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We investigate the influence of domain walls on the vortex dynamics in superconductors
with multi-component order parameters. We show that, due to their complex structure do-
main walls can carry vortices with fractional flux quanta. The decay of conventional vortices
into fractional ones on domain walls is examined. This decay presents an extraordinarily
strong pinning mechanism for vortices and turns domain walls occupied with pinned frac-
tional vortices into efficient barriers for the vortex motion. Therefore, domain walls can
act as fences for the flux flow, preventing the decay of the remnant magnetic flux enclosed
by them. Furthermore, the consequences of this property of domain walls on the vortex
dynamics are discussed in connection with observed noise in the hysteresis cycle, using the
Bean model of the critical vortex state. Based on this picture experimental data in the
unconventional superconductors UPt3, U1−xThxBe13 and Sr2RuO4 are interpreted.

§1. Introduction

The penetration of magnetic fields into type-II superconductors as flux lines
(vortices) yields many complex phenomena. In recent years the physics of vortices
has become an important subject, particularly in connection with high-temperature
superconductivity. 1) The physics of “vortex matter” is crucial for a large number
of applications of superconductivity involving high currents and fields. Vortices
limit the technological capability of superconductors, since their motion generates
dissipation. Therefore one of the central issues is the pinning of vortices at defects
such as impurities, lattice dislocations and twin boundaries. The critical current,
the limit of dissipation-free transport, depends on the character and strength of the
pinning potentials created by these defects. The effect of pinning was shown to
crucially depend on the various phases of vortex matter, and the resulting problems
are naturally very complex. 1)

In this paper we would like to discuss a pinning phenomenon in unconventional
superconductors which has a character different from the usual pinning at crystal
defects. This study is motivated by recent experiments on heavy fermion compounds
UPt3 and U1−xThxBe13 as well as on the transition metal oxide Sr2RuO4. 2) - 5)

All these superconductors have a comparatively low transition temperature of the
order of 1K. Fluctuation effects do not play an important role in these systems.
However, interesting vortex physics is introduced because the superconducting order
parameter of these systems has more than one component. This yields more degrees
of freedom in forming topologically stable defects of the order parameter, a well-
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966 M. Sigrist and D. F. Agterberg

known feature in superfluid 3He physics. We would first like to review some of the
basic experimental facts concerning the mixed state of these three superconductors,
which will be relevant for our theoretical discussion.

One aspect of the mixed state related to vortex pinning is the slow motion of
vortices close to the critical state, known as flux creep. This phenomenon is observed
as the slow decrease of the remnant magnetization after the superconductor has been
exposed for some time to a magnetic field considerably larger than the lower critical
field, Hc1. The remnant magnetization that exists after turning off the external
field originates from the pinning of vortices in the material. The motion of these
vortices out of the sample, generally governed by thermally activated crossing of
pinning potential barriers, leads to the slow decay of the magnetization. 1) (Note that
quantum phenomena, macroscopic quantum tunneling, can also play an important
role at sufficiently low temperature. 1), 6)) The decay (creep) rate is determined by
the temperature, the pinning properties, and the vortex matter state as described by
Kim and Anderson 7), 8) (see also Geshkenbein and Larkin 9)). A simple and intuitive
theory of the critical vortex state in a material with strong pinning effects was given
by Bean. 10) It describes the characteristic profile of the vortex distribution depending
on the history of the external applied fields and the critical current. 8)

In the two heavy Fermion superconductors UPt3 and U0.9725Th0.0275Be13 (0.017
≤ x ≤ 0.45), an anomalous temperature dependence of the creep rate was observed
by Mota’s group. 2), 3) UPt3 and U1−xThxBe13 (0.017 ≤ x ≤ 0.45) both exhibit
two consecutive superconducting phase transitions. Flux relaxation measurements
show a rapid drop of the creep rate, essentially to zero, immediately below the second
transition in both systems. 2), 3) A similar sudden drop in the creep rate was reported
for Sr2RuO4 at the rather low temperature T ∗ ≈ 50 mK. 4) In contrast to the former
two examples, no sign of an additional transition at this temperature is observed in
any other properties to this time. The transition in the creep rate indicates the onset
of a new efficient pinning mechanism which inhibits the motion of vortices from the
interior to the surface of the sample. However, it has been noticed in experiments
that after a long waiting period some creep recovers. 2), 4)

This effect is readily explained if we assume that fence-like structures exist which
prevent the passage of vortices (so that the vortices cannot leave the sample). Ex-
periments indicate that these fences are activated below a certain transition temper-
ature within the superconducting phase. The effect of the fences is rather different
to standard pinning. In particular, their influence on the critical current is weak, as
discussed below. This is consistent with hysteresis measurements on UPt3 in a slowly
oscillating magnetic field. 5) While the flux creep disappears in the low-temperature
phase, the critical current is continuously increasing and shows no anomaly upon
entering the low temperature phase. 2), 3) Furthermore, below the second transition
Rosenbaum’s group found that the magnetization curves of the hysteresis cycle dis-
play strong variations from cycle to cycle in the region close to Hc1, while in the high
field part of the cycle (connected with the critical current of the superconductor) no
unusual behavior is seen. 5) This “noise” can be understood as being induced by the
weakly mobile fences inhibiting the free flow of vortices. In every cycle the position
of the fences changes slightly, and the magnetization process for small vortex con-
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The Role of Domain Walls on the Vortex Creep Dynamics 967

centrations, i.e. for fields close to Hc1, is modified. 5) We will show that a simulation
with a simple model incorporating this effect gives rise to the features observed in
these experiments.

What is the origin of these fence-like structures? In unconventional supercon-
ductors such structures occur if the superconducting phase is degenerate, e.g., for
time-reversal symmetry breaking states which have at least a two-fold degeneracy.
Degenerate states can appear as domains in the superconductor accompanied by do-
main walls as topological structures of the order parameter. 11) Various properties of
such domain walls have been studied by several groups. 11) - 13) Domain walls in time-
reversal symmetry breaking superconductors possess interesting magnetic properties
and carry chiral quasiparticle bound states. 12) - 14) The question arises whether or
not they serve as barriers to the vortex motion. The domain wall is naturally ac-
companied by a slight local suppression of the order parameter which tends to trap
vortices. In this case the pinning strength is rather weak and should not have much
influence on the flux motion. However, strong pinning can arise from properties of
the internal structure of domain walls. Under certain circumstances the domain wall
has, in addition to a stable structure, metastable structures, or even two degener-
ate stable states. 11) These states may form domains on the domain wall that are
separated by line defects. It has been shown that such lines carry a magnetic flux
which is an arbitrary fraction of a standard flux quantum in a superconductor. 13)

We will show that an ordinary vortex placed on such a domain wall can decay into
two fractional vortices. 13), 15) Since these fractional vortices can only exist on the
domain wall, they are strongly pinned. They repel other approaching vortices, and
in this way the domain wall indeed acts as a strong barrier. A high density of vortices
close to the domain wall can destroy the state which carries fractional vortices, and
the pinning effect disappears. This is equivalent to having a barrier “height” for the
vortex pinning. It is important to note that this pinning property of the domain wall
does not alter the bulk pinning due to impurities within each domain. This type of
impurity-based pinning is responsible for determining the critical current. However,
the domain walls play an important role in the overall flux motion. They are the
origin of an intrinsic pinning location created by the superconducting state itself, in
contrast to the extrinsic pinning due to material defects. Note, however, that the
domain walls themselves are pinned at lattice defects reducing their mobility.

In this article we first discuss properties of domain walls in the most simple case
of a time-reversal symmetry breaking superconducting state using the Ginzburg-
Landau theory. Then we use the domain walls as barriers in a model based on
Bean’s theory and consider the modification of flux motion properties due to these
barriers.

§2. Properties of a domain wall

In this section we investigate the structure of a domain wall in a time-reversal
symmetry breaking superconducting state as may be realized in the low-temperature
phases of UPt3 and U1−xThxBe13, and at the onset of superconductivity in Sr2RuO4.
We do not include the aspects of the double transition related to the former two, as
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968 M. Sigrist and D. F. Agterberg

it complicates the discussion considerably without leading to further insight.

2.1. Ginzburg-Landau theory

For the following discussion we introduce the simplest possible model that con-
tains all the relevant features in order to discuss the physics of domain walls in an
unconventional superconductor. We consider a system with tetragonal crystal sym-
metry based on the point group D4h. The superconducting order parameter shall
belong to the two-dimensional representation Eg (even parity) or Eu (odd parity),
yielding the following expansion for the gap functions (2 × 2 gap matrix with the
notation ∆̂ = iσ̂yψ for even and ∆̂ = i(d · σ̂)σ̂y for odd parity):

ψ(k) = (ηxvzvx + ηyvzvy)/〈v2
xv

2
z〉,

d(k) = ẑ(ηxvx + ηyvy)/〈v2
x〉. (2.1)

Here η = (ηx, ηy) represent the two-dimensional complex order parameter, ẑ denotes
the unit vector along z-direction, vi denotes the components of the Fermi velocity,
and 〈...〉 is the average over the Fermi surface. As mentioned above, we concentrate
on the time-reversal symmetry breaking states of the form η ∝ (1,±i) yielding the
gap functions

ψ(k) = η0vz(vx ± ivy)/〈v2
xv

2
z〉 or d(k) = ẑ(vx ± ivy)/〈v2

x〉. (2.2)

It is convenient to transform the order parameter into the basis set η± = (ηx ∓
iηy)/

√
2. For simplicity we also use the phenomenological parameters as determined

by weak coupling theory and assume that vz does not depend upon kx or ky. The
general GL free energy then has the form

F =
∫
d3r

[
a(|η+|2 + |η−|2) + b{(|η+|4 + |η−|4) + 4|η+|2|η−|2

+ν(η∗2− η
2
+ + η2

−η
∗2
+ )}+ κ{|Dη+|2 + |Dη−|2

+
1
2
((D−η+)∗(D+η−) + ν(D+η+)∗(D−η−) + c.c.)}+

1
8π

(∇× A)2
]
. (2.3)

Here a = a0(T − Tc) and b and κ are the standard coefficients derived from the
weak coupling theory. In the gradient terms, we use the gauge invariant derivatives
D = ∇−iγA, withD± = Dx±iDy and γ = 2e/h̄c = 2π/Φ0 (Φ0 is the flux quantum).
The parameter ν denotes the deviation of the Fermi surface or its density of states
from cylindrical symmetry around the z-axis due to the tetragonal crystal field

ν =
〈v4

x〉 − 3〈v2
xv

2
y〉

〈v4
x〉+ 〈v2

xv
2
y〉
, (2.4)

where ν = 0 for a cylindrical symmetric Fermi surface. In this form the GL the-
ory describes two degenerate superconducting states, (η+, η−) = η0(T )(1, 0) and
η0(T )(0, 1) with

η2
0(T ) =

a0(Tc − T )
2b

(2.5)
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The Role of Domain Walls on the Vortex Creep Dynamics 969

for T < Tc.
In the following we analyze the properties of domain walls between the two

degenerate states. We assume that they are infinite and planar such that we can
separate the coordinates into components parallel and perpendicular to the normal
vector n of the domain wall. For simplicity we ignore the z-direction, assuming that
n ⊥ z. Therefore it is convenient to rewrite the free energy in these coordinates:
(x, y) → (x′, y′) = (r‖, r⊥) and D± = e±iθD′±. Simultaneously we transform the
order parameter η± = e±iθη′± so that the gradient terms become

κ

{
|D′η′+|2+|D′η′−|2+

1
2
((D′

−η
′
+)∗(D′

+η
′
−)+νe−i4θ(D′

+η
′
+)∗(D′

−η
′
−)+c.c.)

}
(2.6)

and in the homogeneous part only the third term among the fourth order terms is
modified to

bνei4θη′∗2− η′2+ + c.c. (2.7)

From this point we omit the primes for coordinates and order parameters and take
θ as the angle of the normal vector n relative to the crystal x-axis. Thus, the
x(y)-coordinate is now always parallel (perpendicular) to the normal vector. In this
representation the θ dependence clearly does not appear, if the system is cylindrically
symmetric, i.e., ν = 0.

2.2. Structure of the domain wall

We now turn to the domain wall and consider the situation in which for x→ ±∞
the superconducting states η± is realized and around x = 0 a smooth change between

x

η

0

|η| || +-

Fig. 1. Schematic behavior of the order pa-

rameter components at the domain wall.

the two states occurs within a finite
length scale (Fig. 1). This situation is
similar to a Josephson junction between
two superconductors with the state η+

and η−, respectively. Indeed the phase
difference between the two states plays
a similarly important role for the phys-
ical properties of the domain wall. The
structure of the domain wall is obtained
by a variational minimization of the free energy F . For the sake of transparency we
simplify the treatment by introducing the following approximate variational ansatz
for the order parameter:

η+ = η0e
iφ+ cosχ and η− = η0e

iφ− sinχ. (2.8)

This leads to the boundary conditions

χ =




0 x→ +∞,

π

2
x→ −∞.

(2.9)

We assume spatial dependence only for χ and leave the phase difference between the
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two sides α = φ+ − φ− constant. The effective free energy becomes

F̃ =
∫
d3r

[
aη2

0 + bη4
0 +

bη4
0

2
(1 + ν cos(2α+ 4θ)) sin2 2χ

+κη2
0{|D cosχ|2 + |D sinχ|2 + [e−iα(D− cosχ)∗(D+ sinχ)

+νe−i(α+4θ)(D+ cosχ)∗(D− sinχ) + c.c.]/2}+
1
8π

(∇× A)2
]
. (2.10)

We neglect contributions from Ay and vary the free energy with respect to χ,

∂2
xχ =

Q

4
sin 4χ−4S+γAx(∂xχ)+2C+(sin 2χ∂2

xχ+cos 2χ[(∂xχ)2+γ2A2
x]), (2.11)

and Ax,

Ax =
S+∂xχ

γ(1 + C+ sin 2χ)
, (2.12)

with

Q =
1
ξ2
0

{1 + ν cos(2α+ 4θ)},
C± = [cosα± ν cos(α+ 4θ)] /2,
S± = [sinα± ν sin(α+ 2θ)] /2, (2.13)

and ξ2
0 = κ/2bη2

0. The third term on the right-hand side of Eq. (2.11) and the sin 2χ
term in the denominator of Ax complicate the solution. We find, however, that the
influence of these terms is small at larger distances from the domain wall, as one
can see in approximating χ(x) ≈ e−Kx in the limit x→ +∞. With this ansatz, Eq.
(2.11) becomes

(1− S2
+)K2e−Kx = Qe−Kx +O(e−2Kx). (2.14)

−1.0 −0.5 0.0 0.5 1.0
α / π

0.6

0.8

1.0

1.2

1.4

1.6

f(
α,

θ)
ξ 0/(

κη
02 )

θ = 0
 θ = π/8
 θ = π/4

Fig. 2. The domain wall energies as functions

of the phase difference α = φ+ − φ− for

angles θ = 0, π/8 and π/4. The anisotropy

parameter is chosen ν = −0.5.

Thus the second term decays much
faster than the first one. Therefore, the
width of the domain wall is largely de-
termined by the first term, and the sec-
ond term enters only into the domain
wall energy.

We solve Eq. (2.11) neglecting the
third term and the sin 2χ term in the
denominator of Ax, so that it takes the
form of an ordinary Sine-Gordon equa-
tion,

∂2
xχ =

Q̃

4
sin 4χ, (2.15)

where Q̃ = Q/(1 − S2
+) for which we

easily find the kink solution

χ(x) = arctan(e−x
√

Q̃). (2.16)
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The Role of Domain Walls on the Vortex Creep Dynamics 971

This is used to determine Ax through Eq. (2.12) and both Ax and χ are inserted
into the free energy and integrated, so that we obtain for the variational domain wall
energy

f(α, θ) = κη2
0

√
Q̃


1− C+π

8
− S2

+

C+


π
4
− 1√

1− C2
+

arctan



√

1 − C2
+

1 + C+








(2.17)
as a function of α and θ.

From this point we fix ν < 0. For sufficiently large |ν| the domain wall energy
develops two local minima as a function of the relative phase α. This is illustrated
in Fig. 2 for angles θ = 0, π/8 and π/4. For the most stable orientation θ = 0 these
minima are at α = 0 (stable state) and α = π (metastable state). For θ → π/4 we
find that the stable and metastable state approach in energy and become degenerate
at exactly θ = π/4. The presence of stable and metastable states is important when
we discuss vortex states on the domain wall.

§3. Vortices on the domain wall

We now investigate local modifications of the domain wall structure which give
rise to vortices. This problem has been previously considered for the case of the
degenerate domain wall state. 13) Here we extend the discussion to the general situ-
ation.

3.1. Fractional flux lines

As mentioned in the Introduction, domain walls act as pinning regions for the
vortices (core pinning) due to the locally diminished condensation energy. The re-
sulting pinning effect is, however, rather small, since the domain wall only provides a
shallow attractive potential. In the following we would like to show that a change of
the vortex structure can lead to considerable strengthening of the pinning potential.

To some extent the domain wall can be viewed as a planar weak link between
two superconductors with order parameters slightly interpenetrating, as described
by Eq. (2.8). We use this form for the order parameter to express the current which
is obtained from the variation of the free energy with respect to the vector potential,

jx =
κγ

c
[2 cos2 χux+ + 2 sin2 χux− − sin 2χ{(ux+ + ux−)C+ + (uy+ + uy−)S−}

+2(∂x)χS+],

jy =
κγ

c
[2 cos2 χuy+ + 2 sin2 χuy− − sin 2χ{(uy+ + uy−)C+ + (ux+ + ux−)S−}

+2(∂x)χC−], (3.1)

with
uµ± = η2

0(∂µφ± − γAµ). (3.2)

In the stable and metastable states for given θ, the current perpendicular to the
domain wall should vanish. If this were not the case, current would flow everywhere

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/5/965/1884418 by guest on 16 August 2022



972 M. Sigrist and D. F. Agterberg

in the bulk, leading to a large energy cost. Neglecting the contributions of Ay leads
to Eq. (2.12) for Ax, so that the variational solution already ensures that the current
perpendicular to the wall vanishes for α of the (meta)stable state.

We now consider vortices on the domain wall corresponding to the winding of
the order parameter phase. By analogy to Josephson junctions, such a vortex may
be considered a “kink” of the phase difference α. In the ordinary case, the size of
the kink is an integer multiple of 2π. For the domain wall it is, however, possible to
generate a kink to a metastable state. While, in general, a 2π-kink is associated with
the standard magnetic flux quantum Φ0 = hc/2e, a smaller kink between the stable
and metastable state would carry a fraction of Φ0 only, depending on the size of the
kink and other parameters. For the Josephson junction we can describe the vortex
using a sine-Gordon equation of the phase difference containing only one length scale,
the Josephson penetration depth. This analogy, however, is limited, because in the
case of the domain wall two length scales have to be taken into account: the coherence
length ξ̃ (length scale of the variation of α) along the domain wall and the London
penetration depth λL. We consider the limit λL � ξ̃, ignore the detailed structure of
the vortex on small length scales (∼ ξ̃) and focus mainly on its magnetic properties.
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��
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��
��
��

do
m
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w
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x
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flux line

+L

-L1

2

3

4

Fig. 3. Rectangular path encircling the flux

line. We separate the path into parts 1,

2, 3 and 4 in order to calculate the contri-

bution to the flux.

Let us analyze now a kink of α as a
line defect in the domain wall between
the stable state with α = α0 and the
metastable state with α = α1. We en-
circle this line by a wide rectangular
path (see Fig. 3) and calculate the en-
closed magnetic flux Φ =

∮
ds ·A. First,

we consider the parts of the path which
cross the domain wall perpendicularly, 1
and 3. We choose the gauge such that
∂xφ± = 0 along both paths, i.e., any
variation of φ± is restricted to the parts
of the path parallel to the domain wall.
If we now use the condition jx = 0 along
this path, we obtain the contribution

ϕ1 =
∫ +∞

−∞
dxAx(x, y = −L) =

∫ π

0
dβ

S+

2γ
1

1 + C+ sinβ
= Φ0Π(α0, θ) (3.3)

to the flux from path 1, where

Π(α, θ) =
S+

2π
√

1− C2
+


arctan


 C+√

1− C2
+


− π

2


 . (3.4)

Analogously, the contribution from path 3 is given by

ϕ3 =
∫ −∞

+∞
dxAx(x, y = +L) = −Φ0Π(α1, θ), (3.5)

and for the paths 2 and 4 we take the variation of φ± into account. With jy = 0
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The Role of Domain Walls on the Vortex Creep Dynamics 973

sufficiently far from the domain wall, this leads to

ϕ2 + ϕ4 =
∫ +L

−L
dy(Ay(x → +∞, y)−Ay(x→ −∞, y))

=
1
γ

∫ +L

−L
(∂yφ+∂yφ−) =

α1 − α0 + 2πn
2π

Φ0. (3.6)

Thus, the flux for the line defect depends on the angle θ as

Φ(θ) = Φ0

[
α1 − α0

2π
+Π(α0, θ) −Π(α1, θ)

]
+ Φ0n, (3.7)

which determines the flux up to an integer multiple of Φ0. The possible magnetic
fluxes are fractional and the smallest ones are smaller than Φ0 in magnitude. This is
analogue to the Josephson vortices on a time-reversal symmetry breaking Josephson
junction. 16) - 19) In that case, however, the two junction states separated by the flux
line are degenerate. This is the case here only for the special angles θ = ±π/4. In
the special case θ = 0 the phase differences α0 = 0 and α1 = π lead to Φ = ±Φ0/2,
half a flux quantum. In all other cases the flux depends continuously on θ and ν.

It is easy to see that two kinks in sequence (stable → metastable → stable) yield
a total flux Φ = Φ0n. Therefore, a conventional vortex (flux Φ0) may decay into
two fractional vortices on the domain wall (Fig. 4). Through this dissociation, the
magnetic field energy can be reduced. If we assume that the domain wall is in the
stable state, then the splitting of the vortex introduces a metastable domain wall
connecting the two fractional flux lines. Thus, the cost of domain wall energy has to
be compensated by the reduction of magnetic energy.

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��������������������Φ
Φ

Φ
0

0 1 2

1

2

Φ= Φ Φ+

Fig. 4. A standard vortex with flux Φ0 on the

domain wall decays into two fractional vor-

tices whose fluxes add up to Φ0.

Let us compare the two energies
here. The domain wall energy cost
per unit area is εdw = fdw(α1, θ) −
fdw(α0, θ), with fdw defined in Eq.
(2.17). The magnetic energy of the flux
lines can be estimated by assuming that
their field distribution is not much dif-
ferent from that of a standard vortex de-
scribed by the London equation with the
free energy functional

FL =
∫
d3r[B2+λ2

L(∇×B)2], (3.8)

where we assume that the London penetration depth is not modified by the domain
wall. We now consider two fractional fluxes, Φ1, Φ2 > 0, with Φ1 + Φ2 = Φ0 (field
along the z-axis) at the positions r1 and r2, respectively. The resulting London
equation is

Bz − λ2
L∇2Bz = Φ1δ

(2)(r − r1) + Φ2δ
(2)(r − r2), (3.9)

which is taken in two dimensions, assuming homogeneity along the z-axis (r =
(x, y)). The solution of the equation leads to the line energies ε1 and ε2 for the
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974 M. Sigrist and D. F. Agterberg

two vortices and an interaction energy that depends on the distance between the
vortices. Thus the total magnetic energy is

v(|y2 − y1|) = ε1 + ε2 +
2Φ1Φ2

(4πλL)2
K0

( |y2 − y1|
λL

)
, (3.10)

with K0 denoting the MacDonalds function. The line energies contain as a lower
cutoff length ξ̃j (j = 1, 2), which is of a magnitude similar to the coherence length,

εj =
Φ2

j

(4πλL)2
ln

(
λL

ξ̃j

)
. (3.11)

The potential for the fractional vortex at a distance R = |y2 − y1| is therefore

V (R) = v(R) + εdwR− ε0, (3.12)

where ε0 is the line energy per unit length of a standard vortex. The energy loss
due to the metastable state introduces a string potential between the two vortices.
The optimal distance R is chosen to minimize the potential energy V (R), which
corresponds to a pinning potential for the vortex. Note that this potential is only
valid for R � ξ̃j . Decaying into two fractional vortices leads to a very effective
pinning, since the recombination is necessary in order to dislocate the vortex again
from the domain wall. This occurs if the two fractional vortices are forced to approach
to R ∼ ξ̃j .

For a comparison of the energies involved, we estimate the magnetic energy
gained by the decay into fractional vortices,

Φ2
0

(4πλL)2
, (3.13)

where the London penetration depth is λ2
L = 1/8πκη2

0γ
2. The maximal string energy

is obtained for θ = 0, where

εdwR ∼ Φ2
0

(4πλL)2
κ

8
(1 + ν)3/2 R

λL
. (3.14)

In this case the two energies become comparable for R just a fraction of λL. For
angles θ closer to ±π/4, the string potential is smaller and the optimal separation
is larger. Furthermore, we find that increasing the anisotropy of the Fermi surface,
denoted by ν, tends to stabilize fractional vortices. The stability of the fractional
vortices does also depend on temperature, because the internal structure of the
domain wall can change with lowering temperature. 20)

In this discussion we have assumed that the domain wall is an infinite plane with
one fixed θ. In real materials this is not the case, because domain walls are pinned at
impurities and lattice defects and, consequently, may change orientation by having
“corners”. Since the phase value α for the stable domain wall structure depends on
θ, a kink of α should occur at every such corner and, according to our analysis, be
accompanied by a flux line. Similarly, one can see that the crossing of two domain
walls introduces a fractional vortex along the cutting line. In general, the phase and
flux structure of a non-planar domain wall can be rather complicated. However, we
do not consider these aspects any further here.
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3.2. Barrier effect of a domain wall

We now turn to the situation in which the superconductor is in the mixed phase
and contains many vortices. If the conditions are appropriate, some of the vortices
will be trapped by the domain wall and decay into fractional vortices. These flux
lines are strongly pinned and may form a queue on the domain wall like the planks of
a fence. Other vortices approaching the domain wall now are repelled by this vortex
fence and cannot easily penetrate or traverse the domain wall (Fig. 5). In this way
the domain wall acts as a very effective barrier for vortices.
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Fig. 5. Schematic picture of a domain wall

occupied by fractional flux line (shaded)

which repel approaching vortices (filled cir-

cles) so that they do not traverse the do-

main wall.

The question arises under which
conditions the domain wall becomes per-
meable again. The vortices outside
the domain wall generate a pressure on
the fractional vortices, influencing their
density and, hence, their mutual dis-
tance. With increasing external vortex
density ρ = B/Φ0 the distance R should
shrink. This may be described qualita-
tively by adding a term aextR

2 to the
potential V (R) where aext > 0 grows
with increasing ρ at the domain wall.
Hence, it is clear that a growing den-
sity of vortices close to the domain wall
forces eventually the fractional vortices
to recombine when R ∼ ξ̃, the extension
of the kinks of α. The recombined vor-
tices are only weakly pinned so that the
fence becomes permeable. This process
needs not occur over all the domain wall
simultaneously, but may start with local leaks for vortices to pass through. A simple
picture of the “barrier height” of the domain wall can be obtained by the following
argument. The density of fractional vortices is more or less equal to that of the vor-
tices immediately outside of the domain wall. Therefore, the relation for the spacing
R ∼ ρ−1/2 = (Φ0/B)−1/2 leads to the barrier field B∗ ∝ ξ̃−2. The temperature
dependence of ξ̃ close to the transition temperature (the second transition in the
case of a system with double transition) is essentially proportional to |T − Tc|−1/2

so that the barrier field is growing as the temperature is lowered B∗ ∝ |T − Tc|.
With these properties, the presence of domain walls should have considerable

influence on the flux motion in the lower range of magnetic fields in the mixed phase.
In particular this is true for phenomena like flux creep and hysteresis behavior of
the mixed phase. We first discuss the influence of the barrier effect on the flux creep
which can be observed in the relaxation of remnant magnetization after a magnetic
field has been applied for some time to a superconductor and then switched off.
The flux relaxation behavior has been investigated in much detail by the group
of Mota for the heavy Fermion superconductors UPt3 and U1−xThxBe13 and for
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Sr2RuO4. 2) - 4) The first two superconductors exhibit double transitions, where the
low-temperature phase in each case is very likely time-reversal symmetry breaking
and should therefore provide the conditions for domain walls as described above.
Mota and coworkers observed that the initial flux relaxation rate drops drastically
below the second superconducting transition. Hence, many vortices generating the
remnant magnetization find it apparently more difficult to escape from the sample
in the low-temperature phase. While initially almost no remnant flux leaves, the
relaxation recovers after a longer waiting time. The absence of flux relaxation can
be understood as the barrier effect of the domain wall. In the low-temperature
phase, domains appear covering the sample with many domain walls. Vortices of
the remnant magnetization are fenced in by these walls, and only a small portion
of the total flux (mainly that close to surface not impeded by barriers) can move
out when the external field is turned off. However, the encircled vortices press the
domain walls which then may move slowly, and, finally, new pathways can open for
the flux lines to leave the sample. Thus, the later appearance of flux decay can be
attributed to slow domain wall motion. In the high-temperature phase domain walls
are absent leading to flux creep as usual.

The condition for this behavior is the existence of a large number of domain
walls throughout the sample which are pinned at impurities and lattice defects such
that they do not move too easily. Domains are believed to nucleate randomly at
the second superconducting transition if there is no bias for one type of domain. If
the superconducting state breaks time-reversal symmetry, an external magnetic field
could provide a bias. Therefore we may expect that if the superconductor is cooled
in a magnetic field (at least for the time-reversal symmetry breaking transition),
the distribution of domains should be unbalanced in favor of one type reducing the
number of domain walls. Then, the flux creep, previously impeded by domain walls,
would be more ordinary. 21) A similar picture arises also from the measurement of
flux motion in the low-temperature phase of U1−xThxBe13 by Zieve et al. 22) The
samples which are field cooled and zero-field cooled exhibit a difference with regard
to the motion of flux. In the former case, flux lines move more easily through the
sample than in the latter, since in the zero-field cooled case, the presence of domain
walls would also here impede the flux flow. Thus, there is a clear difference between
the field- and zero-field cooled situation. The effect continuously grows below the
second transition, indicating a gradual increase of the barrier strength as suggested
above. This is an aspect that also appears in the hysteresis experiment discussed in
the next section. 5)

§4. Intrinsic noise in the hysteresis

The hysteresis of the magnetization in the mixed phase provides one way to
measure the critical current. The basic features of the hysteresis cycle are described
well by the critical vortex state models, among which the Bean model is the most
simple representation. 10) In this model the vortices are described as a magnetic flux
density. We omit here a detailed introduction, since the basic properties of the Bean
model can be found in many textbooks. 8)
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(c)

(e)(d) (f)
Fig. 6. Standard Bean profile of the flux density for the magnetization process in the hysteresis of

a superconductor in the mixed state. The magnetization M(H) is the integral of flux density

in the sample.

For the following analysis we use the model of a superconducting slab which has
a finite width along the x-axis and is infinite along the other two axes. Let us first
study the standard behavior of the hysteresis, including the surface barrier effect of
the lower critical field (or alternatively the Bean-Livingston barrier). We start by

H

- M

Fig. 7. Standard hysteresis in the mixed state

of a superconductor based on the Bean crit-

ical state model.

assuming that the external field was first
raised to the maximum value Hm. Then
the field distribution is similar to that
in Fig. 6(a). Now we turn the field off
gradually and reverse it until we reach
−Hm (Fig. 6(f)). On the way the field
distribution passes through the distribu-
tions shown in Figs. 6(b)–(e). It is im-
portant that in order to introduce re-
versed vortices into the system, the ex-
ternal field must exceed the lower crit-
ical field. Hence, in the range between
Hext = 0 and −Hc1, the internal flux
distribution is unchanged, and at −Hc1

the magnetization jumps abruptly. After reaching Hext = −Hm, the field is again
gradually turned to zero and further to Hm, so that the hysteresis cycle closes. The
magnetization M as a function of H corresponds to the integrated flux density in
the Bean critical state. The slope of the field distribution corresponds to the critical
current (Jc = (c/4π)∂xBz) and is proportional to the width of the hysteresis loop
(Fig. 7).

If we now introduce domain walls as additional barriers within the sample, new
structures appear in the hysteresis cycle. The domain wall is characterized by a
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specific barrier field (height) B∗; i.e., if the local field at the domain wall exceeds
B∗, the domain wall is permeable to vortices. For simplicity we consider the case of
two domain walls which fence in some region inside the slab. We start again from
the situation in which the external field is at the value Hm, so that everywhere in
the sample the local field value is larger than B∗, and the Bean profile has developed
everywhere with a slope corresponding to the critical current due to usual pinning
(Fig. 8(a)). Now, we gradually reduce the external field. As we reach zero, we
find that the domain walls have trapped some flux; that is, more flux than usual is
remaining in the sample (Fig. 8(b)). If we now turn to negative fields, then initially
at −Hc1, reversed flux lines enter and annihilate the flux close to surface (Fig. 8(c)).
With decreasing external field, the reversed flux lines reach the domain walls and
annihilate vortices on the domain wall, which are in turn immediately replaced by
new positive flux lines from the interior of the fenced in region. This process continues
until the density of positive vortices on the domain wall is essentially zero and leads
to a sharp increase in the magnetization similar to that at the lower critical field
(Fig. 8(d)). Note that the negative vortices from the outside cannot enter the inner
region yet, since at the end of this process the domain wall is occupied by reversed
(negative) fractional vortices, which now provide a barrier. The flux density must be
enhanced from outside, and the domain wall only becomes permeable when the local
field of the negative vortices has reached −B∗ (Fig. 8(e)). Then, negative vortices can
pass freely through the domain wall and annihilate the remaining positive vortices
on the other side. This leads to a further avalanche-like rise in the magnetization.
Then the external field is lowered until we reach −Hm (Fig. 8(f)). The analogous
continuation for increasing field finally leads to a closed hysteresis cycle.

The additional sharp avalanche-like structures in the magnetization depend
strongly on the position of the domain walls. As mentioned earlier, the domain walls
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Fig. 8. Bean profile of a superconducting slab with two domain walls in a magnetic field. The

critical field and the barrier field are indicated on the axis on the right-hand side.
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Fig. 9. Hysteresis of a superconducting slab

containing domain walls as barriers. Up-

per figure: Several cycles with varying lo-

cation of the domain wall. Lower figure:

Average of several cycles and standard de-

viation, which possess maxima around the

region of ±Hc1.

are not rigidly fixed, but only pinned,
and can change their position. Dur-
ing several cycles, the domain walls may
be located at different places from cy-
cle to cycle due to pressure from the
vortices. Hence, the hysteresis cycles
do not retrace themselves completely,
but rather have strong deviations in the
field range where the avalanche effects
occur, i.e., close to the lower critical
field, ±Hc1. Taking the average over
several cycles, the standard deviation,
δM = 〈(M(H) − 〈M(H)〉)2〉 reveals a
strong “noise” signal, as shown in Fig. 9
(〈...〉 denotes the average over many cy-
cles). This noise is intrinsic to the super-
conducting state with internal barriers.
It is easy to see that the magnitude of
this noise depends on the barrier height
given by B∗, and it should disappear, if B∗ goes to zero (the case of a completely
permeable domain wall):

δM ∝ B∗δx, (4.1)

where δx is the standard deviation of the domain wall positions, only weakly depen-
dent on temperature.

We may compare this behavior now to the experiments done on UPt3 by Shung
et al. 5) The features of the noise in the hysteresis are qualitatively very similar to
those obtained in our simple simulation. In the high-temperature phase, the noise
in the hysteresis cycle is small and featureless. However, simultaneously with the
onset of the second transition, the intrinsic noise appears continuously and grows
essentially linearly with |T − Tc2| as we expect from Eq. (4.1). Within the cycle
the noise appears in the same field range and with a similar structure, as in our
simulation, i.e. around Hc1. This suggests that the continuous increase of the noise
is very likely connected with the broken time-reversal symmetry below the second
transition where the degeneracy of the superconducting phase allows for domain
formation. The barrier height introduced by these domain walls increases as the
order parameter of the low-temperature phase grows. A similar picture arises also
from the measurement of flux motion in the low-temperature phase of U1−xThxBe13

by Zieve et al., 22) as mentioned above.

§5. Conclusion

We have shown that domain walls in time-reversal symmetry-breaking super-
conductors can play an important role for the motion of flux lines. Under certain
conditions, domain walls can accommodate flux lines whose flux is a fraction of the
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standard flux quantum. On such domain walls, conventional vortices can decay into
two fractional vortices. If such fractional vortices line up, the domain wall becomes
a very efficient barrier to vortices.

Evidence for this property of the domain wall is given by the absence of flux
creep or in the intrinsic noise of the hysteresis cycle. 2) - 5), 22) In the case of UPt3
and U1−xThxBe13 experiments reveal a clear connection between the onset of the
time-reversal symmetry-breaking in the low-temperature phase and the appearance
of a new flux trapping mechanism. In Sr2RuO4 the drop of the creep rate is not
connected with the onset of the time-reversal symmetry breaking phase. Rather the
drop around 50 mK may be associated with a “transition” of the domain wall states.
This may be associated with the multi-band nature of the superconducting state,
which can lead to the temperature dependence of parameters like the anisotropy
factor ν, since the relative contribution to superconductivity by the different bands
certainly varies with temperature. This case needs definitely further consideration.
The barrier effect of domain walls does not, in general, influence the magnitude
of the critical current Jc, which is related to ordinary impurity-induced pinning
effects. Although the initial flux relaxation is vanishing in the low-temperature
phase, Jc remains finite and does not show any anomalous temperature dependence,
indicating that the phenomena are not connected with a change in the pinning of
individual vortices. We may take the observation of such flux flow phenomena as
indirect evidence for the presence of domain walls. To this time in none of the
above-mentioned superconductors has the direct observation of the domain walls
been reported. Clearly, the discovery of lined-up fractional vortices could be one
direct experimental verification. Another proposal is based on the modification of
the local quasiparticle density of states in the domain wall which may be observable
by scanning tunneling microscopy. 14) This paper presents a plausible explanation for
the basic properties seen in the experiments of three unconventional superconductors.
Nevertheless, several details in the experimental data, which may be typical for the
phenomenon or specific to each system, remain to be discussed in future.
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