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Summary. A major roadblock in taking full advantage of the recent exponential growth in

data collection and actuation capabilities stems from the curse of dimensionality. Simply put,

existing techniques are ill-equipped to deal with the resulting overwhelming volume of data.

The goal of this chapter is to show how the use of simple dynamical systems concepts can

lead to tractable, computationally efficient algorithms for extracting information sparsely en-

coded in multimodal, extremely large data sets. In addition, as shown here, this approach leads

to non–entropic information measures, better suited than the the classical, entropy–based in-

formation theoretic measure, to problems where the information is by nature dynamic and

changes as it propagates through a network where the nodes themselves are dynamical sys-

tems.

1.1 Introduction
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Fig. 1.1. Examples of sparsely encoded information. (a) Detecting a traffic accident. (b) Track-

ing a person in a crowd.(c) gfp–visualized promoter activation during a diauxic shift experi-

ment in E. coli [1]. In all cases fewer than O(10−3) to O(10−6) of the data is relevant.

The recent exponential growth in data collection and actuation capabilities has

the potential to profoundly impact society, with benefits ranging from safer, self
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aware environments, to enhanced image-based therapies. A major road-block to re-

alizing this vision stems from the curse of dimensionality. Simply put, existing tech-

niques are ill-equipped to deal with the resulting overwhelming volume of data.

This chapter discusses the key role that dynamics can play in timely extracting

and exploiting actionable information that is very sparsely encoded in high dimen-

sional data streams. Its central theme is the use of dynamical models as information

encoding paradigms. Our basic premise is that spatio-temporal dynamic information

can be compactly encapsulated in dynamic models, whose rank, a measure of the di-

mension of useful information, is often far lower than the raw data dimension. This

premise amounts to a reasonable localization hypothesis for spatio-temporal correla-

tions, and is a given in mechanical and biological processes. Embedding problems in

the conceptual world of dynamical systems makes available a rich, extremely pow-

erful resource base, leading to robust solutions, or, in cases where the underlying

problem is intrinsically hard, to computationally tractable approximations with sub-

optimality certificates. For instance, in this context, changes in the underlying pro-

cess can be detected by simply computing the rank of a Hankel matrix constructed

from the data and missing information can be recovered by solving a rank mini-

mization problem that can be relaxed to a tractable semi-definite program. A third

example is the comparison of data streams in order to establish whether they cor-

respond to time traces of the same phenomenon: it is vastly easier to quantify the

difference between two dynamic models (often requiring only a rank comparison)

than to search for elusive overlapping time sequences and then compare two such

very high dimensional data streams. Finally, the use of dynamic models leads nat-

urally to non-entropic information measures, better suited for problems where the

information is by nature dynamic and changes as it propagates through a network

where the nodes themselves are dynamical systems. These ideas are illustrated with

several examples from different applications, including change detection in video

sequences, motion segmentation, and uncovering co-promoted genes.

1.2 Key subproblems arising in the context of dynamic

information extraction

The challenges entailed in exploiting dynamic information sparsely encoded in very

large data sets are illustrated in Figure 1.1: In all cases, decisions must be taken

based on events discernible only in a small fraction of a very large data record: a

short video sequence adds up to megabytes, yet the useful information (a change of

behavior of a single target), may be encoded in just a portion of a few frames, e.g.,

less than 10−6 of the total data. Similarly, the data from the diauxic shift experiment

shown in Figure 1.1(c) consists of 342×103 data points from the time traces of 1,920

promoters, (e.g., a total of 19 Mb of data), yet only a few critical time instants and

promoter correlations are of interest. Additional challenges arise from the quality

of the data, often fragmented and corrupted by noise. Addressing these challenges

requires solving the following subproblems:
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A: Nonlinear embedding of dynamic data. Finding low dimensional manifold struc-

tures in data, a hallmark of machine learning, is a key precursor to both dimen-

sionality reduction and robust information extraction. Existing static techniques ([2]

and references therein) provide low dimensional embeddings, but fail to exploit the

large gap between data dimension and dynamic rank. As we will show in this chap-

ter, this can be accomplished by employing low rank dynamic models to capture

time/parameter dependence on low dimensional manifolds that maximally absorb

stationary high dimensions and nonlinearities.

B: Uncovering structures embedded in data. A key step in information extraction

is the ability to find structures embedded in the data. For example, when analyzing

data generated by an unknown number No of sources, it is of interest to identify

the number of sources, associated substreams, and the individual dynamics. This is

commonly accomplished by searching for statistical correlations or exploiting a pri-

ori known structural constraints. For example, independently moving objects in

a video clip are efficiently detected by factorizing a matrix of feature trajectories

[3, 4, 5]. However, methods based on correlations and (application dependent) a pri-

ori information alone are fragile to missing/corrupted data and have trouble disam-

biguating structures with overlapping kinematic or statistical properties. As shown

here, these difficulties can be avoided by seeking dynamically coherent substreams,

e.g., subsets that can be jointly explained by low rank models. Further, this task can

be efficiently carried out without explicitly finding these models, by estimating ranks

of Hankel matrices constructed from time traces. Incorporating a priori available in-

formation allows for retaining the advantages of existing methods while substantially

improving robustness.

C: Dynamic data segmentation. The goal here is to partition the data record into

maximal, disjoint sets within which the data satisfies a given predicate. Examples

include segmenting a video sequence of a person into its constituent activities, or

identifying time periods where a given group of gene promoters is active. While this

problem has been the object of considerable research in the past decade, it remains

very challenging in cases involving noisy data, where most existing methods lead

to computationally demanding problems [6, 7], with poor scaling properties. As we

will show in the sequel, the use of dynamics provides a unified, efficient approach

to robust segmentation. In its simplest form, the idea is to group data according to

the complexity of the model that explains it. Intuitively, models associated with ho-

mogeneous data, e.g., a single activity or metabolic stage, have far lower complexity

than those jointly explaining multiple datasets. Boundaries are thus characterized by

a step increase in model complexity. In turn, these jumps in model complexity can be

efficiently detected by examining the singular values of a matrix directly constructed

from the data.

D: Dynamic interpolation. Data streams are often fragmented: clinical trial patients

may miss appointments, targets may be momentarily occluded. The challenges here

are to (i) identify fragments belonging to the same data sets (for instance “tracklets”

corresponding to a track of a single target, fragmented due to occlusion), and (ii)

interpolate the missing data while preserving relevant dynamical invariants embed-

ded in it. The latter is particularly important in cases where a transition is mediated
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by the missing data. An example is detecting an activity change from video data,

when the transition point is occluded. Formulating the problem as a minimum order

dynamical interpolation one leads to computationally attractive solutions, whereby

values for missing data are selected as those that do not increase the complexity - or

rank - of the model underlying the data record.

E: Hypothesis testing and distributed information sharing. Examples include de-

termining whether (possibly non-overlapping) data streams correspond to the same

process or assessing whether a data set is a realization of a given process. In turn, this

entails computing worst-case distances between data and model predictions, a task

that can be efficiently accomplished by combining concepts from dynamical sys-

tems and information based complexity. Situations involving multiple information

sources and users require the ability to (i) maintain consistent data labeling across

sources, and (ii) mitigate the communications and computational burdens entailed

in sharing very large datasets. Both issues can be efficiently addressed by exploiting

the dynamical models underlying the data. Briefly, the idea is to identify a dynamic

operator mapping the dynamic evolution of data projections over individual mani-

folds, amounting to a dynamical registration between sources. Sharing/comparing

data streams then entails transmitting only the (low order) projections of dynamic

variables and running these projections through the interconnecting operator.

In the remainder of this chapter we show how the use of dynamic models that

compactly encapsulate relevant spatio-temporal information provides a unified set of

tools leading to computationally efficient solutions to problems A –E above. In all

cases, these solutions will be illustrated with practical examples.

1.3 Nonlinear embedding of dynamic data.

In the past few years, considerable research has been devoted to the problem of non-

linear dimensionality reduction via manifold embedding. Briefly, the idea is to obtain

lower complexity data representations by embedding it into low dimensional non-

linear manifolds while preserving spatial neighborhoods. Commonly used methods

include locally linear embeddings (LLE) [8], Isomap [9], Laplacian Eigenmaps [10],

Hessian LLE [11], and Semidefinite Embedding [12, 13]. These methods success-

fully exploit spatial correlations to achieve (often substantial) dimensionality reduc-

tion. However, they fail to take advantage of the temporal correlations that are char-

acteristic of dynamic data. As we show next, constraining target manifolds to those

spanned by feasible dynamical trajectories enables additional (substantial) dimen-

sionality reduction and provides robustness against missing data and outliers.

The starting point is the realization that since projections to/from manifolds can

be modeled as memoryless nonlinearities, the problem of jointly identifying the em-

bedding manifold, the dynamics characterizing the evolution of the data on this man-

ifold, and the projection operators can be recast into the Hammerstein/Wiener system

identification problem illustrated in Figure 1.2. Here Πi(.) and Πo(.) are memoryless

nonlinearities, S is a linear time invariant (LTI) system that describes the temporal

evolution of the data on the manifold, and u ∈ Rnu , d ∈ Rnd , um ∈ Rnum and
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Fig. 1.2. Hammerstein/Wiener System Structure. Wiener system.

y ∈ Rny , with nd ≫ ny , nu ≫ num
represent the respective input (for instance

a vector composed of past values of the output and a stochastic driving signal), the

raw data, and their projections on the low dimensional manifold. A potential diffi-

culty here stems from the fact that, as recently shown in [14], robust identification

of Hammerstein/Wiener systems is generically NP–hard. However, efficient, com-

putationally tractable relaxations that scale polynomially with problem size (both

manifold dimension and number of temporal data points) can be obtained by pursu-

ing a risk-adjusted approach. The main idea is to identify first the (piecewise) linear

dynamics by sampling the set of signals (um,y), and attempting to find, for each

sample (typically a subset of a ball in ℓ2) an LTI operator S (the dynamics on the

manifold) compatible with existing a priori information and such that y = Sum. As

shown in [15, 16] both steps reduce to a convex optimization problem via the use

of Parrot’s Theorem on norm-preserving matrix expansions and standard results on

interpolation. The effectiveness of this approach is illustrated in Figure 1.3, where

the application of these ideas enabled sustained tracking of multiple subjects in a

cluttered outdoor scene. Here, recasting the problem into a non-linear identification

form allowed for reducing the problem to an identification/prediction one in a 3-

dimensional manifold.

It is worth emphasizing that this approach has the, hitherto unavailable, ability

to exploit the synergy between the data embedding and dynamic modeling prob-

lems to improve robustness and computational properties. Robustness is improved

by automatically discarding manifolds incompatible with a priori existing informa-

tion on the dynamics, while computationally attractive models result from maximally

absorbing nonlinearities in the manifold structure. Further, the consistency set [17]

associated with the identification problem provides the means to (in)validate assump-

tions about the geometry of the manifolds and to quantify the approximation error.

Thus, viewing data as a manifestation of hidden dynamics allows a synergy between

machine learning (the manifold structure), identification theory (theoretical under-

pinnings, computational framework) and information based complexity (worst case

prediction–error bounds).

1.4 Structure extraction from high dimensional data streams.

Structure extraction methods based on correlations and (application dependent)

a priori information alone are often fragile to missing/corrupted data and have trou-

ble disambiguating structures with overlapping kinematic or statistical properties. As
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(a) (b)

(c) (d)

Fig. 1.3. (a): Sample 3 dimensional manifold extracted from a walking sequence. (b)-(d): use

of dynamics on this manifold to predict target position and appearance.

an illustrative example, consider time traces pti = (uti, vti)
T , t = 1 . . . n of np fea-

tures Pi, i = 1, . . . , np, from a single rigid object. Kinematic constraints imply that

the rank of the “measurements” matrix W1:F
.
= [pti] ∈ R2n×np is at most 4 [18].

The number No of independent rigid bodies can thus be estimated by factorizing that

matrix into rank 4 submatrices. Yet this approach fails to disambiguate objects with

partially shared motion, as illustrated in Figure 1.4(a): Here rank(W) = 7 due to

shared propeller rotations; hence any segmentation based solely on factorizing W
will fail to distinguish this case from the case of just two independently moving pro-

pellers. The root-cause is that properties that are invariant under row permutations in

W are limited to revealing geometric dependencies but ignore dynamic constraints3.

As shown next, these ambiguities can be solved through the use of dynamical models

that exploit both sets of constraints.

3 Any permutation of the rows of W satisfies the same geometric constraints, but corresponds

to different time trajectories.
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(a)

(b) (c)

(d) (e)

Fig. 1.4. (a) Right and left wing propellers move in opposite directions at the same speed.

(b) Dynamics based segmentation. (c) Costeira-Kanade segmentation. (d) Zelnik-Manor-Irani

segmentation. (e) GPCA segmentation.

The starting point is the realization that for two points pr,ps belonging to the

same source, the time evolution of yr,s(k)
.
= pr(k) − ps(k) does not carry infor-

mation about the overall group motion of the source. Equivalently, states associated

with group motion are unobservable from yr,s if pr and ps belong to the same dy-

namic cluster. Hence the associated Hankel matrix is rank deficient [17] vis-a-vis the

case of points from different sources. This leads to the following simple dynamic

clustering algorithm:

(i) For each pair (r, s), form the Hankel matrix Hyr,s
of pairwise differences yr,s(k) =

pr(k) − ps(k):

Hy =













y(1) y(2) · · · y(n
2 )

y(2) y(3) · · ·
...

...
...

. . .
...

y(n
2 ) · · · · · · y(n)













(1.1)

(ii) Group points according to the minimum value of rank[Hyr,s
].

In this context, robust handling of noisy measurements ŷ(k) = y(k) + η(k), is

accomplished by simply replacing “rank” by the number of singular values above

the covariance of the measurement noise4, leading to an algorithm computationally

no more expensive than a sequence of SVDs. The effectiveness of this approach is

illustrated in Figure 1.4 where darker matrix elements indicate higher correlations:

4 In this case Hŷ = Hy + Hη , and, under ergodicity assumptions, H
T
η Hη is an estimate of

the covariance matrix of the noise.
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As shown there, the dynamics based approach achieves perfect segmentation, while

methods relying solely on factorizations of W [5, 19, 20] fail.

(a)

(b) (c)

Fig. 1.5. (a) Sample frame. (b) Structures found using dynamic rank (darker color indicates

higher dynamic correlation). The hierarchy in the lower right corner corresponds to different

portions of the body. (c) Dynamic correlation between genes in the diauxic shift experiment of

Figure 1.1(c). The two identified groups correspond to growth related (top left) and stationary

(bottom right) genes. The fainter correlation between wrbA and (rpsM,rplN) was unexpected.

An interesting property of the dynamics based approach to segmentation, illus-

trated in Figure 1.5, is the ability to provide a hierarchical segmentation according

to the complexity of the joint dynamics. This is key to model the behavior of a target

composed by several components acting in a dynamically correlated fashion, e.g.,

the limbs of a walking person or co-regulated genes. The aggregate behaves as a

non-rigid object, whose components share motion modes.
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Fig. 1.6. Crash detection. Top: Frames 311 and 341. Bottom: Hankel rank time traces: Car 1

(b) and Car 8 (c).

1.5 Robust Dynamic Data Segmentation.

In principle, changes in the processes underlying a given data record can be detected

by a two tiered approach: identification of an underlying set of models (the con-

sistency set) followed by a model (in)validation step to detect points at which new

data are inconsistent with all the models in the set. However, the entailed compu-

tational complexity is high, roughly n5 for n data points. A fast, computationally

efficient alternative can be obtained by searching for points where the complexity

of the underlying model changes. The main idea behind this approach is the fact

that models associated with homogeneous data have far lower complexity than those

jointly explaining multiple datasets. Further, the complexity of the (unknown) model

can be estimated from the experimental data by computing the number Nsv,σ(Hy)
of (significant) singular values of a Hankel matrix similar to Hy in (1.1). Hence the

data record can be segmented according to discontinuities in Nsv,σ(Hy). Figure 1.6

illustrates the effectiveness of this approach in detecting contextually abnormal be-

havior - an accident - evidenced by a jump in the Hankel rank. An application of this

technique to detecting changes in promoter activity in E. coli is shown in Figure 1.7.
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Fig. 1.7. Detecting transitions in an E. coli culture via Hankel rank. Jumps at 20 and 57 corre-

spond to shifts from metabolizing glucose to lactose, to stationary phase, respectively.

The approach outlined above works well for cases where the noise is moderate

and adequately characterized as an ℓ2 bounded signal. Cases where these conditions

do not hold (for instance ℓ∞ noise) can be handled by a modification of this idea

(detecting mode changes in piecewise affine models) as follows. The starting point is

the assumption that the data record has been generated by a piecewise affine model

of the form:

H : f
(

pσ(t), {x(k)}t+j
k=t−i

)

= ηf (1.2)

where f is an affine function5 of the parameter vector pσ(t) which takes values from a

finite unknown set according to a piecewise constant function σ(t), and ηf denotes an

unknown noise signal. Here i and j are positive integers that account for the memory

of the model (e.g., j = 0 corresponds to a causal model, or i = j = 0 corresponds

to a memoryless model). Next, consider the sequence of first order differences of the

parameters pσ(t), given by

g(t) = pσ(t) − pσ(t+1) (1.3)

Clearly, a non-zero element of this sequence corresponds to a change in the un-

derlying model. Hence, partitioning the data record into maximal homogeneous se-

quences is equivalent to finding a hybrid model of the form (1.2), consistent with

the a priori information (e.g., a bound on ‖η‖ℓ∞ ) and experimental data, such that

the number of non-zero elements of the vector g(.) is minimized. Formally, defining

5 That is: f
(

pσ(t), {x(k)}t+j

k=t−i

)

= A(x)pσ(t) + b(x)
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δ(t) = ‖g(t)‖∞, the objective is to minimize ‖δ‖ℓo , the number of non-zero ele-

ments of δ, subject to (1.2). Using the fact that the convex envelope of ‖·‖ℓ0 in RN is

the ℓ1-norm [21], this non-convex problem can be relaxed to:

minimizep(t),η(t) ‖{g}‖ℓ1

subject to f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖
∗
≤ ǫ

(1.4)

Since f is an affine function of p(t), (1.4) has a convex feasibility set F . Thus, using

the ℓ1 norm leads to a convex, computationally tractable relaxation. The resulting so-

lution can be further improved using the iterative procedure proposed in [22], based

on solving, at each iteration, the following weighted ℓ1-norm minimization over the

convex feasible set F :

minimizez,g,p,η

∑T−1
t=1 w

(k)
t zt

subject to ‖g(t)‖
∞

≤ zt ∀t

f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖
∗
≤ ǫ

(1.5)

where w
(k)
i = (z

(k)
i + δ)−1 are weights with z

(k)
i being the arguments of the op-

timal solution at the kth iteration and z(0) = [1, 1, .., 1]T ; and where δ is a (small)

regularization constant that determines what should be considered zero.

The choice of ∗, the norm characterizing the noise, is application dependent.

For instance the ℓ∞-norm performs well in finding anomalies, since in this case the

change detection algorithm looks for local errors, highlighting outliers. On the other

hand, when a bound on the ℓ1 or ℓ2-norm of the noise is used, the change detection

algorithm is more robust to outliers and it favors the continuity of the segments (i.e.,

longer subsequences). In addition, when using these norms, the optimization problem

automatically adjusts the noise distribution among the segments, better handling the

case where the noise level is different in different segments.

1.5.1 Example 1: Video Segmentation.

Segmenting and indexing video sequences have drawn significant attention due to

the increasing amounts of data in digital video databases. Systems that are capable

of segmenting video and extracting key frames that summarize the video content

can substantially simplify browsing these databases over a network and retrieving

important content. An analysis of the performances of early shot change detection

algorithms is given in [23]. The methods analyzed in [23] can be categorized into

two major groups: i) methods based on histogram distances, and ii) methods based

on variations of MPEG coefficients. A comprehensive study is given in [24] where

a formal framework for evaluation is also developed. Other methods include those

where scene segmentation is based on image mosaicking [25, 26] or frames are seg-

mented according to underlying subspace structure [27].
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Fig. 1.8. Video segmentation as a hybrid system identification

Given a video sequence of frames
{

I(t) ∈ R
D

}T

t=1
, the video segmentation

problem can be solved by first projecting the data into a lower dimensional space,

using for instance Principal Component Analysis (PCA), and then applying the spar-

sification algorithm described above to the projected data (to exploit the fact that the

number of pixels D is usually much larger than the dimension of the subspace where

the frames are embedded):

I(t) 7−→ x(t) ∈ R
d.

Assuming that each x(t) within the same segment lies on the same hyperplane

not passing through the origin6 leads to the following hybrid model:

H1 : f
(

pσ(t),x(t)
)

= pT
σ(t)x(t) − 1 = 0 (1.6)

Thus, in this context algorithm (1.5) can be directly used to robustly segment the

video sequence. It is also worth stressing that as a by-product this method also per-

forms key frame extraction by selecting I(t) corresponding to the minimum ‖η(t)‖

6 Note that this always can be assumed without loss of generality due to the presence of noise

in the data.
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value in a segment (e.g., the frame with the smallest fitting error) as a good represen-

tative of the entire segment.

The content of a video sequence usually changes in a variety ways: For instance:

the camera can switch between different scenes (e.g., shots); the activity within the

scene can change over time; objects or people can enter or exit the scene, etc. There

is a hierarchy in the level of segmentation one would require. The noise level ǫ can

be used as a tuning knob in this sense.

Figure 1.8 shows the results of applying this approach to a video sequence,

drama.avi, available from http://www.open-video.org. The original

mpeg files were decompressed, converted to grayscale and title frames were re-

moved. Each sequence shows a different characteristic on the transition from one

shot to the other. The camera is mostly non-stationary, either shaking or moving. For

comparison, results using GPCA, a histogram based method and an MPEG method

for segmenting the sequences with optimal parameters (found by trial and error)

are also shown. Table 1.1 shows the Rand indices [28] corresponding to the clus-

tering results obtained for this sequence and three others from the same database

(roadtrip.avi, mountain.avi, and family.avi) using the different meth-

ods, providing a quantitative criteria for comparison. Since the Rand index does not

handle dual memberships, the frames corresponding to transitions were neglected

while calculating the indices. These results show that indeed the sparcity method

does well, with the worst relative performance being against MPEG and B2B in the

sequence Roadtrip. This is mostly due to the fact that the parameters in both of these

methods were adjusted by a lengthy trial and error process to yield optimal perfor-

mance in this sequence. Indeed, in the case of MPEG based segmentation, the two

parameters governing cut detection were adjusted to give optimal performance in the

Roadtrip sequence, while the five gradual transition parameters were optimized for

the Mountain sequence.

Roadtrip Mountain Drama Family

Sparsification 0.9373 0.9629 0.9802 0.9638

MPEG 1 0.9816 0.9133 0.9480

GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

Table 1.1. Rand indices

1.5.2 Example 2: Segmentation of Dynamic Textures.

Modeling, recognition, synthesis and segmentation of dynamic textures have drawn

a significant attention in recent years [29, 30, 31, 32]). In the case of segmentation

tasks, the most commonly used models are mixture models, which are consistent

with the hybrid model framework.
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In the sparsification framework described earlier in this section, the problem of

temporal segmentation of dynamic textures reduces to the same mathematical prob-

lem as the video segmentation problem, with the difference that now the underlying

hybrid model should take the dynamics into account. First, dimensionality reduction

is performed via PCA (I(t) 7−→ y(t) ∈ R
d) and then the reduced-order data is

assumed to satisfy a simple causal autoregressive model similar to the one in [31].

Specifically, in this case the hybrid model is given by:

H2 : f
(

pσ(t), {y(k)}t
k=t−n

)

= pT
σ(t)







y(t − n)
...

y(t)






− 1 = 0 (1.7)

where n is the regressor order. This model, which can be considered as a step driven

autoregressive model, was found to be effective experimentally7. The power of this

approach is illustrated in Figures 1.9 and 1.10 where two very challenging sequences

were segmented. The first sequence consists of a patch of dynamic texture (smoke)

appended in time to another patch from the same texture but transposed. Thus, the

two subsequences have the same photometric properties but differ in the main motion

direction. The second sequence was generated using another dynamic texture (river)

by sliding a window both in space and time (by going forward in time in the first half

and by going backward in the second), thus reversing the dynamics due to the river

flow.

1.6 Constrained interpolation of high dimensional signals:

Consider first the simpler case of interpolating noiseless data, generated by a single

LTI system, with McMillan degree bounded by some known no. Formally, given a

partial sequence dg = {d1, · · · , dq, dq+r, · · · , dn}, the goal is to estimate the miss-

ing elements dx = {dq+1, . . . , dq+r−1} that optimally fit the given data. Intuitively,

the best fitting missing elements are those that require adding the least number of

modes to the existing model in order to explain the new data. Using the fact that

the order of the underlying model is given by the rank of the corresponding Hankel

matrix (under the assumption that n ≫ no), this problem can be recast into the fol-

lowing rank minimization form: dx o = argmindx
rank(H) where H is the Hankel

matrix associated with the completed sequence d = {di}. In this context, noise can

be readily handled by simply adding a new variable v such that the measured data

y = d + v, and a suitable noise description of the form v ∈ N , a convex, compact

set. Finally, since rank minimization is NP–hard [33], using the convex relaxation

proposed in [34] leads to the following algorithm:

7 The independent term 1 here accounts for an exogenous driving signal. Normalizing the

value of this signal to 1, essentially amounts to absorbing its dynamics into the coefficients

p of the model. This allows for detecting both changes in the coefficients of the model and

in the statistics of the driving signal.
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Fig. 1.9. Comparison of segmentation resulta for the Smoke sequence concatenated with its

transposed dynamics.
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Fig. 1.10. Comparison of segmentation results for the River sequence concatenated with its

reversed dynamics.
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Algorithm 1: HANKEL RANK MINIMIZATION BASED INTERPOLATION/PREDICTION

Input at time k: Nh: Horizon length; Ia ⊆ [k − Nh, k]: set of indices of available

measurements (with card(Ia) ≥ n); Ie ⊆ [k − Nh, k + 1]: set of indices of data to

be estimated; with Ia ∪ Ie = I; available data yℓ, ℓ ∈ Ia; set membership description

of the measurement noise v ∈ N .

Output: Estimates ζ̂ℓ of ζℓ, ∀ℓ ∈ Ie ∪ Ia

1. Let ζ∗ denote the following sequence:

ζ∗i =

{

yi − vi if i ∈ Ia

xi if i ∈ Ie
where v, x are free

variables, and form the matrix Hζ
.
=











ζ∗i1 ζ∗i2 · · · ζ∗in+nu+1

ζ∗i2 ζ∗i3 · · · ζ∗in+nu+2

...
...

. . .
...

ζ∗in+1
ζ∗in+2

· · · ζ∗i2n+nu+1











2. (Approximately) minimize rank[H(x, v)] by solving the following convex problem in

x, v, R, S:

minimize Tr(R) + Tr(S)

subject to

[

R H(x)

H(x)
T

S

]

≥ 0, {vℓ} ∈ N .

3. Estimate/predict the output ζℓ from the noisy measurements yℓ by:

ζ̂i =

{

yi − vi if i ∈ Ia (estimation)
xi if i ∈ Ie (interpolation/prediction)

Fig. 1.11. Data interpolation/association across occlusion. (Note that targets change relative

positions while occluded.)

Examples of application of this idea are shown in Figure 1.11, where it was

used to establish target identity across occlusion, and in Figure 1.12 where nonlin-

ear embeddings were used first to map the data to a low order manifold where the

rank-minimization based interpolation was performed, followed by a remapping of

the data to pixel space. Finally, Fig 1.13 shows how a combination of dynamic inter-

polation and Hankel–rank based segmentation is able to detect occluded events.
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Fig. 1.12. Missing data (second and fifth rows) interpolated by rank minimization on 3D man-

ifolds (third and sixth rows).

It is worth mentioning that the ideas discussed in this section are directly appli-

cable to hybrid models of the form (1.2). In this case, minimizing the rank is roughly

equivalent to interpolating the data so that the resulting underlying model exhibits

the minimum number of jumps.

1.7 Hypothesis testing and data sharing.

A salient feature of the dynamics–based information extraction framework is its abil-

ity to furnish application–relevant worst–case bounds on distances between data and

model predictions and, significantly, between non-overlapping data streams, in terms

of their respective models. These bounds lead to computationally efficient hypothe-

sis testing techniques. Consider a data stream {yk}
N−1
k=0 generated by an underlying
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Fig. 1.13. Occluded event detection. Top: Dynamic data interpolation. Bottom: Hankel rank

plot showing events.

model of the form:

yk+1 = F [yk, ek], yk
.
= [yk, . . . , yk−n], ek

.
= [ek, . . . , ek−n] (1.8)

where e is a stochastic input, and F is the (unknown) evolution operator. Collecting

all available a priori information about F and e (e.g., known dynamic modes and

noise statistics) into sets S and N reduces the problem of finding F to a finite di-

mensional optimization via an extended Caratheodory-Fejer interpolation framework

[35]. This method is interpolatory, hence it generates a model

Fid ∈ T (y)
.
= {F ∈ S : yk+1 = F [y, e], e ∈ N}

the set of all models consistent with both the a priori information and the experimen-

tal data. Since the actual (unknown) model that generated the data must also belong

to T (y), a bound on the worst case prediction error of the identified model Fid is

given by:

‖ŷ − y‖∗ ≤ sup
F1,F2∈T (y)

‖F1[y, e] −F2[y, e]‖∗ = D[T (y)] (1.9)

where ‖.‖∗ is a suitable norm and D(.) denotes the diameter of the set T (y). When

the sets S and N are convex, computing this bound reduces to a convex optimization

problem [17, Lemma 10.3]. Note that these bounds are computed only once and

remain valid as long as the underlying dynamics do not change.

Figure 1.14 compares the actual and upper bound of the error in a human tracking

application. In this experiment the measured position in frame 12 was propagated
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Frame 13 14 15 16 17 18 19 20

Actual error 8.87 6.14 10.04 13.03 10.31 15.72 19.50 26.04

Worst case bound 13.00 15 17 19 21 23 25 27

Fig. 1.14. Top: Prediction (black cross) versus Ground Truth (white cross). Bottom: Id error.

forward using the identified dynamics and the bounds computed by solving a single

Linear Programming problem. If other targets with similar dynamics or photometric

properties are present, trackers can safely discard candidates falling outside these

bounds.
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Fig. 1.15. Left: Distance between data streams as a model (in)validation problem. Right: sam-

ple joint traces for different activities.
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In addition to the low cost data gating illustrated above, the worst case bounds

provided by D[T (y)] can be used to robustly assess the distance between non-

overlapping data streams. The idea is to measure this quantity in terms of the dis-

tance between the corresponding (model) consistency sets. Intuitively, two partial

data streams are considered to be manifestations of the same underlying process if

they can be generated by the same dynamic model. The introduction of the con-

sistency set in this context allows for taking into consideration data–quality issues

(relatively few observations, corrupted by noise) and a priori information. Comput-

ing the exact distance between consistency sets is costly, but it can be relaxed to the

model (in)validation form shown in Figure 1.15 (a). Given data streams y1, y2, the

idea is to identify a nominal model S1 associated with y1 and a deformation operator

∆ so that the pair (S1, ∆) generates y2. As shown in [36], computing the minimum

norm γmin
.
= min ‖∆‖∞ over the set of all operators with this property reduces to

a convex Linear Matrix Inequality optimization problem. Thus, the value γmin pro-

vides a computationally tractable upper bound on the distance between consistency

sets.

This idea is illustrated next, using as an example the problem of gait classifica-

tion. The experimental data listed in Table 1.2 and plotted in Figure 1.15(b), consists

of 30 vector sequences, taken from 5 different persons, named A, B, C, D and E.

Each sequence contains measurements of the angles of the shoulder, elbow, hip and

knee joints of a person walking, running or walking up a staircase. For illustrative

sake, these sequences are numbered from 1 to 30 so that the first 10 correspond to

walking, the second set of 10 to running and the third set of 10 to walking up a

staircase.

Person Walking Running Staircase

A 1, 2 16 to 18 25 to 27
B 3 to 8 11 to 15 21 to 24
C 9, 10 none 28 to 30
D none 19 none

E none 20 none

Table 1.2. Experimental Data

Table 1.3 shows the distance from each data set to the dynamic model represent-

ing each activity. For each sequence, these nominal models were obtained by first

finding a model associated with each of the remaining sequences and then selecting

as representative of each class the model closest to its center (e.g., the one solving

mini maxj ‖Si − Sj‖∞). Note that nearest neighbor classification using this metric

can successfully recognize 25 out of the 27 sequences under consideration; it only

confuses 2 sequences, (y26 and y29, belonging to persons A and C walking up a stair-

case) as walking sequences. The failure is due to the fact that in these instances the

experimental data record is too short to disambiguate between activities.



1 Extracting Sparsely Encoded Dynamic Information 21

Sequence Swalk Srun Sstair

y1 0.1743† 0.6758 0.5973

y2 0.2333† 0.5818 0.2427

y3 0.0305† 0.6843 0.6866

y4 0.0410† 0.6217 0.5305

y5 0.0819† 0.6915 0.6069

y6 0.0001† 0.6879 0.7688

y7 0.0900† 0.6892 0.9188

y8 0.2068† 0.6037 0.7883

y9 0.0001† 0.6926 0.6028

y11 0.9265 0.3415† 1.0000

y12 0.9676 0.2452† 0.9325

y13 1 0.0002† 0.9323

y14 1 0.0002† 0.9903

y15 1 0.0002† 0.8999

y16 1 0.0005† 0.5707

y17 0.9220 0.0532† 0.5437

y18 1 0.0004† 0.6961

y19 1 0.3545† 0.8374

y21 0.9631 0.5002 0.3174†

y22 0.7952 0.4122 0.0577†

y23 0.7215 0.4089 0.0936†

y24 0.8499 0.4456 0.0805†

y25 0.7252 0.5928 0.3962†

y26 0.6828† 0.7127 0.8827

y27 0.5553 0.5818 0.4682†

y28 0.2650 0.6801 0.1699†

y29 0.0391† 0.6102 0.1470

Table 1.3. Right: distance between data and models (in the H∞ norm). In each row † denotes

the model whose output best matches the given sequence

In the case of distributed data sources the high costs (both in bandwidth and

computational cost) entailed in sharing information can be avoided by (i) associating

to each source a set of intrinsic coordinates on a low dimensional manifold, and (ii)

using robust identification techniques [36] to identify dynamic models for the map-

pings between the projections of the different local data sources (e.g., sensors) onto

the respective manifolds (see Figure 1.16). Then, only these low dimensional projec-

tions need to be exchanged between nodes, and each node can reconstruct the data

observed by other nodes, simply by applying the interconnecting models. Figure 1.16

shows an application of these ideas to the problem of tracking and disambiguating

two virtually identical targets.
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Fig. 1.16. Mapping manifolds between 2 sensors used to recreate an occluded person.

1.8 Conclusions

Arguably, one of the hardest challenges entailed in exploiting actionable informa-

tion sparsely encoded in high volume data streams is the development of scalable,

tractable methods capable of dealing with the overwhelming volume of data [37].

Recent work (manifold embedding [2], compressive sensing, [38, 39, 40]) have led

to substantial progress in addressing this issue. However, these methods stop short of

fully exploiting the gap between data dimensionality and the rank of the dynamical

system underlying the data record.

As shown in this chapter, the use dynamic models as an information encoding

paradigm, can lead to both, substantial dimensionality reduction and computation-

ally attractive algorithms for data extraction/interpretation. Dynamic structures can

be tractably discovered from the data in a way which leverages their inherently lower

dimensionality. One key feature is the ability of dynamic representations to produce

quantifiable measures of uncertainty as provable error bounds on the validity of the

data interpretation suggested by the model. Another is their relative computational

simplicity: in many cases postulating the existence of such a model and associated

invariants (e.g., model order) is enough to develop computationally attractive, robust

solutions to problems such as segmentation, interpolation and event detection. We

believe that these techniques hold the key to render practical several applications,

ranging from self-aware environments to automatic discovery of co-regulated genes,

that are currently at the proof–of–concept stage, and where the major roadblock is

precisely the lack of techniques to robustly handle the extremely high volume of

(often relatively low quality) data.
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