). These normal stresses
are accompanied by shear stresses, starting from a very high level for zero porosity,
and decreasing with increasing porosities, finally reaching zero for 100 per cent
porosity (see solid line in figure 9b).

It is also illustrative to compare our crystal disc-based model predictions
with our earlier crystal needle-based predictions (see figures 4–7): while both
morphologies lead to satisfactory predictions, it seems noteworthy that, as
a rule, the present crystal disc-based model turns out to deliver equally or
less satisfactory predictions than the earlier needle-based model. This can be
quantified through comparison of relative error measures: 15.3 ± 15.2% (disc)
versus 9.7 ± 14.7% (needle) for Young’s modulus; −0.2 ± 2.7% (disc) versus
−0.5 ± 2.3% (needle) for Poisson’s ratio; and −14.5 ± 13.5% (disc) versus −5.6 ±
16.1% (needle) for compressive strength (figure 7). Hence, we might conclude
that, unless more detailed information on the actual crystal shape is available, our
previously proposed crystal needle-based micromechanics model for prediction
of elasticity and strength of HA biomaterials might be regarded as favourable
choice. However, the more relevant conclusion probably is that, once clearly non-
spherical crystal shape is considered (be it the needle or the disc-like limit case),
a self-consistent continuum micromechanics formulation can satisfactorily predict
elasticity and brittle strength of HA biomaterials.
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Appendix A. Global coordinates of vectors N and n

Following standard rules of tensor calculus, each of equations (3.6)–(3.11) needs
to be evaluated in one base frame system, e.g. the reference base frame (e1, e2,
e3). In this context, we shortly recall the components of N and n in the reference
base frame (e1, e2, e3). Therefore, we first give the components of base vectors of
the disc-specific frame (ew, e4, er) in the reference base frame (e1, e2, e3):

ew = cos 4 cos w e1 + sin 4 cos w e2 − sin w e3,

e4 = − sin 4 e1 + cos 4 e2

and er = cos 4 sin w e1 + sin 4 sin w e2 + cos w e3.

⎫⎪⎬
⎪⎭ (A 1)

In the spherical coordinate system (ew, e4, er) (see figure 2), the normal vector
N has the components

N = cos jew + sin je4. (A 2)

Hence, its components in the reference coordinate frame read as

N = (cos j cos 4 cos w − sin j sin 4) e1

+ (cos j sin 4 cos w + sin j cos 4) e2 − cos j sin w e3. (A 3)

N = e′
3 is chosen as one vector of a new base frame attached to the disc under

investigation, (e′
1, e′

2, e′
3) (figure 2). This new base frame is related to the reference

base through Euler angles 4′ and w′, reading as

4′ = arctan
(

cos j sin 4 cos w + sin j cos 4

cos j cos 4 cos w − sin j sin 4

)
(A 4)

and
w′ = arccos(− cos j sin w). (A 5)

The angles w′ and 4′ give access to the reference frame-related coordinates of
e′

1 and e′
2,

e′
1 = cos 4′ cos w′ e1 + sin 4′ cos w′ e2 − sin w′ e3

and e′
2 = − sin 4′ e1 + cos 4′ e2.

}
(A 6)

Finally, the reference frame-related coordinates e′
1 and e′

2 give, via u (figure 2),
access to the reference frame-related coordinates of normal n,

n = cos u e′
1 + sin u e′

2

= (cos u cos 4′ cos w′ − sin u sin 4′) e1

+ (cos u sin 4′ cos w′ + sin u cos 4′) e2 − cos u sin w′ e3. (A 7)
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