
REVIEW

The Role of Dopamine in the Pathophysiology
of Depression
Boadie W. Dunlop, MD; Charles B. Nemeroff, MD, PhD

M ultiple sources of evidence support a role for diminished dopaminergic neurotrans-
mission in major depression. The physiological alterations underlying reduced dopa-
mine (DA) signaling could result from either diminished DA release from presynaptic
neurons or impaired signal transduction, either due to changes in receptor number or

function and/or altered intracellular signal processing. There are data supporting each of these mecha-
nisms, although interpretation of previous research is confounded by issues around study population,
medication status, and technological limitations. In some patients with depression, DA-related dis-
turbances improve by treatment with antidepressants, presumably by acting on serotonergic or nor-
adrenergic circuits, which then affect DA function. However, most antidepressant treatments do not
directly enhance DA neurotransmission, which may contribute to residual symptoms, including im-
paired motivation, concentration, and pleasure. Animal models of major depression show consider-
able responsiveness to manipulations of DA neurotransmission. Several studies, including postmor-
tem investigations, particularly of subjects with severe depression, have demonstrated reduced
concentrations of DA metabolites both in the cerebrospinal fluid and in brain regions that mediate
mood and motivation. Although the neuroimaging findings are not unequivocal, several studies sup-
port the hypothesis that major depression is associated with a state of reduced DA transmission, pos-
sibly reflected by a compensatory up-regulation of D2 receptors. These alterations in DA signaling may
underlie the findings of increased “liking” or “high” feelings reported by severely depressed subjects
treated with d-amphetamine compared with the response of less severely ill and normal control sub-
jects. The efficacy of medications that directly act on DA neurons or receptors, such as monoamine
oxidase inhibitors and pramipexole, suggests that subtypes of depression stemming from a primary
DA dysfunction exist. Further research on the contribution of DA to the pathophysiology of depres-
sion is justified to improve outcomes for patients with treatment-resistant and nonremitting depression.

Motivation, psychomotor speed, concen-
tration, and the ability to experience
pleasure are all linked in that (1) they
are regulated in part by dopamine (DA)–
containing circuits in the central nervous
system and (2) impairment of these func-
tions are prominent features of depres-
sion. Despite this theoretical under-
pinning, research on the role of DA in
depression has been largely overshad-
owed by research on norepinephrine (NE)-
and serotonin (5HT)-containing circuits.
Recent findings clearly warrant scrutiny

of the role of DA in the pathophysiology
of depression and, moreover, whether
there exists a “dopaminergic dysfunc-
tion” subtype, characterized by a poor re-
sponse to antidepressants that act primar-
ily on 5HT or NE neurons. There is now
an emerging consensus that the majority
of depressed patients treated with selec-
tive serotonin reuptake inhibitors (SSRIs)
and selective serotonin/norepinephrine re-
uptake inhibitors (SNRIs) do not attain re-
mission.1 It is our contention that this is
due, in part, to the lack of effects of SSRIs
and SNRIs on DA neurons.

The original monoamine hypothesis of
depression emerged largely from the ob-
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served effects on mood of reserpine, which depletes ve-
sicular monoamine stores and reduces mood; of amphet-
amine, which briefly increases synaptic concentrations
of monoamines, and raises mood; and of monoamine oxi-
dase inhibitors (MAOIs), which increase the central ner-
vous system concentrations of monoamines and are, of
course, effective antidepressants.2,3 Although these agents
all affect DA similarly to NE and 5HT, it wasn’t until the
mid 1970s that a role for DA in depression was postu-
lated.4 The primary reason for the limited focus on DA
was the finding that the efficacy of tricyclic antidepres-
sants (TCAs) stemmed from their ability to inhibit the
reuptake of NE and/or 5HT. However, a long-standing
conundrum associated with the original monoamine hy-
pothesis is that the reuptake inhibiting effects of TCAs
(and SSRIs and SNRIs) occur within hours of drug in-
gestion, but their antidepressant effects take longer to oc-
cur. This temporal discrepancy implies that other mecha-
nisms must be involved in recovery from a depressive
episode.

There is now a convergence of data from animal mod-
els, genetics, neuroimaging, and human clinical trials that
strengthen the case for DA dysfunction in the patho-
physiology of major depression, at least in a significant
subgroup of patients. This monograph comprehen-
sively reviews the current evidence with subsequent rec-
ommendations for future studies of dopaminergic sig-
naling in depression and its treatment.

DOPAMINERGIC PATHWAYS
IN THE CENTRAL NERVOUS SYSTEM

Most DA-producing neurons in the brain are located in
brainstem nuclei: the retro-rubro field (A8), substantia

nigra pars compacta (A9), and the ventral tegmental area
(VTA) (A10). Projection pathways of the axons arising
from these cell bodies follow 1 of 3 specific paths (with
some overlap) via the medial forebrain bundle to inner-
vate specific cortical and subcortical structures, unlike
the more diffuse innervation patterns of serotonergic and
noradrenergic cells (Figure 1). The nigrostriatal path-
way projects from the substantia nigra pars compacta to
the dorsal striatum (caudate and putamen) and has a
prominent role in the motor planning and execution of
movement, although it clearly also plays an important
role in nonmotor functions, such as cognition.7 The me-
socortical pathway arises from the VTA and projects to
the frontal and temporal cortices, particularly the ante-
rior cingulate, entorhinal, and prefrontal cortices. This
pathway is believed to be important for concentration and
executive functions such as working memory. The me-
solimbic pathway also arises in the VTA but projects to
the ventral striatum (including the nucleus accum-
bens), bed nucleus of the stria terminalis, hippocam-
pus, amygdala, and septum. It is particularly important
for motivation, the experience of pleasure, and reward.

Aspects of anterior pituitary function are also under
dopaminergic control. The tuberoinfundibular pathway
arises from the arcuate nucleus of the hypothalamus (A12)
and projects to the median eminence of the hypothala-
mus, where DA released into the portal vessels acts to
inhibit the secretion of prolactin from the anterior pitu-
itary.8 This pathway is also involved in dopaminergic regu-
lation of growth hormone release from the anterior pi-
tuitary.9 The incertohypothalamic pathway originates from
cell bodies in the medial portion of the zona incerta (A13)
and innervates amygdaloid and hypothalamic nuclei in-
volved in sexual behavior.
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Figure 1. Dopaminergic pathways in the human brain. Reprinted with permission from Szabo et al (2004)5 and Sanchez-Gonzalez et al (2005).6 (Brain drawing
used with the permission of Robert Finkbeiner.) Note that this image is a midline sagittal section of the brain. Many of the structures identified are located more
laterally than the drawing indicates.
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Recently, significant dopaminergic innervation of the
thalamus has been demonstrated in primates, although
it is largely absent in rodents.6 Unlike the other dopa-
minergic pathways, this “thalamic dopamine system”
arises from multiple sites, including the periaqueductal
gray matter, the ventral mesencephalon, hypothalamic
nuclei, and the lateral parabrachial nucleus. This DA path-
way may contribute to the gating of information trans-
ferred through the thalamus to the neocortex, striatum,
and amygdala.

DOPAMINE SYNTHESIS AND SIGNALING

Dopamine is synthesized in the cytoplasm of presynap-
tic neurons from the amino acids phenylalanine and ty-
rosine (Figure 2). Dopamine exerts its effects on the
postsynaptic neuron through its interaction with 1 of 5
subtypes of dopamine receptors, divided into 2 groups,
the dopamine 1 (D1) family (comprising the D1 and D5

subtypes) and the D2 family (comprising the D2, D3, and
D4 subtypes) (Table 1). The structure of all of the re-
ceptor subtypes conforms to the structural model for a
G-protein coupled receptor with 7 membrane-spanning
alpha-helices and an extracellular amino terminal. Each
receptor subtype has a characteristic anatomical distri-
bution with the D1 and D2 subtypes present in signifi-
cantly greater amounts than the others.12

On binding an agonist, D1 and D5 receptors activate
the adenylate cyclase second messenger system, elevat-
ing intracellular cyclic adenosine monophosphate con-
centrations. Cyclic adenosine monophosphate in-
creases protein kinase A activity with resulting changes
in activity levels of enzymes or other proteins within the
cell. D1 receptors may also activate other second mes-
senger pathways, perhaps contributing to intracellular
cross-talk between D1 and D2 receptors.13 The D2 family
of receptors, when stimulated, all reduce adenylate cy-
clase activity. Somatodendritic and presynaptic D2 re-
ceptors also function as autoreceptors with activation of
somatodendritic D2 receptors resulting in reduced DA cell
firing and activation of presynaptic D2 receptors reduc-
ing the amount of DA released per action potential.5

In the basal ganglia, DA is cleared from the extracel-
lular space primarily by presynaptic nerve terminal up-
take mediated by the dopamine transporter (DAT). The
prefrontal cortex in man and nonhuman primates rep-
resents something of an anomaly in that there is an ab-
sence of DAT on DA nerve terminals.14 Consequently,
the DA signal is terminated by DA uptake into NE ter-
minals by the norepinephrine transporter (NET)
(Figure 3). Postsynaptically, DA is inactivated by cat-
echol-o-methyl transferase (COMT). Both the A and B
forms of monoamine oxidase (MAO-A and MAO-B) can
metabolize DA, which, along with COMT, serially ca-
tabolizes DA to produce the intermediate breakdown
products dihydrophenylacetic acid and 3-methoxytyra-
mine before forming the final excretion product, homo-
vanillic acid (HVA).

Dopamine signaling occurs in 2 forms. Phasic DA re-
lease results from burst firing of VTA neurons and is
thought to occur in response to behaviorally salient
stimuli, such as those that may predict reward.15,16 This

phasic DA release activates postsynaptic D2 receptors and
is terminated via reuptake by DAT. Tonic DA release arises
from slow, irregular activity of the VTA, resulting in low
concentrations of extracellular DA that act at presynap-
tic DA receptors to inhibit phasic DA neuron firing, and
is subject to metabolism by COMT.17

There is considerable evidence that the DA system is
dynamic, with up- and down-regulation of D2 receptors
and DAT based in part on DA availability. Reserpine,
which depletes DA, induces a significant decrease in DAT
density and reduces DA uptake. Similarly, amantadine,
which in part acts to induce DA release, increases DAT
density.18 D1 receptor density appears to be less respon-
sive to changes in DA availability.

Although beyond the scope of this review, it should
be noted that there is substantial evidence that DA sig-
naling in the dorsal and ventral striatum serves in a gat-
ing capacity for glutamatergic inputs from the hippo-
campus, basolateral amygdala, thalamus, and prefrontal
cortex.19 Dopamine performs a similar gating function
over the ability of the prefrontal cortex to regulate ba-
solateral amygdala output.20

ANIMAL MODELS OF DOPAMINE
FUNCTION IN DEPRESSION

Rodent models of depression demonstrate altered me-
solimbic DA system function, and moreover, certain an-
tidepressants act to enhance DA transmission.21 Whether
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Figure 2. Dopaminergic synaptic signaling. Reprinted with permission from
Szabo et al (2004).5 AADC indicates aromatic acid decarboxylase; AMPT,
�-methylparatyrosine; AC, adenylyl cyclase; cAMP, cyclic adenosine
monophosphate; COMT, catechol-O-methyltransferase; D1-D5, dopamine
receptors 1 through 5; DA, dopamine; DAT, dopamine transporter; DOPA,
3,4-dihydroxyphenylalanine; DOPAC, dihydroxyphenylacetic acid; Gi, Go, and
Gs, protein subunits; HVA, homovanillic acid; MAO, monoamine oxidase;
MT, 3-methoxytyramine; TH, tyrosine hydroxylase; and VMAT, vesicular
monoamine transporter.
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these effects stem from induction of subsensitivity of DA
autoreceptors or heightened responsivity of postsynap-
tic receptors, or both, is unclear, although the weight of
the evidence most supports increased postsynaptic sen-
sitivity, as first proposed by Spyraki and Fibiger.22 This
heightened sensitivity seems to be limited to the ventral
striatum because the dose-response curve for DA-agonist–
induced stereotypies (stemming from dorsal striatal DA
receptor binding) is not shifted to the left by chronic an-
tidepressant treatment. Evidence supporting this theory
includes the findings that chronic treatment with elec-
troconvulsive therapy, sleep deprivation, and virtually all

antidepressants increases the motor stimulant effects of
DA receptor agonists.23 Chronic treatment with antide-
pressants (TCA, SSRI, or MAOI) for 21 days or 10 days of
electroconvulsive treatments results in increased D3 re-
ceptor messenger RNA (mRNA) expression in the nucleus
accumbens.24 A potential contributor to altered DA recep-
tor sensitivity is prostate apoptosis response (Par-4) pro-
tein, a leucine zipper containing protein that regulates the
activity of the D2 receptor in neurons. Mutant mice lack-
ing the component of Par-4 that interacts with the D2 re-
ceptor demonstrate depressive behaviors.25

Impaired DA release is also proposed to contribute to
the pathophysiology of depression. In so-called “effort ex-
penditure” rodent models of depression, reduced DA con-
centrations in the nucleus accumbens correlate with re-
duced efforts by rodents to work for specific rewards.26,27

Additionally, administration of TCAs or fluoxetine raises
DA concentrations in the nucleus accumbens.28 Transcra-
nial magnetic stimulation applied to the rat frontal cor-
tex increases extracellular DA concentrations in the stria-
tum,29 an effect also observed in humans.30,31

The chronic mild stress model has been suggested to
have the best face validity of any animal model of de-
pression in that repeated mild stresses over time gradu-
ally induce a state of decreased responsiveness to re-
wards and reduced sexual and aggressive behaviors.32

Rodents exposed to this model demonstrate decreased
D2/D3 receptor binding in the nucleus accumbens, which
is reversed by chronic antidepressant treatment (TCAs,
SSRIs, or mianserin).33 When these “recovered” rodents
are exposed to D2/D3 antagonists, decreased reward re-
sponding re-emerges.34,35 Rodents exposed to chronic mild
stress also show reduced responsiveness to the stimula-
tory effects on locomotion and reward of the D2/D3 ago-
nist quinpirole.35

Two other animal models, “learned helplessness” and
the “forced swim test,” both use a reduction in locomo-
tor activity under stress as proxies for depression.36 Ani-
mals experiencing learned helplessness exhibit DA deple-
tion in the caudate nucleus and nucleus accumbens, which
can be prevented by pretreatment with DA agonists.37,38

Table 1. Characteristics of Dopamine Receptor Subtypes10,11

Characteristic

D1 Family D2 Family

D1 D5 D2 D3 D4

Homology with D1 100 82 45 42 42
Homology with D2 45 50 100 75 54
Second messenger effect Increase AC Increase AC Decrease AC Decrease AC Decrease AC
Localization Dorsal striatum

Ventral striatum
Thalamus
Prefrontal cortex

Hippocampus
Thalamus
Striatum

Dorsal striatum
Ventral striatum
Pituitary

Ventral striatum
Islands of Calleja

Frontal cortex
Midbrain
Amygdala
Hippocampus
Hypothalamus

Agonists* SKF 38393
Pergolide
Chloro-PB

Chloro-PB Bromocriptine, pergolide, piribedil,
pramipexole, quinpirole

PD 168077
Quinpirole

Antagonists SCH 23390 SCH 23390 Sulpiride, typical antipsychotics raclopride Clozapine
PD 101387

Abbreviation: AC, adenylyl cyclase.
*Apomorphine is an agonist at all receptor subtypes.
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Figure 3. Differing structures of dopamine terminals in the striatum and
prefrontal cortex. Reprinted with permission from Sesack et al (1998).14

COMT indicates catechol-O-methyltransferase; DA, dopamine; and NE,
norepinephrine.
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In the forced swim test, immobility in rodents is re-
versed by D2/D3 agonists, nomifensine (a DA/NE reup-
take inhibitor), and TCAs, and the effect of antidepres-
sants can be inhibited by D2/D3 antagonists.39,40

HUMAN GENETIC AND
NEUROCHEMICAL STUDIES

The heritability of major depression is estimated to be be-
tween 31% and 42% and is likely higher for individuals with
recurrent major depression.41 Although major depression
is almost certainly a polygenetic illness, certain genes may
influence the subtype of depression expressed, and the pres-
ence of more than 1 vulnerability gene may significantly
increase the likelihood of developing this disorder.41

Polymorphisms of the D4 receptor, DAT, and COMT
have functional significance, although in a study of Jew-
ish patients with major depression, no difference in the al-
lelic distributions of these polymorphisms was found.42 The
D4 receptor is the most polymorphic of the DA receptors,
possessing a 48 base pair variable number tandem repeat
polymorphism in exon 3 of the gene with alleles in hu-
mans encoding for 2 to 10 repeats.43 A recent meta-
analysis of 2071 subjects in 12 studies identified the 2-re-
peat allele as a vulnerability allele for depression.44 Others
have identified a possible association between the Bal I poly-
morphism of the D3 receptor and unipolar and bipolar de-
pression.45,46 Consistent associations between D2 receptor
or DAT polymorphisms and major depression have not been
identified. Mutations in the gene for dopamine �-hydroxy-
lase, the enzyme that converts DA to NE, can lead to el-
evations in the DA/NE ratio, potentially increasing the risk
for psychotic symptoms in depression.47 Depressed pa-
tients homozygous for methionine at the COMT158 (val-met)

polymorphism exhibited a less robust response to mirtaza-
pine in a 6-week study.48

Studies comparing measures of DA neurotransmis-
sion between depressed and control groups require care-
ful age-matching because there is a functionally signifi-
cant and progressive loss of DA activity with advancing
age, largely due to a loss of DA neurons.49 The majority
of studies examining the concentration of DA metabo-
lites in cerebrospinal fluid, primarily HVA, found lower
concentrations in depressed patients compared with con-
trols, particularly in patients with psychomotor retarda-
tion.4,50-57 Some discrepant results have also appeared.58,59

Low pretreatment cerebrospinal fluid HVA concentra-
tions have failed to consistently predict response to TCA
treatment,60 although individual studies have found an in-
verse association between cerebrospinal fluid HVA con-
centrations and the magnitude of clinical response to le-
vodopa,56 piribedil,61 and nomifensine.62 Of note, however,
is one study of 40 unipolar or bipolar depressed inpa-
tients with psychomotor retardation in which the rank or-
der of effectiveness of 3 antidepressants and placebo cor-
related with their prodopaminergic effects.63

In a unique study using internal jugular venous sam-
pling, medication-free, treatment-resistant, unipolar de-
pressed patients were found to exhibit reduced concen-
trations of both NE and its metabolites and HVA, but not
5-hydroxyindoleacetic acid, compared with healthy con-
trols.64 Estimates of brain DA turnover were inversely cor-

related with the severity of depressive illness as mea-
sured by the Hamilton Depression Scale. Others have
reported that the lymphocytes of depressed patients have
significantly lower D4 receptor mRNA expression com-
pared with controls, with normalization after 8 weeks of
paroxetine treatment.65 In contrast to these findings, psy-
chotically depressed patients demonstrate elevated con-
centrations of plasma DA and HVA, lower serum dopa-
mine �-hydroxylase activity, and increased cerebrospinal
fluid concentrations of HVA.66

Apomorphine, a DA agonist, has been used as a probe
to assess DA receptor responsiveness in depression. Act-
ing on DA receptors in the arcuate nucleus of the hypo-
thalamus, apomorphine stimulates the release of growth
hormone–releasing hormone, which acts to increase pe-
ripheral growth hormone concentrations. The majority
of studies have found no difference in growth hormone
response to apomorphine between depressed and healthy
control subjects.67 However, a Belgian group has repeat-
edly reported a blunted growth hormone response to apo-
morphine administration in suicidal, but not nonsui-
cidal, depressed patients.68,69 Similar mixed findings exist
for the effect of apomorphine on peripheral prolactin con-
centrations.67,70 The extent to which DA modulation of
an endocrine response reflects DA functioning in the me-
socortical, mesolimbic, and nigrostriatal pathways is un-
known.

An additional impetus to seek DA involvement in de-
pression is the unduly high frequency of depression among
patients with Parkinson disease. The incidence of major
depression in community samples of patients with Par-
kinson disease is 5% to 10% with an additional 10% to
30% experiencing subsyndromal depressive symptoms.71

In addition, high frequency deep brain stimulation of the
left substantia nigra led to dramatic and severe transient
depression in 1 subject with Parkinson disease.72

DISTURBED REWARD SYSTEM
FUNCTION IN DEPRESSION

Anhedonia, the absolute or relative inability to experi-
ence pleasure, is 1 of 2 symptoms required for the diag-
nosis of major depression. Of the putative endopheno-
types of major depression, the anhedonic form is one of
the most well supported.73 Dopamine neurons have long
been known to be critical to a wide variety of pleasur-
able experiences and reward. Severity of major depres-
sive disorder has been found to correlate highly with the
magnitude of reward experienced after oral d-amphet-
amine, which increases DA availability by a variety of
mechanisms.74 In particular, medication-free, severely de-
pressed subjects experienced greater reward than con-
trols while those with milder forms of depression did not
differ from the control group. One explanation for these
findings is that in severe depression, there is a reduction
in DA release, resulting in compensatory mechanisms,
such as up-regulation of postsynaptic DA receptors and
decreased DAT density, which taken together would in-
crease DA signal transduction resulting from amphet-
amine-induced DA release into the synapse. These find-
ings have now been confirmed and extended in a recent
study using functional magnetic resonance imaging to
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assess the activity of brain reward systems after d-amphet-
amine challenge in 12 drug-free depressed patients and
12 matched controls. The depressed subjects had a mark-
edly greater behavioral response to the rewarding effects
of the psychostimulant and altered brain activation of the
ventrolateral prefrontal cortex, orbitofrontal cortex, cau-
date, and putamen.75 These findings further implicate DA
circuit dysfunction in major depression.

The finding of increased reward with psychostimu-
lant administration in severely depressed patients may
possibly be related to the finding that glucocorticoids may
selectively facilitate DA transmission in the nucleus ac-
cumbens.76 In healthy control subjects, cortisol levels are
positively associated with d-amphetamine–induced DA
release in the ventral striatum and dorsal putamen. Sub-
jects with higher plasma cortisol concentrations report
greater positive drug effects.77 This work is supported by
the finding that, when exposed to a psychosocial stressor,
ventral striatal DA concentrations are increased among
subjects who report poor early life maternal care com-
pared with those who do not, and the DA increase is cor-
related with the increase in salivary cortisol concentra-
tions.78 The high incidence of hypercortisolemia in
depression, particularly in severe depression, raises specu-
lation that elevated cortisol concentrations alter dopa-
minergic reward systems, thereby altering hedonic re-
sponsiveness. One proposed model posits that over time,
frequent bouts of stress associated with intermittent in-
creased exposure to glucocorticoids sensitizes the me-
solimbic DA system.77 In a test of this model, dexameth-
asone added to the drinking water of maternal rats both
prepartum and postpartum resulted in a 50% greater sur-
vival rate of midbrain dopaminergic neurons in the adult
offspring.79 Such a model also provides a potential ex-
planatory framework for the high comorbidity between
major depression and substance abuse.

POSTMORTEM FINDINGS

Postmortem studies of the DA system in depressed pa-
tients are relatively few and not surprisingly have pro-
vided conflicting results, due at least in part to variabil-
ity in age of the subjects, agonal states, presence of
psychotropic medications, and the inclusion in some stud-
ies of victims of suicide, which may have its own unique
pathobiology.80 Brain concentrations of DA in suicide vic-
tims are unchanged compared with controls.81-84 Homo-
vanillic acid concentrations have been found to be el-
evated84,85 or unaltered86 in the frontal cortex and unaltered
in the basal ganglia83,84 of suicide victims. Cerebrospinal
fluid HVA concentrations have been found to be lower
in suicide attempters than controls87 but not different be-
tween patients with a high- vs low-lethality attempt.88 Con-
centrations of dihydrophenylacetic acid in the caudate,
putamen, and nucleus accumbens were reduced in an-
tidepressant-free depressed patients who died by sui-
cide compared with controls.89

In one elegant postmortem study using immunohis-
tochemical and autoradiographic methods with high ana-
tomical resolution, depressed subjects, most of whom died
by suicide, demonstrated reduced DAT density and el-
evated D2/D3 receptor binding in the central and basal

nuclei of the amygdala compared with psychiatrically nor-
mal controls.90 A second study using different methods
found no difference in D2 receptor number or affinity.89

Neither of these studies reported a difference in D1 re-
ceptor binding between depressed subjects who died by
suicide and controls.89,90

NEUROIMAGING FINDINGS

Relatively few studies have examined DA system alter-
ations in depression with neuroimaging methods. Pub-
lished studies have focused largely on D2 receptor or DAT
occupancy. Interpreting results of earlier studies using
[123I]-2�-carboxymethoxy-3�-(4-iodophenyl) tropane
(123I-�-CIT) to image the DAT are problematic in that the
binding profile for this ligand is not specific for this mono-
amine transporter, although in the striatum, the vast ma-
jority of binding is indeed to the DAT.91 Few studies of
DAT binding or uptake have been performed with more
specific ligands.

Results of neuroimaging studies of D2 receptor bind-
ing in major depressive disorder have been inconsistent
(Table 2). Early studies found elevated striatal D2 bind-
ing levels in depressed inpatients, either in whole group
samples92,93 or when limited to a psychomotor retarded
group.94 Elevated D2 receptor binding may reflect in-
creased numbers of D2 receptors in depression, an in-
crease in affinity of the receptor for the ligand, or a de-
crease in availability of synaptic DA (which competes with
the radiolabeled ligand, albeit weakly, for D2 binding).
Two later studies failed to confirm these findings, al-
though 1 study used a nonhealthy control group95 and
the other studied outpatients.96 The subjects in this lat-
ter study were less ill than those in the previous studies
and few had even moderate psychomotor retardation. A
major confound across the studies was the medication
status of the subjects, as most were either on antidepres-
sant therapy or had only a 7-day washout prior to the
imaging procedure. Variability in the level of anxiety may
also confound the results, as anxiety has been associ-
ated with reduced D2 receptor expression.101

Conflicting results have also been found in other types
of imaging studies (Table 2). In the 2 studies comparing
D2 binding before and after antidepressant treatment for
depression, clinical improvement was noted with either
an increase or decrease in D2 receptor binding, perhaps
due to the differing mechanism of action of the drugs
used.94,95 Studies of DAT expression have also found con-
flicting results, although the most comprehensive posi-
tron emission tomography study observed reduced DAT
binding in depression.98 In a positron emission tomog-
raphy study assessing DA neuronal function by measur-
ing [18F]-fluorodopa uptake in the striatum, depressed
patients with psychomotor retardation exhibited re-
duced striatal uptake of the radioligand compared with
anxious depressed inpatients and healthy volunteers.97

CLINICAL THERAPEUTICS

Of the antidepressants either currently or previously avail-
able, those that are likely to enhance DA neurotransmis-
sion include nomifensine, a potent DA and NE reuptake
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inhibitor102; amineptine, a DAT antagonist; sertraline, an
SSRI that also blocks DA reuptake at high doses; bupro-
pion, although this remains controversial; and MAOIs,
which prevent degradation of DA, NE, and 5HT. More-
over, the absence of DAT in the prefrontal cortex and the
role of the norepinephrine transporter in inactivating the
DA signal in this critical brain region, taken together, have
revealed an effect of NE reuptake inhibitors to increase
DA availability in this area.

Although bupropion is often considered to produce
its antidepressant effects via DAT blockade, at clinically
significant doses the drug occupies less than 22% to 26%
of DAT binding sites.103,104 In contrast, SSRIs typically in-

hibit 80% or more of serotonin transporter binding sites
at minimally effective doses.105 The greater efficacy of MAOIs
over TCAs in atypical depression and anergic bipolar de-
pression suggests that alterations in DA metabolism may
be particularly important for these conditions.106

In addition, several drugs acting on the DA system have
been evaluated for their efficacy in major depression. The
first agents used to treat depression that directly altered
dopaminergic signaling were the psychostimulants, act-
ing through increases in DA release and blockade of the
DAT, although these agents also act on 5HT and NE neu-
rons. In double-blind, placebo-controlled studies of un-
selected depressed patients, psychostimulants are infe-

Table 2. Neuroimaging Studies of Dopamine Signaling in Major Depression

Source Year Subjects
Medication Status of

Patients Technique Primary Findings

D2 Binding in Depressed vs Controls
D’Haenen and

Bossuyt92
1994 21 inpatients; 11 controls �7 d antidepressant

washout
SPECT

123IZBM
10% greater basal ganglia/cerebellum D2

binding ratio in depressed patients
(P=.03).

Shah et al93 1997 15 inpatients; 15 controls 8 receiving antidepressant;
7 unmedicated (duration
of treatment not
reported)

SPECT
123IZBM

Depressed subjects demonstrated
significantly greater D2 binding in right
striatum. Binding correlated with
reaction time and verbal fluency.

Ebert et al94 1996 20 male inpatients; 10 male
controls

10 unmedicated �6 mo; 10
receiving AMI for 2 wk

SPECT
123IZBM

No difference among the 3 groups at
baseline. Psychomotor retarded patients
had 6% increase in striatal D2 binding vs
all others (P�.05).

Klimke et al95* 1999 15 inpatients (3 BP);
17 controls with
melanoma

�7 d antidepressant
washout

SPECT
123IZBM

No difference in striatal D2 binding for
whole group. At baseline, responders to
SSRI treatment had significantly
decreased D2 binding vs nonresponders
and controls.

Parsey et al96 2001 9 patients; 10 controls �2 wk antidepressant
washout

SPECT
123IZBM

No difference in striatal D2 binding at
baseline. No difference in striatal D2

binding after amphetamine
administration.

Depressed Before and After Treatment
Ebert et al94 1996 10 inpatients Treatment with 150 mg AMI

per day for 3 wk
SPECT

123IZBM
Nonresponders to 3 wk of AMI showed

increased or no change in striatal D2

binding. Responders to AMI significantly
decreased D2 binding (P�.05).

Klimke et al95 1999 15 inpatients (3 BP) Treatment with fluoxetine or
paroxetine for 6 wk

SPECT
123IZBM

After 3-7 wk of SSRI treatment:
nonresponders had decreased D2

binding in striatum;responders had
increased D2 binding in striatum and
increased D2 binding correlated with
reduction in HAMD score.

DAT Expression and Function
Martinot et al97 2001 6 inpatients with PMR and

AF; 6 inpatients with
impulsivity/anxiety;
10 controls

3 patients in each group
receiving an SSRI; 3 in
each group unmedicated

PET
[18F]DOPA

Patients with PMR and AF had lower
[18F]DOPA uptake Ki values in left
caudate than impulsive/anxious
depressed or controls.

Meyer et al98 2001 9 patients; 23 controls �3 mo unmedicated with
psychotropics

PET
[11C]RTI-32

Striatal DAT levels lower bilaterally in
patients than controls. Patients with
lower DAT levels performed better on
finger tapping test and Stroop test.

Brunswick et al99 2003 15 patients (5 BP);
46 controls

�7 d antidepressant
washout

SPECT
[99mTc]- TRODAT-1

DAT levels higher in bilateral putamen and
left caudate in patients vs controls.

Abbreviations: ACC, anterior cingulate cortex; AF, affective flattening; AMI, amitriptyline; BP, bipolar depressed; DAT, dopamine transporter; [18F]DOPA,
[18F]fluorodopa; D2, dopamine receptor; HAMD, Hamilton Depression Scale; 123IBZM, 123I-iodobenzamide; Ki, inhibition constant; PET, positron emission
tomography; PMR, psychomotor retardation; [11C]RTI-32, [11C]methyl (1R-2-exo-3-exo)-8-methyl-3-(4-methylphenyl)-8-azabicyclo[3.2.1]octane-2-carboxylate;
SPECT, single-photon emission computed tomography; SSRI, selective serotonin reuptake inhibitor; [99mTc]TRODAT-1, technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-
methyl-8-azabicyclo[3.2.1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3-)-oxo-[1R-(exo-exo)].

*Klimke et al (1999) report updated results of their group’s original publication (Larisch et al100).
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rior to TCAs and MAOIs.107 Studies using methylphenidate
or dextroamphetamine as a predictor of response to TCAs
found inconsistent results, although design limitations
likely contributed to these results.108 Amineptine was ap-
proved for treatment of depression in France but later
withdrawn due to problems with abuse of the drug.

Bromocriptine, a D2 agonist, was found to be as effi-
cacious as TCAs in depression in 3 small double-blind
studies, although the absence of a placebo confounds in-
terpretation of these findings.109 Open-label studies sug-
gest that bromocriptine may provide antidepressant ben-
efit in treatment-resistant depression and tachyphylaxis-
associated relapses.110,111 In a small double-blind trial, the
DA agonist piribedil was efficacious in depression with
low pretreatment cerebrospinal fluid HVA concentra-
tions predictive of response.61 Pergolide, a DA agonist used
for Parkinson disease, suggested efficacy in 2 open-label
augmentation trials for major depression,112,113 but a pla-
cebo-controlled augmentation study did not demon-
strate benefit.114

Pramipexole, a nonergot DA agonist used in the treat-
ment of Parkinson disease and restless legs syndrome,
exhibits marked selectivity for D2-like receptors, particu-
larly the D3 receptor. Several case series and reports sug-
gested antidepressant efficacy for pramipexole in refrac-
tory bipolar depression115,116 or as an augmentation agent
with SSRIs, TCAs, or psychotherapy.117-120 In a study of
baboons, pramipexole reduced cerebral blood flow in the
orbitofrontal cortex, subgenual anterior cingulate cor-
tex, and insula, all regions thought to contribute signifi-
cantly to mood regulation.121 Three double-blind placebo-
controlled trials have explored the use of pramipexole
for the treatment of major depressive episodes. In uni-
polar depression, pramipexole (5 mg/d) was superior to
placebo and equivalent to fluoxetine (20 mg/d) among
completers of an 8-week trial.122 Two studies of patients
with bipolar depression on mood stabilizer therapy found
significantly greater response rates in pramipexole- vs pla-
cebo-treated patients.123,124 Augmentation of an SSRI or
SNRI with an atypical antipsychotic also shows efficacy
in partially responsive and nonresponsive depressed pa-
tients,125 although whether this improvement occurs
through changes in DA signaling is uncertain.126

In contrast to the depressive relapse induced by di-
etary depletion of tryptophan in SSRI responders or ty-
rosine depletion in TCA responders, dietary depletion of
the DA precursors phenylalanine and tyrosine does not
induce a recurrence in remitted depressed pa-
tients.127,128 However, availability of these amino acid pre-
cursors to DA, unlike 5HT, are not rate-limiting in DA
synthesis. Administration of �-methylparatyrosine, an in-
hibitor of tyrosine hydroxylase, rapidly reduces levels of
catecholamine metabolites and induces a robust in-
crease in depressive symptoms, particularly anhedonia,
poor concentration, and loss of energy in patients treated
with NE reuptake inhibitors.129

SEROTONIN-DOPAMINE INTERACTION

An important remaining question is how SSRIs and SNRIs
alter, or fail to alter, DA systems. It is now clear that treat-
ment with these antidepressants, although clearly supe-

rior to placebo treatment, frequently fail to render pa-
tients symptom free; ie, the majority do not achieve
remission.1 Such partial response may result from a fail-
ure of increased serotonergic or noradrenergic neuro-
transmission to induce similar alterations in DA signal-
ing. Supporting this hypothesis is the finding that SSRI
responders, but not nonresponders, exhibited increased
DA binding to D2 receptors in the striatum and that the
degree of increase in D2 binding correlated with improve-
ment in Hamilton Depression Scale score.94

There is substantial interaction between the central
nervous system serotonergic and dopaminergic systems
with the DA cell bodies in the VTA and substantia nigra
pars compacta being targets for the serotonergic cells of
the midbrain raphe.130 In addition, 5HT1A receptor acti-
vation stimulates DA release in the prefrontal cortex and
nucleus accumbens but may inhibit DA release in the dor-
sal striatum. Activation of 5HT2C receptors inhibits me-
socortical and mesolimbic DA function.131,132 In the brain-
stem raphe cells, firing of serotonergic neurons reduces
spontaneous activity of DA neurons in the VTA, but not
the substantia nigra pars compacta, and inhibits DA-
related behaviors, such as locomotor and exploratory be-
havior.133,134 Chronic treatment with serotonergic anti-
depressants may induce a down-regulation of the 5HT2B/2C

receptors on VTA dopamine neurons believed to medi-
ate this effect and thus may contribute to amelioration
of DA-related depressive symptoms.135

CONCLUSIONS

The question of what, if any, role DA circuit dysfunc-
tion plays in the pathophysiology of depression remains
an open one. Several directions for future research are
identified by this review. The most fruitful investiga-
tions may be with subjects nonresponding or nonremit-
ting with existing treatments, including those with bi-
polar depression. Strategies combining pharmacologic
challenges with neuroimaging of subjects, both at rest
and while engaged in DA-related tasks, such as reward
processing, would be highly informative. Pretreatment
and posttreatment studies could identify state vs trait dis-
turbances in DA signaling. Clinical trials with pure-DA
acting compounds as monotherapy and for augmenta-
tion in SSRI/SNRI nonresponders would also be valu-
able. Further elucidation of the role of DA dysfunction is
clearly warranted as psychiatry strives to find ways to im-
prove outcomes of patients with depressive disorders.
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