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Abstract

Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; how-

ever, the pandemic crisis was marred by undue hype, which led to the indiscriminate use of disinfectants and sanitizers. Despite

demonstrating a beneficial role in the control and prevention of COVID-19, there are crucial concerns regarding the large-scale

use of disinfectants and sanitizers, including the side effects on human and animal health along with harmful impacts exerted on

the environment and ecological balance. This article discusses the roles of disinfectants and sanitizers in the control and

prevention of the current pandemic and highlights updated disinfection techniques against severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). This article provides evidence of the deleterious effects of disinfectants and sanitizers exerted on

humans, animals, and the environment as well as suggests mitigation strategies to reduce these effects. Additionally, potential

technologies and approaches for the reduction of these effects and the development of safe, affordable, and effective disinfectants

are discussed, particularly, eco-friendly technologies using nanotechnology and nanomedicine.
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Introduction

Intensive global research efforts have been engaged for the

development of potential therapies and vaccines for coronavi-

rus disease 2019 (COVID-19), caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) (Dhama et al.

2020a, b; WHO 2021), and the control of the COVID-19

pandemic remains the highest priority globally. Considering

the current ineffectiveness of various strategies in the preven-

tion of the spread of the virus, the lack of targeted treatments,

and frequent increase in cases on a daily basis, disinfection is

an important available measure to prevent COVID-19 spread

and to combat SARS-CoV-2 directly.

Successful disinfection of SARS-CoV-2 is determined by

the characteristics of the virus, properties of the disinfectants

or sanitizers, and the environment where the virus is present or

where disinfection is to be conducted. Disinfectants are chem-

ical agents that are used to inactivate or destroy microorgan-

isms, while sanitizers are available in the liquid, gel, or foam

forms that are used to reduce the number of microorganisms

present and to clean hands. SARS-CoV-2 is susceptible to

disinfection (Rutala and Weber 2019; WHO 2020), exhibits

stability at a broad range of pH values (pH 3–10) at room

temperature (Chin et al. 2020), and is very much stable in a

favorable environment (van Doremalen et al. 2020). SARS-

CoV-2 persists for variable durations in different environ-

ments; for instance, it can reside on the outer layer of surgical

masks for up to 7 days, and its presence on smooth surfaces

(glass, plastic, banknotes, stainless steel) varies from 4 to 7

days (Chin et al. 2020). SARS-CoV-2 has not been detected

on printing and tissue papers after 3 h, and treated wood and

cloth show negative results for SARS-CoV-2 after 2 days

(Chin et al. 2020). SARS-CoV-2 demonstrates increased sta-

bility on stainless steel and plastic as compared to copper and

cardboard, and viable virus has been detected up to 72 h of

Responsible Editor: Lotfi Aleya

* Kuldeep Dhama

kdhama@rediffmail.com

* Harapan Harapan

harapan@unsyiah.ac.id

Extended author information available on the last page of the article

https://doi.org/10.1007/s11356-021-14429-w

/ Published online: 15 May 2021

Environmental Science and Pollution Research (2021) 28:34211–34228

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-14429-w&domain=pdf
http://orcid.org/0000-0001-7630-8413
mailto:kdhama@rediffmail.com
mailto:harapan@unsyiah.ac.id


application to such surfaces (van Doremalen et al. 2020).

Furthermore, it has been detected in sewage and wastewater

(Randazzo et al. 2020; Dhama et al. 2021).

SARS-CoV-2 is susceptible to a wide variety of disinfec-

tants (Chin et al. 2020; United States Environmental

Protection Agency (EPA), 2020). Lipid solvents, including

ethanol (> 75%), formaldehyde (> 0.7%), isopropanol (>

70%), povidone-iodine (> 0.23%), sodium hypochlorite (>

0.21%), or hydrogen peroxide (H2O2; > 0.5%), can also be

used to inactivate SARS-CoV-2 (Duarte and de Santana

2020). Considering viral presence, persistence, stability, via-

bility, and environmental influence on viral persistence, the

disinfection of environments, such as offices, healthcare set-

tings, public transportation, markets, restaurants, and audito-

riums, is necessary to prevent the transmission and infection

waves of COVID-19.

However, strategies and techniques of cleaning, sanitiza-

tion, disinfection, and other methods to contain the devastat-

ing effects of the pandemic should be subjected to modifica-

tion development over time according to their deleterious con-

sequences on the environment and human health (Mukherjee

et al. 2021). Hence, the present article highlights the beneficial

usages, effectiveness, modes of antiviral action, and deleteri-

ous consequences of different disinfectants, along with a brief

note on sanitizers, while also discussing the mitigation strate-

gies with updated disinfection approaches to counter their

harmful effects during the COVID-19 pandemic.

Disinfectants and their antiviral mechanisms

Disinfectants are chemical agents that are specifically formu-

lated to inactivate or destroy microorganisms and include var-

ious classes, such as detergents, acids, oxidizing agents, alco-

hols, alkalis, aldehydes, biguanides, halogens, phenols, and

quaternary ammonium compounds (QACs) (FDA 2020a;

Choi et al. 2021). Chemical disinfectants vary in their action

mechanism, and the majority of disinfectants of a chemical

nature target the outer lipid layer of coronaviruses (CoVs)

and inactivate the viral particles (Choi et al. 2021).

However, variations among the mechanisms of chemical dis-

infectants have been recorded. Detergents are a well-known

category of chemical disinfectants that vary in their mecha-

nism of action depending upon the class of disinfectant, the

organism against which the disinfectant exhibits strong activ-

ity, the structure being affected, the surface or medium on

which the disinfectant is applied, and the environment of ap-

plication (Maris 1995; McDonnell and Russell 1999).

Disinfectants may initiate three types of killing mechanisms

that include cross-linking, coagulation, clumping, structural

and functional disruption, and oxidation. These processes

can occur through oxidation, hydrolysis, denaturation, or sub-

stitution (Ewart 2001). In case of viruses, they may affect the

lipid membrane, cytoplasmic membrane, energy metabolism,

cytoplasm, nucleus, enzymes, or proteins (Maris 1995). Non-

ionic (uncharged) detergents are preferred over anionic deter-

gents as they are good emulsifiers and exhibit better penetra-

tion and dispersion, decreased surface tension, lesser foaming

property, and do not undergo complexation with hard water

and result in microbial accumulation in the residue (Ewart

2001; CFSPH 2008).

Alcohol causes damage to microorganisms by denaturing

proteins, leading to membrane damage and cell lysis (Ewart

2001; CFSPH 2008; Al-Sayah 2020). Ethanol shows appre-

ciable activity on both living and non-living surfaces and

evaporates quickly without leaving residue (CFSPH 2008).

Ethanol at > 75% concentration acts as a potent virucidal

agent that inactivates all lipophilic viruses (herpes, influenza,

and vaccinia) and several hydrophilic viruses (adenovirus,

rhinovirus, enterovirus, and rotaviruses). At a concentration

of > 70%, ethanol and isopropanol inactivate CoVs within

30 s (Kampf et al. 2020a). Isopropyl alcohol is extremely

active against lipid viruses (CDC 2008). The primary mode

of action is the coagulation and denaturation of proteins, apart

from its lipid solvent properties.

Chlorine aids the oxidation of peptide links owing its elec-

tronegativity, and therefore, causes the oxidation of lipids and

proteins and, in turn, inflicts damage on the membrane and

cell wall of the microbes (McDonnell and Russell 1999).

Moreover, hypochlorous acid is the most active compound,

and it penetrates the cell layers even at a pH of 7. QACs

damage the membrane permeability of microbes by irrevers-

ibly binding to phospholipids and proteins of the membrane

(Gerba 2015). An alkaline pH (above 10.0) results in the dis-

organization of the peptidoglycan structure and leads to hy-

drolysis of the virus genome (Maris 1995). Phenolic com-

pounds act specifically on the cell membrane and lead to the

inactivation of the intracytoplasmic enzymes by forming un-

stable complexes (Sankar et al. 2016). Acids and alkalis me-

diate their antiviral action through H+ and OH− ions that inflict

damage on the amino acid bond in nucleic acids, modify the

cytoplasmic pH, precipitate proteins, and saponify the lipids

(Russell 1983; Maris 1995). H2O2 catalyzes the oxidation and

denaturation of proteins and lipids, causing membrane disor-

ganization, resulting in swelling due to the saturation of H+

ions (Russell 1983; Maris 1995; Al-Sayah 2020). Against

SARS-CoV, H2O2 exhibits virucidal activity at a 1–3% con-

centration and inactivates the virus within 1 min; however, the

gaseous form is more efficient (Herzog et al. 2012; Goyal

et al. 2014). H2O2-based non-touch disinfection techniques

help reduce environmental contamination, particularly in hos-

pital settings and intensive care units with infectious agents

after routine cleaning (Huttner and Harbarth 2015;

Blazejewski et al. 2015). Airborne H2O2 in the form of vapor

and dry mist has been used as an environmental disinfectant

and to control infection in clinical settings (Falagas et al.
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2011). Aldehydes demonstrate activity against CoVs at con-

centrations of 0.5–3% and result in viral deactivation within

2 min (Al-Sayah 2020). Povidone–iodine at a concentration of

1% or less triggers SARS-CoV inactivation within seconds

(Kariwa et al. 2006; Eggers et al. 2018).

If the lipid envelope, glycoproteins, attachment (spike) pro-

teins, and virion genome of CoVs, which impart infectivity to

the virus, undergo damage or disruption, then the aftermath of

such an occurrence is virus inactivation or exertion of effects

on its infectivity (Al-Sayah 2020). Disinfectants have been

evaluated and recommended against SARS-CoV-2

(Noorimotlagh et al. 2020). Among these, ethanol at a con-

centration > 70% and 2-propanol at a concentration of 70–

100% have shown virucidal activity, while others have dem-

onstrated either less effectivity or complete ineffectivity, with

several agents posing a threat to human health and the envi-

ronment (Kampf et al. 2020a; Lai et al. 2020; Noorimotlagh

et al. 2020; Schrank et al. 2020).

Necessity of disinfection during the COVID-19
pandemic

A recent study predicted that a considerable proportion of the

global population would eventually be infected by SARS-

CoV-2 (Giesecke 2020). The only available method of con-

taining this pandemic is to prevent further transmission and to

confer protection to individuals against exposure to the virus.

Implementation of strict lockdowns, rampant testing, contact

tracing, quarantine, isolation, and treatment approaches have

decelerated the virus spread to a certain extent, and now it is

imperative to adopt effective disinfection procedures to ensure

the safety of populations after the lifting of lockdown and

resumption of on-site work. Considering the persistence of

SARS-CoV-2 on surfaces and the potential risk of infection

through fomites, disinfection of the work environment is a

priority before the resumption of regular working environ-

ments (ECDC 2020; van Doremalen et al. 2020). As SARS-

CoV-2 survives in the environment with persistence ranging

from hours (3 h in the air, 4 h on copper, and 24 h on card-

board) to days (2 to 3 days on both stainless steel and plastic),

the disinfection of workplaces is imperative, especially where

public visits or assemblies of crowds are inevitable (ECDC

2020; van Doremalen et al. 2020). Similarly, SARS-CoV-2

can persist for days on non-porous surfaces under 22°C and

65% relative humidity (Chin et al. 2020).Moreover, it has also

been detected on desktops, printers, keyboards, doorknobs,

gloves, and eye shields (ECDC 2020). A comparative study

of SARS-CoV-1 and SARS-CoV-2 showed that the viability

of the two CoVs is similar; however, SARS-CoV-2 spread is

characterized by rapid dissemination and infection of more

people (Gates 2020).

Although most SARS-CoV-2 transmissions occur in com-

munity settings, healthcare settings are also vulnerable to the

establishment and spread of infections. In this context, hospi-

tals engaged in treating patients with COVID-19 must be

equipped with the most appropriate disinfection techniques

and materials for the disinfection of healthcare personnel, hos-

pital rooms, and medical equipment to avoid nosocomial

transmission. The guidelines for the application of disinfec-

tants in healthcare and non-healthcare settings issued by var-

ious agencies must be followed while using disinfectants in

different environments (ECDC 2020; US EPA 2020).

Disinfection is a prerequisite for the control of infectious

disease outbreaks, with SARS-CoV-2 containment being of

utmost importance. It is vital to reduce the potential for virus

contamination. Disinfection may also lessen the burden on

other measures of pandemic control. Commonly, sodium hy-

pochlorite, ethanol, and H2O2 have been used and found to be

more effective compared to benzalkonium chloride (BAC),

chlorhexidine digluconate, povidoeyodine, and diluted ethyl

alcohol, especially with reference to their application in hand

hygiene, protective equipment sanitization, and in environ-

mental disinfection (León Molina and Abad-Corpa 2021).

Rowan and Laffey (2020) proposed the disinfection of per-

sonal protective equipment (PPE) for their reuse and the utili-

zation of vaporized H2O2 for the sterilization of filtering

facepiece respirators and UV irradiation. Increased extent of

liquid disinfection (Actichlor+) is being adopted in the USA

and Ireland. This will help prevent a shortage of PPE. The

European Centre for Disease Prevention and Control

(ECDC) has suggested different cleaning options for different

settings, which are described in Table 1 (ECDC 2020).

Moreover, several chemical disinfectants with high toxicity

are being used for the decontamination of the surfaces of sev-

eral environmental settings, such as clinical and surgical prac-

tices and water bodies, which is imperative to ensure well-

being and safety. However, the development of new decon-

tamination strategies, which neither leave residues nor induce

toxicity, is vital. The following section emphasizes the up-

dated and modified disinfection approaches to contain the

overwhelming effects of the COVID-19 pandemic.

An overview of the important disinfectants and their anti-

viral mechanisms and the need for disinfection during the

COVID-19 pandemic is illustrated in Fig. 1.

Updated disinfection approaches
against SARS-CoV-2

Commonly used disinfectants against COVID-19 include de-

tergents/soaps, alcohols, and chlorine. Chlorine is recom-

mended as a disinfectant for indoor facilities (Yang et al.

2020). In healthcare settings, equipment, including imaging

devices (e.g., endoscopes), scanners, bedding, and contact
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instruments, must be disinfected using appropriate disinfec-

tants (Prochazka Zá Rate et al. 2020; Wan et al. 2020). To

perform disinfection of the floor, environment, and table sur-

faces, application of 2 g/L of chlorine-containing disinfectant

is recommended at least four times daily for at least 30 min,

while application of UV irradiation and spraying techniques

using 500 mg/L of chlorine-containing disinfectant for at least

30 min are the methods of choice for the disinfection of air

(Barcelo 2020). Additionally, personal items, such as mobile

phones, keys, credit cards, and writing pens, may be subjected

to sanitization using 75% ethanol to ensure their disinfection

(Yang et al. 2020). Virusend (TX-10) is a unique disinfectant

that has already exhibited efficient activity against several

microbial agents, including viruses. Virusend (TX-10) appli-

cation was found to inactivate SARS-CoV-2 in an in vitro

study based on surface and solution inactivation assays. This

novel disinfectant rapidly decreased the SARS-CoV-2 viral

titer by 4log10 PFU/mL within a contact period of 1 min

(Anderson et al. 2020).

The use of plasma-activated water is another alternative to

conventional disinfectants that can efficiently be used to inac-

tivate bacteria and bacteriophages via induction of direct dam-

age to the biological macromolecules. Plasma-activated water

can be used to inhibit SARS-CoV-2 pseudovirus infection via

inactivation of the S protein (Guo et al. 2020). The alcohol-

based hand sanitizers (ABHSs) that are commonly used on

skin are not suitable for use on PPE. Therefore, new com-

pounds or products should be developed that can be used to

effectively disinfect PPE without causing detrimental effects

to the surrounding skin tissue. Clyraguard copper iodine com-

plex is a product that has exhibited potential efficacy in the

decontamination of non-critical PPE (Mantlo et al. 2020).

As various environmental factors are considered to deter-

mine the transmission of SARS-CoV-2, disinfection of sur-

faces in work environments with diluted sodium hypochlorite

(0.1%) is recommended (Eslami and Jalili 2020; Seymour

et al. 2020). CoVs present on inanimate objects or surfaces

may be inactivated by conducting treatment with biocidal

agents, such as 0.5% H2O2, 62%–71% ethanol, and 0.1%

sodium hypochlorite, for at least 1 min (Kampf et al. 2020a).

Presently, the disinfection of fabrics and carpets used in hos-

pitals is nearly neglected, though such materials are highly

prone to contamination by aerosols and dust. Standard proce-

dures for the disinfection of surface coverings and linens in-

clude laundering, cleaning with water, and vacuuming, which,

in many cases, are inadequate to remove infectious load

(Malik et al. 2006a). The carpets of shopping malls where a

COVID-19-positive patient may have visited are disinfected

by spraying 1%NaOCl, and the disinfection time is 30min for

spraying of disinfectants, as recommended by the WHO and

the Central Pollution Control Board in India. Chlorine has

been applied as a disinfectant to contain SARS-CoV-2 in in-

door and outdoor spaces in China (China Ministry of Ecology

and Environment 2020). Thermal methods involving temper-

atures of at least 50°C for conducting 30-min Uc radiation

(100-μwcm−2 power) with a contact time of 15 to 20 min

Table 1 Cleaning options for different settings

Setting General settings Non-healthcare setting Healthcare setting

Toilets • 0.1% sodium hypochlorite or

Virucidal disinfectant

• 0.1% sodium hypochlorite or

• Virucidal disinfectant

• 0.1% sodium hypochlorite or

• Virucidal disinfectant

Surface • Neutral detergent • Virucidal and

• Neutral detergent

•0.05% sodium hypochlorite or

• Disinfectant or

• 70% ethanol

• Virucidal and

• Neutral detergent

• 0.05% sodium hypochlorite or

• Disinfectant or

• 70% ethanol

Textiles - • Hot-water cycle (90°C) and

• Regular laundry detergent

• Alternative: lower temperature cycle +

bleach or other laundry products

• Hot-water cycle (90°C) and

• Regular laundry detergent

• Alternative: lower temperature cycle +

bleach or other laundry products

PPE for cleaning staff • Gloves

• Uniform

• Gloves

• Surgical mask

• Uniform and plastic apron

• Gloves

• Surgical mask

• Disposable long-sleeved water-resistant

gown

• FFP2 or 3 when cleaning facilities where

AGP have been performed

Cleaning equipment • Non-disposable cleaned at the

end of cleaning session or

• Single-use disposable

• Non-disposable disinfected with: Virucidal

disinfectant or 0.1% sodium hypochlorite

• Single-use disposable

• Non-disposable disinfected with: Virucidal

disinfectant or 0.1% sodium hypochlorite

• Single-use disposable

Waste management • Unsorted garbage • In a separate bag in the unsorted garbage • Infectious clinical waste category B

(UN3291)
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and H2O2 vapor are being used for the disinfection of masks,

especially N95 masks (Card et al. 2020; Seymour et al. 2020).

Moreover, one study with the inclusion of original data based

on 10 studies indicated that thermal disinfection at 80°C for 1

min, 65°C for 15 min, and 60°C for 30 min was highly effec-

tive in reducing CoV infectivity by at least 4 log10 (Kampf

et al. 2020b). In this context, thermal aggregation of the mem-

brane protein along with complete denaturation of nucleocap-

sid protein (55°C for 10 min) of SARS-CoV is suggested as a

probable explanation of infectivity reduction (Wang et al.

2004; Lee et al. 2005).

The US Environmental Protection Agency (EPA) has pub-

lished a list of effective disinfectants for use against SARS-

CoV-2, including sodium hypochlorite, QAC, ethanol,

isopropanol, hypochlorous acid, chloroxylenol, H2O2, BAC,

and chlorine-based chemicals (US EPA 2020). Common dis-

infectants against SARS-CoV-2 are listed in Table 2. BAC

and related disinfectants are ubiquitously used and have been

recommended by the FDA for use in soaps, hospital sanitation

kits, and cleaningwipes; however, knowledge of their efficacy

against SARS-CoV-2 is crucial, and thus, they must be

evaluated. In addition to alcohols and ABHSs, QACs, such

as BAC, have been evaluated against CoVs but have shown

less activity; thus, similar to other disinfectants, including so-

dium hypochlorite, peroxides, aldehydes (formaldehyde and

glutardialdehyde), and didecyldimethylammonium chloride,

the above-mentioned agents should be subjected to proper

analysis to avoid their improper application as disinfectants

against SARS-CoV-2 (Kampf et al. 2020a; Lai et al. 2020;

Schrank et al. 2020). The CDC issued a warning regarding the

use of products containing BAC for the prevention of

COVID-19 (Schrank et al. 2020). Additionally, CoVs under-

go destruction within 15 min of exposure to ultraviolet C

(UVC) light (Darnell et al. 2004). The beta-CoVs, including

SARS-CoV and Middle East respiratory syndrome (MERS)

CoV, are effectively inactivated by germicidal ultraviolet

(UV) irradiation; however, its efficacy for inactivating

SARS-CoV-2 warrants further investigation (Leung and Ko

2020). Germicidal UV lamps for household disinfection

should be used with extreme caution because their improper

use can cause epidermal photo-toxicity and photo-keratitis

(Leung and Ko 2020). UV radiation is more dangerous and

Fig. 1 Disinfectants and their antiviral mechanisms (such as targeting lipid layer and spike proteins) and the need of disinfection during COVID-19

pandemic. The figure was created with BioRender.com
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may severely damage the eyes and skin; repeated exposure to

such radiation can also cause skin cancer (ICNIRP 2004). The

use of human disinfection chambers is an example of recent

innovations developed in response to the COVID-19 pandem-

ic (Wickramatillake and Kurukularatne 2020).

As the number of COVID-19 cases continues to increase

worldwide, a considerable shortage of N95 respirators has

emerged. Therefore, it is essential to note that N95 respirators

can be reused after disinfection. In a recent study, N95 respi-

rators were subjected to conditions of heat at temperatures ≤

85°C and relative humidity ≤ 100%, which resulted in the

inactivation of the virus without affecting the filtration prop-

erties of the masks (Liao et al. 2020). Furthermore, the use of

H2O2 and hot air is the most effective method for the industrial

and home disinfection of face masks, respectively. In contrast,

surgical masks and homemade or non-certified masks are

slightly less and significantly less effective than PPE and face

masks, respectively (Carlos Rubio-Romero et al. 2020). The

disinfection of used masks is necessary for their safe reuse

while there is an acute shortage; however, incorrect decontam-

ination procedures can damage the filtering structure of the

masks. Medical masks and N95 masks retain their blocking

efficacy against over 99% of viruses in aerosols even after

subjection to steam conditions in boiling water for 2 h, sug-

gesting that they can be reused for several days with the ap-

plication of steam decontamination between uses (Ma et al.

2020). Disinfection of the masks and PPE after use and prior

disposal is imperative. Otherwise, they may become a source

of environmental contamination of SARS-CoV-2. The disin-

fection of N95 respirators may be essential during pandemics,

such as the present COVID-19 pandemic, to overcome the

curtailment crisis. However, the decontamination method

should not alter the efficiency of the filtration of the N95

respirators and surgical masks. The use of UV germicidal

irradiation, microwave-generated steam, moist heat, and

H2O2 vapor techniques should be strictly followed for the

efficient containment of SARS-CoV-2.

Considering the transmission of COVID-19 in public trans-

port vehicles, such as aircraft, ships, trains, subways, and bus-

es, public transportation staff and passengers are advised to

adopt strict preventive measures. All surfaces in public trans-

port vehicles must be appropriately disinfected and sanitized.

For this purpose, surfaces can be sprayed or wiped with

chlorine-containing disinfectants (COVID-19 Emergency

Response Key Places Protection and Disinfection

Technology Team 2020a). A disinfectant should be used at

an appropriate concentration and sufficient contact exposure

time should be allowed with the surface to destroy the virus.

The precise timing, the location, and the mechanism of

disinfection, the type of disinfectant to be used, and safety

measures to be implemented for both public health and the

environment must be determined (Iyiola et al. 2020; Nabi

et al. 2020; Zhang et al. 2020). Determination of the minimumT
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amount of disinfectant necessary, appropriate exposure levels,

and appropriate level of contact is essential for optimum ac-

tion (Sarada et al. 2020). Avoidance of indiscriminate sprays,

minimization of public movement, and the development of

low-risk or nontoxic but effective disinfectants for future safe

applications should be an international priority (Iyiola et al.

2020; Nabi et al. 2020; Zhang et al. 2020). Additionally, ef-

forts should be engaged for the development of disinfection

systems, such as UVC-based disinfection trolleys, UVC ger-

micidal lamp-based fogging chambers, dry heat sterilization,

and HOCl-based chemical disinfectants (Sarada et al. 2020).

Disinfection and its deleterious effects
on humans and the environment

Improper and inappropriate use of disinfectants can result in

the exertion of adverse effects. Excessive use of disinfectants

poses a potential threat to living beings and ecosystems (Chen

et al. 2021; Ghafoor et al. 2021) as they present with a myriad

side effect (Yari et al. 2020). Disinfectants can affect both the

applicant and the environment and may have future deleteri-

ous consequences (Yari et al. 2020). Chemical agents used as

highly concentrated, aerosolized, or atomized disinfectants

can easily be inhaled or absorbed into the skin. For example,

aerosolized particles can penetrate alveoli upon inhalation.

The increased frequency and duration of exposure to disinfec-

tants (e.g., in disinfection chambers) can cause harmful effects

on human and animal health. Disinfectants may cause reac-

tions in the mucosal lining, resulting in irritation, inflamma-

tion, swelling, and ulceration of the upper and lower respira-

tory tract. A few chemicals are absorbed quickly through the

mucosa of various organs and organ systems (e.g., the central

nervous system and gastrointestinal tract) into the blood-

stream. A recent case study reported the infliction of severe

corrosive damage to gastric, esophageal, and small intestinal

mucosa after the intentional oral ingestion of 10 mL of

ethanol-containing hand disinfectant for 3 weeks, as the pa-

tient aimed to perform self-disinfection against COVID-19

owing to a fear of infection by the virus (Binder et al. 2020).

Direct contact of the cornea and skin with aerosols may cause

severe irritation and irreversible damage (Wickramatillake

and Kurukularatne 2020). In addition to dryness of the skin,

ABHSs can lead to infection and poisoning, particularly in

children, who are believed to be susceptible and thus are sub-

ject to a major health risk (Ghafoor et al. 2021). Bleach (di-

luted sodium hypochlorite), one of the most commonly used

disinfectants, can be directly absorbed by the skin, leading to

allergic reactions. Additionally, various harmful effects, such

as acute cardiopulmonary arrest, gastrointestinal ailments

(e.g., nausea, vomiting, and diarrhea), and renal problems,

have occurred in individuals after the accidental inhalation

and ingestion of bleach (Peck et al. 2011). QAC and bleach

reportedly increase the risk of development of asthma, chronic

obstructive pulmonary disease (COPD), infertility, and im-

paired brain development in children (Fair 2020). The poten-

tial impact of disinfectants on individuals with asthma remains

to be investigated, especially in the case of disinfectants with

strong odors. Such disinfectants can act as potential asthma

triggers (Eldeirawi et al. 2020). Therefore, individuals with

asthma should use safer disinfection alternatives. A recently

published cohort study revealed that out of 55,000 health pro-

fessionals who used QAC and bleach routinely, 663 devel-

oped COPD (European Lung Foundation 2017). A correlation

between the concentration of sodium hypochlorite and

microscopic/cellular alterations, including chromosomal aber-

rations, cell death (apoptotic and necrotic changes), and in-

creased mitotic activity, has also been documented (Gul et al.

2009). Additionally, psychotic episodes associated with a fear

of death from SARS-CoV-2 infection can result in the con-

sumption of liquid disinfectants or inhalation of aerosol sprays

containing chlorine in an effort to cleanse their body. This can

result in the infliction of primary inhalational toxic lung inju-

ry, which can mimic the symptoms of clinical COVID-19 due

to the development of acute respiratory distress syndrome

(Willems et al. 2020).

Chemical compounds used as disinfectants are not only

harmful to humans but also affect animals and aquatic

ecosystems. Though the disinfection of wastewater origi-

nating from healthcare facilities, offices, public places,

and other organizations, such as hotels and processing

units, is essential for minimization of the likelihood of

spreading infection and deleterious effects, application of

these disinfectants can cause harm to both living organ-

isms and the environment. Other disinfection practices,

such as the washing of external floors, streets, and mar-

kets, also contribute to the discharge of disinfectants into

sewage, rivers, and lakes (Subpiramaniyam 2021).

Sodium hypochlorite is commonly used for the disinfec-

tion of hospital wastewater to prevent the spread of nos-

ocomial infectious diseases. Therefore, such chemicals

may gain entry into the sewage and cause pollution of

drinking water resources (China Ministry of Ecology

and Environment 2020). Furthermore, as both direct and

indirect sewage effluents are discharged into rivers and

lakes, aquatic ecosystems are at a risk of contamination

w i t h c h em i c a l d i s i n f e c t a n t s ( S e d l a k 2 0 1 1 ;

Subpiramaniyam 2021). Chlorine disinfectants threaten

aquatic wildlife and plants as the agents catalyze the ox-

idation of their proteins and destruction of their cell walls

(Sedlak 2011). Moreover, these chemicals may bind to

other materials to form harmful compounds. For example,

chlorine disinfectants undergo reactions with dissolved

organic matter of surface water to produce disinfectant

byproducts, such as haloacetic acids and trihalomethanes,

which are highly toxic to aquatic flora and fauna (Sedlak
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2011; Liu and Zhang 2014). Chlorine also undergoes re-

action with organic matter in wastewater, thereby

resulting in the generation of organic chlorine compounds

that persist as environmental contaminants and may pose

a considerable risk to aquatic ecosystems (Emmanuel

et al. 2004). An effect of disinfectants may be exerted

on microbial activity in wastewater treatment plants that

may compromise the effective removal of pollutants (car-

bon, nitrose, and phosphorous). Extensive use of disinfec-

tants against COVID-19 also poses potential risks to ur-

ban wildlife (Nabi et al. 2020). While humans can avoid

the establishment of contact with disinfectants during the

active disinfection of areas or localities, other organisms,

including wild animals, are unable to do so, thus resulting

in potential contact with corrosive or otherwise harmful

substances (Nabi et al. 2020). The overuse of disinfectants

has led to the death of animals, such as birds and weasels

(You 2020). They exert toxicological effects on both ter-

restrial and aquatic animals (El-Nahhal and El-Nahhal

2020) and may have impacts on food and water sources

(Zhang et al. 2020). Excessive use of disinfectants can

lead to their enr ichment , bioaccumulat ion, and

biomagnification, resulting in toxicity, mutations, spread

of antibiotic resistance genes, and the emergence of

antibiotic-resistant bacteria (Chen et al. 2021).

The salient deleterious effects of disinfectants and

sanitizers on humans and the environment during COVID-

19 are depicted in Fig. 2.

Disinfectants may also affect material surfaces (Bonin et al.

2020). Their corrosive nature may lead to the corrosion of im-

portant metal surfaces. Though four out of five disinfectants pose

little or no risk to metals, further studies are warranted for the

evaluation of the impact of disinfectants on surfaces subject to

frequent and continuous use of various types of disinfectants, as

these agents may exert adverse effects (Bonin et al. 2020). The

increased use of disinfectants in response to the COVID-19 pan-

demic may lead to the occurrence of a secondary disaster in

aquatic ecosystems worldwide. Therefore, sewage originating

from medical institutions should be treated as per the guidelines

provided by concerned authorities. This implies that sewage orig-

inating from healthcare facilities should be treated separately

before combination with other sewage. Additionally, to remove

remaining virus particles from the sewage originating from

healthcare facilities, chemical agents, such as dibromo-dimethyl

hydantoin, chlorine dioxide, and other chlorine-containing disin-

fectants, can be used (COVID-19 Emergency Response Key

Places Protection and Disinfection Technology Team 2020b).

Analysis and re-evaluation of the current methods of sewage

treatment are of utmost importance for preventing the transmis-

sion of COVID-19 via sewage; additionally, the substitution of

conventional methods (chlorination and simple filtration) with

advanced methods (centralized wastewater treatment, oxidation,

filtration, and membrane technology) of sewage treatment is

necessary to prevent the dissemination of SARS-CoV-2 through-

out the environment (Núñez-Delgado 2020).

Mitigation strategies to reduce
the deleterious consequences of disinfectants
in humans and the environment

Safe and eco-friendly disinfectants should be used, and post-

disinfection measures should be undertaken to avoid the oc-

currence of health hazards. In this context, light, including

sunlight (Ratnesar-Shumate et al. 2020), UV light (Seyer

and Sanlidag 2020; Zhao et al. 2020), and color light

(Enwemeka et al. 2020), may demonstrate prospects and po-

tential applications in managing the COVID-19 pandemic.

However, further studies relating to this matter are warranted

(Derraik et al. 2020; Ratnesar-Shumate et al. 2020; Seyer and

Sanlidag 2020). Simulated sunlight can reportedly inactivate

SARS-CoV-2 particles dried on stainless steel and suspended

in simulated saliva or culture media (Ratnesar-Shumate et al.

2020). Moreover, 90% of infectious virus is inactivated at

every 6.8 and 14.3 min of exposure in simulated saliva and

culture media, respectively (Ratnesar-Shumate et al. 2020).

This indicates that sunlight may be useful as a natural disin-

fectant for non-porous outdoor materials contaminated with

SARS-CoV-2 (Ratnesar-Shumate et al. 2020). Special air-

disinfecting machines are also presently being proposed

(Zhao et al. 2020).

Hitherto, studies have shown the activity of alcohol-based

disinfectants and sanitizers against several viral infections

(Malik et al. 2006b; Patnayak et al. 2008; Suman et al.

2020). The use of ethanol-based sanitizers is recommended

for the prevention of the harmful effects of other chemical

compounds on humans and animals. Direct spraying of bleach

onto infected individuals or affected areas is discouraged.

Disinfected surfaces must be subjected to drying and rinsing

with water because disinfectants can persist for a long period

on contaminated surfaces and may cause unintentional expo-

sure to hazardous chemicals. Government agencies should,

therefore, develop facilities for proper disinfectant drainage

to minimize the harmful effects on aquatic flora and fauna.

The use of eco-friendly technologies along with safe and ef-

fective disinfection methods is highly warranted, not only to

combat the ongoing pandemic but also to protect the environ-

ment and living beings from hazardous chemicals.

Low-cost antibody-linked graphene sheets that function as

environmental virus sensors have been synthesized; their ap-

plication as coatings on face masks/PPEs represents a prom-

ising strategy to fight COVID-19 by minimizing the risk of

transmission (Palmieri and Papi 2020). Moreover, magnetic

nanomaterials or nanoparticles can be exploited as efficient

alternatives for coating PPEs such as masks and eye-

protecting glasses in order to produce reusable and
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environmentally friendly antiviral nanocoated PPEs (Tyagi

et al. 2021). However, antiviral nanoparticles such as silver

(Ag), copper (Cu), copper oxide (CuO), and zinc (Zn) have

been incorporated on surfaces and PPE textiles, and can be a

viable alternative to chemical disinfection processes (Valdez-

Salas et al. 2021; Ruiz-Hitzky et al. 2020). In a recent study,

the nanodisinfectant has been evaluated as a reliable technique

for efficient disinfection, reusing, and even antimicrobial pro-

motion of surgical masks for healthcare professionals

(Valdez-Salas et al. 2021). In addition, modern nanotechnol-

ogy and nanomedicine approaches have been harnessed to

develop disinfection and treatment strategies to tackle increas-

ing infection cases worldwide, especially challenges posed by

pathogens of viral origin (Nikaeen et al. 2020). Recently,

more sophisticated and modern strategies, such as the use of

agriculture spraying drones and robotic machines, have been

suggested to disinfect areas that pose a high risk of infection,

such as stadiums and theaters, in a short timespan (Clay and

Milk 2020; Khan et al. 2021). Various nanomaterials such as

carbon nanotubes, graphene, or silver nanowires have been

used to improve current physical disinfection methods

(Kumar and Mohanty 2020; Palmieri and Papi 2020; Ruiz-

Hitzky et al. 2020). Furthermore, nanomaterials have been

proposed as possible disinfection candidates since they do

not exhibit antiviral activities for single use but rather exhibit

their action over a prolonged period of time (Campos et al.

2020; Ruiz-Hitzky et al. 2020), and this property can be used

to produce sustainable and environmentally friendly

disinfectants.

Furthermore, a recent study proposed that the use of a va-

riety of physical techniques such as photolithography and la-

ser surface modification, in conjunction with ion beam–

assisted deposition, can be used to evolve biomaterial surfaces

or self-cleaning surfaces with suitable topographical features

and controlled cell adhesion (Kumari and Chatterjee 2021). In

this sense, the antiviral behavior of aluminum surfaces with

appropriately aligned ridges has been studied against SARS-

CoV-2, and it was found that the self-disinfecting surfaces

with coated nanoparticles are substantially effective against

SARS-CoV-2 (Hasan et al. 2020a; Hasan et al. 2020b).

Hence, the self-cleaning surfaces with minor deleterious con-

sequences are incredibly effective at mitigating viral transmis-

sion by contact. Their ability should be explored further in the

future to reduce the usage of chemical disinfectants.

Moreover, disinfectants are biocidal products; therefore,

they are regulated by the Biocidal Products Regulation

Fig. 2 Deleterious effects of disinfectants and sanitizers in human and environment during COVID-19. The figure was created with BioRender.com
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(BPR) (EU) in European Union countries and are appropriate-

ly evaluated before marketing (EPC 2020). However, consid-

ering the urgency of addressing the COVID-19 pandemic, a

few agents may be provided for developing transitional mea-

sures without BPR for immediate use against SARS-CoV-2,

such as 70–80% ethanol application for 1 min (Kampf et al.

2020a). Most biocidal products with virucidal activity regu-

lated under BPR are effective against SARS-CoV-2. This in-

cludes disinfectants used in hand hygiene and skin disinfec-

tion, albeit they may demonstrate limited biocidal activity

against viruses or less remarkable activity against enveloped

viruses (ECDC 2020). Hence, proper assessment before ap-

plication and monitoring during use is of utmost importance

for human health and environmental safety.

Appropriate use of disinfectants as recommended by vari-

ous agencies should be practiced to counter SARS-CoV-2.

The WHO (2020) has provided recommendations for the ap-

propriate utilization of suitable disinfectants and at specified

intervals. Similarly, cleaning and disinfection as per commu-

nity facilities guidelines of the CDC (CDC 2020a) and disin-

fection as per quarantine facility guidelines of the NCDC

(2020) may be helpful. However, any disinfectant, regardless

of its nature and properties, used for disinfection under a se-

lective environment must meet local authority specifications

and be used in an eco-friendly and efficient manner to prevent

environmental contamination (WHO 2020).

Important mitigation strategies to reduce the deleterious

consequences of disinfectants in humans and the environment

during the COVID-19 pandemic are presented in Fig. 3.

Sanitizers during the COVID-19 pandemic

Sanitizer is an antimicrobial liquid, gel, or foam that is used to

reduce the number of microorganisms present on a surface.

Although alcohol-based hand rubs and washing with soap and

water are effective against CoVs, due to ease of utilization,

hand sanitizers have gained more popularity than other avail-

able options, including washing with soaps, chemical disin-

fection, exposure to sunlight, UV light, or heating. The in-

creased frequency of sanitizer usage due to fear of developing

COVID-19 has resulted in increased aerosol generation and,

in certain cases, poses a potential hazard to exposed mucosal

surfaces and skin. The adverse effects of alcohol used in hand

sanitizers can be manifold and may lead to a condition called

sanitizer aerosol-driven ocular surface disease owing to the

increased sensitivity of eyes to the toxic effects of these

sanitizers compared to that of skin (Ahn et al. 2010; Shetty

et al. 2020). There has been a significant increase in the num-

ber of ocular injuries from 2020 to 2021 in the pediatric pop-

ulation due to inefficient use of ABHSs (Martin et al. 2021).

However, a few associated problems are caused by the

market formulations of available hand sanitizers, and the

capacity of chemists has increased manifold during the

COVID-19 pandemic with emphasis on the use of hand

sanitizers (Opatz et al. 2020). The use of hand sanitizers as a

result of the COVID-19 pandemic has increased the number

of cases of hand dermatitis in more than 90% of healthcare

workers (HCWs) and hand eczema in nearly 14% of these

cases (Guertler et al. 2020). Not all market formulations are

effective for use. A screening of all WHO-recommended hand

rub formulations (alcohol-based hand rubs) showed high vi-

rucidal activity with complete inactivation of SARS-CoV-2

(Kratzel et al. 2020). In this context, the Centers for Disease

Control and Prevention (CDC) also recommended adopting

practices for good hand hygiene, which includes proper

handwashing with warm water and soap for a minimum peri-

od of 20 s and the use of ABHSs as the most effective ap-

proach to reduce COVID-19 infection (CDC 2020b; Schrank

et al. 2020).

Life-threatening clinical effects can be attributed to acute

ethanol intoxication. A case study reported by Lim revealed

that hand sanitizer application did not interfere with the course

of treatment of infectious spondylitis or cause abnormal com-

plications. However, during the current COVID-19 pandemic,

it is expected that such intoxications will increase due to the

increased use of hand sanitizers (Lim 2020).

Additionally, the toxicity and harmful effects of alcohol-

based sanitizers on skin and their excessive use gradually lead

to natural mutations in microbes and can contribute to the

issue of antimicrobial resistance, which is already a significant

threat to developing countries and continents, such as India,

Pakistan, Africa, and Bangladesh (Mahmood et al. 2020).

To prevent the hazardous effects of ABHSs, the use of soap

and water should be encouraged in susceptible individuals.

The use of a face shield or protective goggles would be ben-

eficial, wherein the frequent cleansing of hands is unavoid-

able. Moreover, the closure of eyes while pressing the nozzle

of the sanitizer and maintenance of proper distance by ensur-

ing that the sanitizer is below the eye level. Furthermore,

keeping doors and windows open and avoiding sanitizer usage

when air conditioning systems are activated may help reduce

exposure to sanitizer droplets. Additionally, the most effective

approach to confer protection to the eyes andmucosal surfaces

from the harmful effects of sanitizers is by minimizing their

use.

Steps to be followed while using disinfectants (National

Pesticide Information Center 2020; COVID-19 Prevention:

Enhanced Cleaning and Disinfection Protocols 2020):

& Before using disinfectant, follow the precautionary state-

ments on the accompanying label to prevent chemical ex-

posure to self and surrounding individuals. Use appropri-

ate recommended doses at appropriate intervals.

Disinfectants containing 2 g/L chlorine need to be sprayed

four times daily on highly infected areas (such as floors,
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tables, and beds of the contaminated/isolated areas and

hospitals) for 30 min. A concentration of 0.5 g/L of chlo-

rine is recommended for semi-contaminated areas. In case

dilution of the disinfectant is required, it should not affect

the final recommended concentration and should never be

used in combination with other compounds.

& While using disinfectants, wear appropriate PPE, such as

goggles, gloves, long-sleeved shirts, long pants, and

masks. The use of an appropriate mask for a specific pur-

pose is essential rather than using any non-specific mask

(Agrawal et al. 2020). For the community at large and for

HCWs, surgical masks or three-layer cotton masks can be

used. For HCWs during aerosol-generating procedures for

a patient with COVID-19, respirator masks are recom-

mended (Agrawal et al. 2020).

& Ensure proper ventilation while conducting disinfection.

Chlorine-based disinfectants with usual concentrations of

4% and 6% or glutaraldehyde-based disinfectants with

higher vapor levels than the recommended 1.12–3.4% es-

pecially require well-ventilated rooms (Ghafoor et al.

2021; Kampf et al. 2020). There should be exhaust duct

hoods, air systems with 7–15 air changes per hour,

ductable fumigation hoods with disinfectant vapor ab-

sorbers, or straightener lids in dip baths (Foliente et al.

2001; Ghafoor et al. 2021).

& Keep disinfectants away from the reach of children and

pets. Children are particularly susceptible to poisoning by

disinfectants (Ghafoor et al. 2021) with ingestion being

the common exposure route (Rosenman et al. 2021).

& Discard disposable protective items, such as gloves and

masks, after using disinfectants, since they have limited

efficacy (6–12 h) and are heat-sensitive, and thus, cannot

tolerate the sterilization process (Rowan and Laffey

2020). Not only does the structure of PPE and masks

change upon washing and drying, but changes are ob-

served in also their quality and efficacy, such as through

the deterioration of their filtration properties (Konda et al.

2020; Sharma et al. 2020).

& Wash hands with soap and water after conducting disin-

fection, and apply the appropriate hand sanitizer.

& Avoid spraying chloride- and hypochlorite-containing dis-

infectants to the most possible extent, as they are more

harmful to surfaces, other organisms, and the environment

than their alternatives (Lin et al. 2020); additionally, there

Fig. 3 Mitigation strategies to reduce deleterious consequences of disinfectants in human and environment during COVID-19 pandemic. The figure was

created with BioRender.com
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are currently related concerns surrounding the enrichment,

bioaccumulation, and biomagnification of disinfectants

(Chen et al. 2021). Alcohol-based disinfectants, soaps,

and detergents along with water and radiation can be com-

paratively beneficial; nevertheless, all specified options

are detrimental when adopted in excess.

Conclusion and future prospects

The COVID-19 pandemic ushered in several challenges with

its emergence and seemed to be unrestricted through current

mitigation strategies. Considering the urgency of the situation

caused by the global spread of SARS-CoV-2 with rising mor-

bidity, alarming mortality, and global economic fallouts, the

trend of efforts is shifting from strategies of lockdown, quar-

antine, testing, isolation, and treatment to the creation of an

atmosphere of clean, healthy, and safe surroundings that pro-

vides a healthy working environment. Several prevention

strategies, such as avoidance of close contact with sick people;

avoiding touching eyes, nose, and mouth; staying home when

sick; covering the mouth when coughing and sneezing; and

undertaking the approaches for frequent disinfection and san-

itization of hands and touched objects, fomites, and surfaces,

are important to prevent virus transmission. In this context, a

variety of chemicals and other virucidal agents have been used

globally as disinfectants to render the environment free from

SARS-CoV-2 to the highest extent possible to prevent further

spread. Disinfectants are proving to be beneficial in this regard

and have gained considerable attention recently as being ef-

fective, affordable, convenient, and readily available antimi-

crobial agents. Applications have been identified in every as-

pect of life, including at home, the office, healthcare facilities,

other industries, and the surrounding environment. However,

there remain concerns regarding the side effects on animal and

human health, the environment, and ecological balance.

There is an urgent need for developing eco-friendly tech-

nologies that offer safer and more effective disinfection

methods to combat the ongoing pandemic, along with confer-

ring protection to the environment and living beings from the

potentially hazardous effects of chemical disinfectants.

Alternate and improved strategies are being devised for min-

imizing adverse effects. In this context, the use of graphene

sheets as coatings for face masks offers a promising strategy

for fighting COVID-19 by minimizing the risk of further

transmission. The graphene coating of face masks is of partic-

ular interest because it can be reused as it is superhydrophobic,

thereby reducing the likelihood of adherence of infectious

drops, and its strong light-absorbing properties renders steril-

ization upon exposure to sunlight possible. Moreover, nano-

technology and nanomedicine approaches have been

harnessed to develop novel disinfection and treatment strate-

gies to tackle this pandemic more effectively.

The current pace of research and the evolution of numerous

novel disinfectants against COVID-19 provides hope for the

development of safe, effective, and convenient disinfectants

that are affordable to all and accessible under diverse environ-

ments with minimum or no potential risk to health and sur-

roundings. Meanwhile, during disinfectant use, precautionary

and preventive measures should be adopted. An environmen-

tal impact assessment of the escalating use of disinfectants is

urgently needed. Clear and comprehensive guidelines for dis-

infectant application are also necessary at regional, national,

and international levels to reduce the deleterious conse-

quences to both humans and the environment.
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