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Airplanes and helicopters are airborne via aerodynamic lift,

not drag. However, it is not clear a priori that nature should

design insects to fly using only lift. Historically, an insect wing

has been viewed more often as an unsteady airfoil than a

rowing oar. With such an analogy, studies of insect flight have

focused on lift generation. This analogy with an unsteady

airfoil would be appropriate if an insect wing moves at a

relatively small effective angle of attack, in which case, lift,

the force component orthogonal to the instantaneous velocity

of the wing relative to the far field, is substantially greater than

drag, the force component anti-parallel to the velocity.

However, hovering insects tend to employ large angles of

attack to generate high transient force, i.e. to take advantage of

dynamic stall (Ellington, 1984; Dickinson and Götz, 1993;

Dickinson, 1996; Ellington et al., 1996; Wang, 2000b). The

typical angle of attack during hovering at 70% span is ~35–40°.

At these angles, the lift and drag are of similar magnitude.

Therefore, the separation of lift and drag in the classical sense

is no longer appropriate. 

Differentiating lift and drag may seem to be a matter of

semantics. After all, living organisms presumably only care

about the net forces. However, because theories of simple

systems, such as an airfoil or a paddle, have influenced our

approaches to understanding more complex locomotion in

nature and our choices of model systems, in order to go beyond

the confines of these theories it is necessary to first borrow the

conventional terminology. Towards the end of this paper, we

will see that this differentiation helps us to resolve one of the

puzzles in quasi-steady estimates of dragonfly flight as well as

to construct more efficient hovering strokes.

Viscous drag is often studied in the context of locomotion

of microorganisms (bacteria, sperm and protozoa), which live

in Stokes flow [Reynolds number (Re)=0; Purcell, 1977;

Childress, 1981; Wu et al., 1975; Taylor, 1985]. The focus here

is on the non-Stokesian regime. It was suggested that small

insects might employ a drag mechanism at Re below ~100

(Horridge, 1956); however, use of drag is often found in large

insects, such as butterflies, which use near vertical stroke plane

at relatively higher Re (~103) (Ellington, 1984). The drag in

these cases is dominated by pressure force. At even higher Re,

some birds and fish also use pressure drag to fly and swim

(Blake, 1981; Vogel, 1996). Thus, the Re, as long as it is

sufficiently high to be outside the Stokesian regime, does not

seem to determine whether an organism uses mainly drag or

lift. Vogel (1996) reviewed the drag-based and lift-based thrust

in aquatic motion. Using the example of a pedal motion parallel

to the forward motion, i.e. rowing, he suggested that the ‘drag-

based system is better when the craft is stationary but lift-based

system is superior at any decent forward speed’. The motion

considered by Vogel is appropriate for forward swimming and

rowing but is different from typical hovering motions

employed by insects. Recognizing that at high angle of attack
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Studies of insect flight have focused on aerodynamic lift,

both in quasi-steady and unsteady regimes. This is partly

influenced by the choice of hovering motions along a

horizontal stroke plane, where aerodynamic drag makes

no contribution to the vertical force. In contrast, some of

the best hoverers – dragonflies and hoverflies – employ

inclined stroke planes, where the drag in the down- and

upstrokes does not cancel each other. Here, computation

of an idealized dragonfly wing motion shows that a

dragonfly uses drag to support about three quarters of its

weight. This can explain an anomalous factor of four in

previous estimates of dragonfly lift coefficients, where

drag was assumed to be small.

To investigate force generation and energy cost of

hovering flight using different combination of lift and

drag, I study a family of wing motion parameterized by

the inclined angle of the stroke plane. The lift-to-drag

ratio is no longer a measure of efficiency, except in the

case of horizontal stroke plane. In addition, because the

flow is highly stalled, lift and drag are of comparable

magnitude, and the aerodynamic efficiency is roughly the

same up to an inclined angle about 60°, which curiously

agrees with the angle observed in dragonfly flight.

Finally, the lessons from this special family of wing

motion suggests a strategy for improving efficiency of

normal hovering, and a unifying view of different wing

motions employed by insects.
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both lift and drag resulted from the same pressure force that

acts normal to the wing, Dickinson (1996) suggested that ‘the

dichotomy between lift- and drag-based mechanisms of

locomotion (Vogel, 1996) was blurred’. Still, in subsequent

studies, drag and lift have not been treated on equal footing.

For example, most models approximated the stroke plane to be

horizontal. While this is a reasonable simplification, it is also

a special case where drag in two half-strokes is almost equal

and in opposite direction, thus making negligible net

contribution to the net force.

Some of the best hoverers – dragonflies and true hoverflies

– employ asymmetric strokes along an inclined stroke plane,

similar to rowing. This is in contrast to ‘normal hovering’ used

by most insects including flies, bees and wasps, who flap their

wings about a horizontal plane (Weis-Fogh, 1973). In normal

hovering, a wing generates a vertical force in both half-strokes,

while in asymmetric strokes it generates a vertical force

primarily during the downstroke. This difference, together with

the fact that normal hovering resembles a helicopter wing

motion, prompted Weis-Fogh to hypothesize that normal

hovering might be more efficient. This turns

out not to be the case in the wing motions

studied here, as I will show later.

A puzzle about hovering along an

inclined stroke plane is that quick estimates

of required lift coefficients based on blade-

element theory, assuming constant lift and

drag coefficient, range from 3.5 to 6 (Weis-

Fogh, 1973; Norberg, 1975), which are

substantially higher than those estimated for

normal hovering insects: typically around 1

(see table·5 in Weis-Fogh, 1973). Later

inclusion of corrections due to induced

downward flow predicted similarly high

coefficients (Ellington, 1984). Explaining

these unusually large lift coefficients

motivated a shift of focus from quasi-steady

analysis to the investigation of unsteady

mechanisms in hovering flight. Recently

investigated mechanisms, such as dynamic

stall (Dickinson and Götz, 1993; Ellington

et al., 1996; Wang, 2000b), wing rotation

and wing–wake interaction (Dickinson et

al., 1999), can explain an increase of

averaged lift up to a factor of two, but not a factor of four.

This raises the question of whether the high coefficients seen

in hovering with inclined stroke plane result from unsteady

mechanisms alone or other assumptions made in the

theoretical analyses.

Without getting into the details of the unsteady mechanisms,

an obvious feature of a downward stroke along an inclined

stroke plane is that the associated pressure drag has an upward

vertical component, which can have a non-negligible

contribution to weight balance. In the previous quasi-steady

analyses, drag was assumed to be much smaller than lift. For

example, the lift to drag ratio was assumed to be ~7 by Weis-

Fogh (1973) and 6 by Norberg (1975). These were estimates

based on the maximal value of lift to drag ratio from

experiments on a locust wing (Jensen, 1956). Ellington (1984)

used the relation CD,pro�7/�Re based on flow past a cylinder

and deduced a value of 0.15–0.2 at an Re of ~103 for the profile

drag coefficient. While these values might be reasonable at a

small angle of attack, they are considerable underestimates of

drag at stalled angles during the downstroke. 

Z. J. Wang
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Fig.·1. Hovering motions studied in this paper.

(A) The chord position (solid line with a black

circle) and the coordinates, (B) generic

asymmetric strokes along an inclined stroke plane,

(C) normal hovering along a parabolic stroke

plane and (D) normal hovering along a figure of

eight. The strokes in C and D can be decomposed

into pairs of asymmetric strokes described in B.

The numbers next to the chords indicate the time

sequence and also identify the corresponding

segments in the decomposition.
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Given that our ability to quantify unsteady forces, at least of

model wings, is much improved, it seems worthwhile to re-

examine the force generation and energy cost of hovering flight

using different strategies. The first goal of this paper is to

analyze these quantities in a family of hovering motions, which

are parameterized by the inclined angle of the stroke plane and,

correspondingly, different combinations of lift and drag in

supporting the weight of an insect. The results offer an

explanation of the discrepancy by a factor of four in the quasi-

steady analysis. They also suggest a strategy for improving

hovering efficiency and a unifying view of hovering motions

used by different insects.

Models and methods

Wing motions 

The trajectory of a rigid wing relative to a fixed body is

described by three degrees of freedom, the position of a point

on the wing in spherical coordinates (Θ, Φ) and the pitching

angle (α) about the axis connecting the wing root and the

point on the wing. The wing motions are thus specified by

three periodic functions: Θ(t), Φ(t) and α(t). It is impractical

to enumerate this family of kinematics by brute-force

approach. The model chosen for this paper is one of the

simplest possible family of a hovering motion but it allows

us to study the dependence of forces and flow using different

styles of hovering, similar to those seen in fruit flies or

dragonflies.

In particular, I consider a two-dimensional cross-section of

a wing executing the following motion: 

α(t) = α0 + Bsin(2πft + φ) , (2)

where [x(t), y(t)] is the position of the center of the chord, α(t)

is the chord orientation relative to the stroke plane, which is

inclined at angle β (see Fig.·1A,B), f is the frequency, A0 and

B are the amplitudes of translation and rotation, respectively,

and φ is the phase delay between rotation and translation. α0

is the mean angle of attack and thus describes the asymmetry

between the up- and downstrokes. α0=π/2 and β=0 correspond

to a symmetric stroke along a horizontal plane. In other cases,

for each α0, β is determined such that the net force is vertically

upward, corresponding to hovering. 

Special cases of these wing motions have been studied

theoretically (von Holst and Kuchemann, 1941),

experimentally (Freymuth et al., 1991) and computationally

(Gustafson et al., 1992; Wang, 2000a). Here I compute and

extend the forces and flows for α0 and β.

Computational methods 

The flow around the wing is governed by the Navier–Stokes

equation, which is solved with a fourth-order compact finite-

difference scheme (E and Liu, 1996) in elliptic coordinates

(Wang, 2000a,b; Wang et al., 2004). 

The Navier–Stokes equation in the coordinates fixed to the

wing has the form:

∇ ⋅ u = 0 , (4)

u⏐wing = 0 , (5)

where u is the velocity field, p is pressure, ν is kinematic

viscosity, r is the position relative to the wing center and ρ is

density. U0 and � are the translational and rotational velocity

of the wing, respectively. The last three terms correspond to

the non-inertial force due to rotational acceleration, the

Coriolis force and the centrifugal force, respectively. The

Coriolis force and the centrifugal force disappear in the two-

dimensional vorticity equation because they can be recast in

terms of the gradient of a potential function. To ensure

sufficient resolution at the edge of the wing and efficiency in

computation, elliptic coordinates fixed to the wing (µ, θ) are

employed and mapped to a Cartesian grid. The two-

dimensional Navier–Stokes equation governing the vorticity in

elliptic coordinates is:

where ω is the vorticity field, and S is the scaling factor

[S(µ,θ)=a2(cosh2µ–cos2θ)], where a is a constant. 

The velocity and vorticity are obtained in the non-inertial

coordinates, which are then transformed into the inertial frame.

The forces are calculated in the inertial frame by integrating

the viscous stress along the wing: 

Fν = ρν�ωsds , (9)

where Fp and Fν denote pressure and viscous forces, Aw is the

cross-sectional area of the wing, s is arc length and s is the

tangent vector along the ellipse, and the integral is over the

contour of the ellipse. The instantaneous forces are non-

dimensionalized by 0.5ρUrms
2c, where c is the chord. CL and

CD denote the lift and drag coefficients normal and parallel to

the relative flow field at infinity, and CV and CH are the vertical

and horizontal force coefficients. Because the horizontal force

cancels over a period, its absolute value is used when taking

averages.

The translational motion of the wing is specified by

two dimensionless parameters: the Reynolds number

(Re�Umaxc/ν=πfA0c/ν) and A0/c. The typical Re of a dragonfly

Fp = ρν
∂ω
∂r

(y, −x)ds+ρAw

dU0

dt
(8)

⌠
⎮
⌡

√Su·∇ ) = 0 , (7)

∂(Sω)
∂t

+ ( √Su ·∇)ω =
1

Re
∇ 2ω , (6)

∂u

∂t
+ (u ·∇) u = −

∇p

ρ

+ ν∆u−dU0 /dt − �d�

dt
×r + 2�×u  + � ×(�×r)� , (3)

[x (t), y(t)] = A0

2
(1 + cos 2πf t)(cos β, sin β) (1) 
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is ~103, and that of a fruit fly is ~102. The Re dependence of

the force was previously studied for similar wing motions from

Re=15.7 to Re=1256 and it was shown that the averaged force

does not have a strong dependence when 150<Re<1256

(Wang, 2000a), where the force is dominated by pressure

(Wang et al., 2004). In the following computations, Re=150,

A0/c=2.5, f=1, B=π/4 and ϕ=0, which are in the range of

observed values in insect hovering. These parameters are also

where two-dimensional computations and three-dimensional

experiments agree well (Wang et al., 2004).

Quasi-steady estimate 

In addition to solving the Navier–Stokes equation, it was

instructive to apply a quick quasi-steady estimate with a

lift–drag polar obtained for a translating wing at Re=200 at an

angle of attack (αA) from [0,π] (Wang et al., 2004):

CL = 1.2 sin(2αA) , (10)

CD = 1.4 – cos(2αA) . (11)

For the sinusoidal motion studied here, the force due to

coupling of pitching and translation averages zero, and the

term due to wing acceleration is small by a factor proportional

to the ratio of wing thickness to the stroke amplitude: thus, the

estimates based on translational velocity are a reasonable

approximation except near the wing reversal (Wang et al.,

2004). See also Sane and Dickinson (2002) for inclusion of

wing rotation. The results presented below are from two-

dimensional computations, which contain the essential results

from the quasi-steady analysis but also predict a non-trivial

upper limit of the inclined angle of the stroke plane in this

model.

Results

Two special cases: ‘normal’ hovering (α0=90°, β=0°) vs

‘dragonfly’ hovering (α0=60°, β=62.8°)

I first contrast two special cases that have been studied most

in the recent literature. The first case, where α0=90° and β=0°,

corresponds to a symmetric back and forth stroke along a

horizontal plane. It is an idealization of normal hovering as

seen, for example, in a fruit fly. The second case, where α0=60°

and β=62.8°, corresponds to hovering along an inclined stroke

plane, similar to dragonfly wing motion. 

Fig.·2 shows a side-by-side comparison of the wing motion,

forces, vorticity field and mean flow in the two cases. In the

case of a symmetric stroke (Fig.·2A), each half-stroke

generates almost equal lift in the vertical direction and almost

equal drag in the opposite horizontal direction. The averaged

vertical and horizontal force coefficients are 1.07 and 1.61,

respectively, resulting in a ratio of 0.66. By contrast, the

asymmetric stroke (Fig.·2B) generates most of its vertical force

during the downstroke, in which the lift and drag coefficients

are 0.45 and 2.4, respectively; they are 0.50 and 0.68 during

the upstroke. The vertical and horizontal force coefficients

averaged over one period are 0.98 and 0.75, resulting in a ratio

of 1.31, which is twice the value of the symmetric stroke. In

this case, 76% of the vertical force is contributed by

aerodynamic drag.

Comparing the vorticity field in the two cases shows a faster

downward jet produced by the asymmetric stroke. Fig. 2Biv

shows the time-averaged velocity below the wing. The velocity

is plotted in physical space, which is interpreted from the

computed velocity in the body coordinates. The symmetric

stroke generates a jet whose width is comparable to the

flapping amplitude, and it penetrates down for ~4–5 chords. By

contrast, the asymmetric stroke generates a jet whose width is

comparable to the chord, and it penetrates downward for ~7

chords. This difference may be significant when the wing is

hovering above a surface, where the ground effect is non-

negligible.

Ten cases from α0=0 to α0=90°

Next, I investigate how the flows, forces and specific power

vary with the angle of the stroke plane (β). Fig.·3 shows the

vorticity field of four representative cases in the fourth period.

Ten snapshots are taken, equally spaced in time. The

downward dipole jets are in the approximately opposite

direction to the net force. The jet speed can be estimated by

the travel distance over one period. It increases with β. At

β=4°, 30°, 48°, 63° and 75°, the dipole pair travels over 2.4,

3, 3.5, 3.9 and 4 chords, respectively.

Fig.·4 shows the time-dependent vertical and horizontal

forces for five cases. The averaged vertical forces are similar

in all cases, as shown in Fig.·5. The fluctuation of the vertical

force increases with β, while the fluctuation of the horizontal

force decreases with β. For example, the maximum vertical

force is approximately a factor of two higher at β=75°

compared with β=4°, but the maximal horizontal force is

approximately a factor of two lower. These variations are

consistent with the fact that at larger β the downward jet

is faster and narrower. The narrower jet at larger β makes

sense since the wing sweeps less horizontal distance at a

given A0.

The variation of the force fluctuation may correlate with

the body orientation during hovering. For an elongated body,

it is preferable to hover with a horizontal body when

employing a highly inclined stroke plane and with a vertical

body when using a horizontal stroke plane (Weis-Fogh,

1973). Fig. 4 suggests that the body aligns in the direction

where the force fluctuation is small, which would reduce

body oscillations.

How do these different hovering styles affect the net forces

and the specific power? Fig.·5 compares them as a function of

β. It illustrates two interesting points. First, as the stroke plane

tilts up, the average vertical force coefficient, CV, remains

almost constant up to β	60°. The horizontal force averages

zero, but its average magnitude, CH, decreases with β. Thus, the

ratio CV/CH increases by a factor of two as β increases from 0°

to 60°. Second, the averaged power exerted by the wing to the

fluid is given by P= FD(t)u(t) , where FD(t) is the drag.

Comparing this power with the ideal power based on the

Z. J. Wang
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Fig.·2. Comparison of idealized normal hovering along a horizontal stroke plane (A) and dragonfly hovering along an inclined stroke plane (B).

(i) Wing motion and averaged lift and drag, (ii) instantaneous vertical (CV) and horizontal (CH) force coefficients (solid line, net force; broken

line, lift contribution; dotted line with circles, drag contribution), (iii) snapshots of vorticity (red, counterclockwise rotation; blue, clockwise

rotation) and velocity fields (red vectors) during the fourth period, and (iv) time-averaged velocity field over one period (blue vectors). The

maximum translational velocity (Umax) serves as a reference velocity scale. The broken square corresponds to the region shown in iii.
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actuator disk theory (Leishman, 2000) gives a non-dimensional

measure:

where the size of the actuator for a two-dimensional wing is

assumed to be the amplitude A0, and FV is the vertical force.

Similar to CV, CP is relatively independent of β up to β	60°.

Up to β=40°, there is a slight decrease in power required to

balance a given weight. Although the ratio of the vertical to

horizontal forces increases by a factor of 2 as β increases from

4° to 63°, the specific power is roughly the same. There is also

a sharp decrease in vertical forces at β	60°, which is not

predicted by a quasi-steady model (Z.J.W., unpublished).

The mechanism for this cut-off requires further

investigation, but it is worth noting that β	60° agrees with one

of the largest angles observed in free hovering flight of

Aeschna juncea (Norberg, 1975); studies of tethered flight

reported smaller inclined angles (Ellington, 1984; Wakeling

and Ellington, 1997).

Discussion

While the above results are specific to the model chosen

here, we can learn at least two general lessons. First, the force

ratio (lift to drag ratio or vertical to horizontal force ratio) is

no longer an appropriate measure of efficiency for hovering

flight, except in the case of horizontal stroke plane. The

examples seen here show that the specific power (CP) remains

roughly constant while the force ratio (CV/CH) varies by about

a factor of two. Second, hovering along an inclined stroke

plane can be as efficient as normal hovering.

√2ρA0 , (12)CP =
�FD(t)u(t)�

�FV(t)�3/2

Z. J. Wang

Fig.·3. Vorticity field in four cases, β=75°, 63°, 48° and 30°. In each case, 10 snapshots equally spaced over one period are shown (red,

counterclockwise rotation; blue, clockwise rotation). The elliptic wing is in white. The stroke plane is horizontal for graphing purposes. The

direction of gravity (g) relative the stroke plane is shown at the top left.
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An explanation of anomalously high lift coefficients obtained

in previous estimates

Now I return to the question discussed in the Introduction

about the high lift coefficients obtained in quasi-steady

analysis of dragonflies (Weis-Fogh, 1973; Norberg, 1975;

Ellington, 1984). The lift to drag ratio during downstroke was

assumed to be ~6.5 (Weis-Fogh, 1973; Norberg, 1975), which

is based on the value at small angle of attack in locust flight

(Jensen, 1956). According to the current computation in the

corresponding case of β=63°, the drag contributes about 76%

of the net vertical force. Therefore, the assumption of a lift to

drag ratio of 6.5 is equivalent to assuming a drag contribution

of about (24/6.5)% of the vertical force. Consequently, it

ignores about 72% [76–(24/6.5)] of the net vertical force. This

would result in approximately a factor of four increase in the

estimate of the lift coefficient. If we include the computed

drag, Norberg’s estimate (CL	3.5–6.1;

Norberg, 1975) would yield a CL of

~0.9–1.5, which is much more

reasonable.

The role of drag in normal hovering

Dragonflies and hoverflies, which use a

highly inclined stroke plane, are examples

where ignoring drag can lead to obvious

contradictions. One might ask to what

degree drag is relevant in understanding

normal hovering, which is employed by

most insects including flies and bees. The

wing tip of different insects typically

traces out shapes of an oval, a parabola or

a figure of eight, under different

experimental conditions (tethered vs free

flight; Marey, 1868; Hollick, 1940; Jensen, 1956; Nachtigall,

1974; Ellington, 1984; Zanker and Götz, 1990; Fry et al., 2003),

but the aerodynamic consequences of these variations have not

been much discussed.

Here, I suggest that a figure of eight, an oval or a parabola

can all be decomposed into pairs of dragonfly-like strokes, as

illustrated in Fig.·1C,D. The deviation from a horizontal stroke

plane permits the insect to use some of the drag to support its

weight during the plunging-down motion. Recent force

measurements on a robotic wing mimicking hovering of

fruitflies show that the upward force has a substantial

component in the direction of drag (see fig.·3A in Fry et al.,

2003). These new results, together with the analysis here,

suggest that normal-hovering insects can also use part of drag

to support their weight. Another implication is that the

instantaneous orientation of the stroke plane is a relevant

parameter when constructing model wing motions.

Improving efficiency by eliminating half of a stroke in normal

hovering 

The magnitude of drag in normal hovering considered here
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(see Fig.·2A) is greater than that of lift (CD=1.61 and CL=1.07)

yet, because of the use of strict horizontal stroke plane, the drag

makes no contribution to the net force. Large drag was also

found in simulations of a family of normal hovering (Wang et

al., 2004), in particular near the wing reversal, and in an

extensive experimental study of 191 hovering kinematics,

where stroke amplitude, angle of attack, deviation of the stroke

plane, and timing and duration of wing rotation were varied

(Sane and Dickinson, 2001).

Here is a strategy to benefit from the large drag found in

these symmetric strokes. Instead of using both half-strokes,

take a half-stroke and make it a downstroke by tilting the stroke

plane such that the net force points vertically up (Fig.·6). The

upstroke simply returns to the starting position with a zero

angle of attack, which generates a negligible amount of force

but also consumes a negligible amount of power.

If one applies this procedure to the case of symmetric

stroke (Fig.·2A), the downstroke has a net coefficient of

�1.612+1.072=1.98. The stroke plane should be tilted by

approximately tan–1(1.61/1.07)	56°, so the net force points

upward. Since the upstroke contributes almost no force,

the averaged force coefficient in a complete stroke is

1.98/2=0.99. The total power is also reduced by a factor of

two since the upstroke does almost no work. Comparing this

new stroke with the symmetric one, the specific power (total

power per supported weight) is reduced by a factor of

(1/2)(1.07/0.99)=0.54. Similarly, one can apply the same

procedure to the experimental case of α=50° and φ=180° in

Sane and Dickinson (2001), where CD=3.16 and CL=1.87 and

the net force coefficient during the downstroke is 3.67. The

stroke plane should be tilted by ~63°. The average force in

the new stroke is almost the same as in the original stroke,

while the specific power over a period is reduced by a factor

of two. In both cases, by eliminating half of the stroke, the

wing supports about the same weight but consumes half of

the power.

This conceptual example shows that a rowing-like motion

can, in some cases, be more efficient than an airfoil-like

motion, which is quite the opposite to what Weis-Fogh (1973)

had anticipated.

Concluding remarks

I hope that the collection of lessons learned here helps to

bring unsteady drag on an equal footing with unsteady lift in

studies of flapping motions in fluids. This also suggests a need

for developing better theories of predicting unsteady drag in

separated flows (Pullin and Wang, 2004) and experiments and

computations to examine the role of drag in the locomotion in

fluids (Wang, 2005).

List of symbols

A0 amplitude of translation

Aw wing cross-sectional area

B amplitude of rotation

c chord

CD averaged drag coefficient

CD drag coefficient

CH averaged horizontal force coefficient

CH horizontal force coefficient

CL averaged lift coefficient

CL lift coefficient

CP averaged specific power

CV averaged vertical force coefficient

CV vertical force coefficient

f frequency

FD(t) drag

Fp pressure force

FV vertical force

Fν viscous force

P averaged power exerted by the wing to the fluid

p pressure

r position relative to the wing center

Re Reynolds number

� rotational velocity of the wing

s arc length

s tangent vector along the ellipse

S scaling factor

t time

u fluid velocity field

U0 translational velocity of the wing

Umax maximum translational velocity

αA angle of attack

α(t) chord orientation relative to the stroke plane

β angle of inclination of the stroke plane

φ phase delay between rotation and translation

ν kinematic viscosity

ρ air density

ω vorticity field

I thank A. Andersen, S. Childress, M. Dickinson, R.

Dudley, C. Ellington and P. Lissaman for useful feedback on

an earlier version of this work (http://arxiv.org/ps/physics/

0304069) and A. Ruina for helpful discussions. The work is

supported by the AFOSR, NSF and Packard Foundation.

References
Blake, R. W. (1981). Mechanics of drag-based mechanism of propulsion in

aquatic vertebrates. Symp. Zool. Soc. Lond. 48, 29-52.
Childress, S. (1981). Swimming and Flying in Nature. Cambridge: Cambridge

University Press.
Dickinson, M. H. (1996). Unsteady mechanisms of force generations in

aquatic and aerial locomotion. Am. Zool. 36, 537-554.
Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic

performance of model wings at low Reynolds numbers. J. Exp. Biol. 174,
45-64.

Dickinson, M. H., Lehmann, F. O. and Sane, S. P. (1999). Wing
rotation and the aerodynamic basis of insect flight. Science 284, 1954-
1960.

E, W. and Liu, J. (1996). Essentially compact schemes for unsteady viscous
incompressible flows. J. Comp. Phys. 126, 122-138.

Ellington, C. P. (1984). The aerodynamics of hovering insect flight I–V. Phil.

Trans. R. Soc. Lond. B 305, 1-181.
Ellington, C. P., van den Berg, C., Willmott, A. P. and Thomas, A. L. R.

(1996). Leading-edge vortices in insect flight. Nature 384, 626-630.
Freymuth, P., Gustafson, K. and Leben, R. (1991). Visualization and

Z. J. Wang



4155Role of drag in insect hovering

computation of hovering mode. In Vortex Method and Vortex Motion (ed.
K. Gustavson and J. Sethian), pp. 143-169. Philadelphia: Society for
Industrial and Applied Mathematics (SIAM).

Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003). The aerodynamics of
free-flight maneuvers in Drosophila. Science 300, 495-498.

Gustafson, K., Leben, R. and McArthur, J. (1992). Lift and thrust
generation by an airfoil in hover modes. Comp. Fluid Dynamics J. 1, 47.

Hollick, F. S. J. (1940). The flight of the dipterous fly Muscina stabulans

Fallen. Phil. Trans. R. Soc. B, 230, 357-390.
Horridge, G. A. (1956). The flight of very small insects. Nature 178, 1334-

1335.
Jensen, M. (1956). Biology and physics of locust flight. III. The aerodynamics

of locust flight. Proc. Roy. Soc. Lond. B 239, 511-551.
Leishman, J. (2000). Principles of Helicopter Aerodynamics. Cambridge:

University of Cambridge.
Marey, E. J. (1868). Determination experimentale du mouvement des ailes

des insectes pendant le vol. C. R. Acad. Sci. Paris 67, 1341-1345.
Nachtigall, W. (1974). Insects in Flight. New York: McGraw–Hill.
Norberg, R. A. (1975). Hovering flight of the dragonfly Aeschna juncea:

kinematics and aerodynamics. In Swimming and Flying in Nature, vol. 2
(ed. T. Y. Wu, C. J. Brokaw and C. Brennen), pp. 763-780. New York:
Plenum Press.

Pullin, D. I. and Wang, Z. J. (2004). Unsteady forces on an accelerating plate
and application to hovering insect flight. J. Fluid Mech. 509, 1-21.

Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys. 45, 3-11.
Sane, S. and Dickinson, M. H. (2001). The control of flight force by a flapping

wing: lift and drag production. J. Exp. Biol. 204, 2607-2626.

Sane, S. and Dickinson, M. H. (2002). The aerodynamic effects of wing
rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol.

205, 1087-1096.
Taylor, G. I. (1985). Low Reynolds Number Flows (video recording).

Chicago: Encyclopaedia Britannica Educational Corp.
Vogel, S. (1996). Life in Moving Fluids. Princeton, NJ: Princeton University.
von Holst, E. and Kuchemann, D. (1941). Biological and aerodynamical

problems of animal flight. Naturwissenschaften 46, 39-58.
Wakeling, J. M. and Ellington, C. P. (1997). Dragonfly flight II:

velocities, accelerations and kinematics of flapping flight. J. Exp. Biol.

200, 557-582.
Wang, Z. J. (2000a). Two dimensional mechanism of hovering. Phys. Rev.

Lett. 85, 2216-2219.
Wang, Z. J. (2000b). Vortex shedding and frequency selection in flapping

flight. J. Fluid Mech. 410, 323-341.
Wang, Z. J. (2005). Dissecting insect flight. Annu. Rev. Fluid. Mech. 37, 183-

210.
Wang, Z. J., Birch, J. and Dickinson, M. H. (2004). Unsteady forces and

flows in low Reynolds number hovering flight: two-dimensional
computations vs robotic wing experiments. J. Exp. Biol. 207, 449-460.

Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering
animals, including novel mechanisms for lift production. J. Exp Biol. 59,
169-230.

Wu, T. Y.-T., Brokaw, C. J. and Brennen, C. (1975). Swimming and Flying

in Nature, vol. I and vol. II. New York, London: Plenum Press.
Zanker, J. M. and Götz, K. G. (1990). The wing beat of Drosophila

melanogaster II. dynamics. Phil. Trans. R. Soc Lond. B 327, 19-44.


