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In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019

(COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19

experience severe respiratory distress and are admitted to the intensive care unit for

comprehensive critical care. Patients with COVID-19 often present an enhanced immune

response with a hyperinflammatory state characterized by a “cytokine storm,” which

may reflect changes in the microbiota composition. Moreover, the evolution to acute

respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and

related dysbiosis. During critical illness, the multitude of therapies administered, including

antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and

nutritional support, may enhance the inflammatory response and alter the balance of

patients’ microbiota. This status of dysbiosis may lead to hyper vulnerability in patients

and an inappropriate response to critical circumstances. In this context, the aim of

our narrative review is to provide an overview of possible interaction between patients’

microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into

consideration the characteristic hyperinflammatory state of this condition, respiratory

distress, and provide an overview on possible nutritional strategies for critically ill patients

with COVID-19-ARDS.
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INTRODUCTION

In late December 2019, a novel coronavirus able to induce an
acute respiratory syndrome was identified in Wuhan, China
(1). This virus, since named severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), quickly spread worldwide, and
the syndrome it causes, coronavirus disease 2019 (COVID-19),
was declared a pandemic by the World Health Organization
on March 11, 2020. The standard presentation of COVID-19
includes fever, dry cough, respiratory distress, fatigue, myalgia,
dyspnea, headache, and diarrhea (1, 2). Fecal samples collected
from patients with COVID-19 remained positive for about 11
days, raising concerns about the possible fecal-oral transmission
of the virus and gastrointestinal symptoms (3, 4).

Several patients with COVID-19 are admitted to the intensive
care unit (ICU) due to severe respiratory distress, with a clear
status of typical or atypical acute respiratory distress syndrome
(ARDS), requiring critical care support (2, 5). The rate of
patients admitted to ICU depends on the diversity of cares within
countries and the pandemic global situation. Indeed, compared
with the first wave of the pandemic, during the second wave 50%
less of all hospitalized patients with COVID-19 were admitted
to the ICU (6). Traditional critical care includes respiratory and
cardiovascular support, management of renal, hepatic, infectious,
and neurologic status, and nutritional management (2). Patients
with severe COVID-19 often experience an enhanced immune
response with a hyperinflammatory state characterized by
a “cytokine storm” (7), with fever and respiratory distress
considered to represent increased dysbiosis. During critical
illness, the multitude of therapies administered, including
antibiotics, sedatives, analgesics, invasive mechanical ventilation,
and nutritional support, may enhance the inflammatory response
and impact on the patients’ microbiota, leading to dysbiosis. In
turn, this status may lead to hyper vulnerability in patients and
an inappropriate response to critical circumstances (8).

In this context, the aim of our narrative review is to provide
an overview of possible interaction between patients’ microbiota
dysbiosis and the clinical status of severe COVID-19 with ARDS,
taking into consideration the characteristic hyperinflammatory
state of this condition, respiratory distress, and provide an
overview of possible nutritional strategies for critically ill patients
with COVID-19-ARDS.

PATHOPHYSIOLOGY OF THE
MICROBIOTA GUT-LUNG AXES

The gut-lung axis is bidirectional, which means that metabolites
derived from the gut or lung bacteria can affect each other.
Gut microbiota is often altered as early as the first days of ICU
admission (9), altering both susceptibility to and severity of
infections (10). Mechanisms implied inmicrobiota-lung-gut-axis
alteration in COVID-19 include: (1.1) Direct lung damage (1.2)
ACE2 expression; (1.3) gut microbiota as lungs’ defense against
SARS-CoV-2; and (1.4) immune response.

Direct Lung Damage in COVID-19
ARDS is a common complication of COVID-19. After binding
to angiotensin-converting enzyme-2 receptors (ACE2) and
transmembrane protease serine 2 (TMPRSS2), SARS-CoV-2
enters the host cells and causes pneumonia with possible
ARDS in the most severe cases. The histologic presentation of
severe COVID-19 pneumonia includes a progressive thickening
of the alveolar wall with infiltrates of mononuclear cells
and macrophages, associated with endotheliitis (11). Edema,
fibroblasts, and myofibroblasts thicken the alveolar septa, with
interstitial inflammatory cell infiltrates. In the late and organizing
stage, the lungs become consolidated, and fibroblasts and
myofibroblasts proliferate and migrate, forming granulation
tissue and fibrosis by accretion, with possible thickening of
interlobular septum and bronchial walls, thus leading to diffuse
alveolar damage (DAD) (11). In this state, patients with severe
COVID-19 may need to be admitted to the ICU for endotracheal
intubation andmechanical ventilation. The evolution to COVID-
19-ARDS is characterized by pulmonary edema, hypoxemia
and inflammation, which are associated with changes in the
lung microbiome (12). The microbiota is defined as the overall
community of microbes included in a population (13), and the
genetic content of the microbiota is known as the microbiome.
In healthy conditions, the composition of the microbiota is
generally characterized by high abundance and diversity of
microorganisms with preponderance of potentially beneficial
species, a condition known as eubiosis (13).

The microbiota is primarily involved in the immune response
and host defense against pathogens, as well as in gut maturation,
nutrient uptake and metabolism, mucosal barrier function,
intestinal motility, and modulation of the enteric nervous system
(14). Moreover, mechanical ventilation, decreased bowel transit
time, reduced oxygenation, multiple antibiotic usage, sedatives,
analgesics, muscle relaxants, gastric protectors, and abnormal
nutritional intake may affect the composition of microbiota,
which may increase the risk of dysbiosis and inflammation (15–
17). Mice treated with broad spectrum or targeted antibiotics
impaired their response to systemic and respiratory infections
(18). Most prominent among these are gram-negative bacteria
(e.g., Proteobacteria), which can lead to severe gut-lung dysbiosis
(9, 19).

ACE2 Expression
Once affected the lungs’ tissue, COVID-19 may extend to other
organs by binding to ACE2 and TMPRSS2 (20, 21), which are
broadly expressed in various tissues (22, 23). ACE2 are involved
in the regulation of inflammation and microbial community,
while regulating the host intestinal metabolism of tryptophan,
which plays a key role in the composition of gut microbiota
(24–26). Thus, ACE2 expression may alter both the lung and
gut microbiomes in certain disease conditions (24–26). In fact, a
down-regulation of ACE2 reduces the absorption of tryptophan
in the gut, while reducing the secretion of antimicrobial peptides
and triggering dysbiosis (27). Bacterioides dorei and other
bacterial species down-regulate the expression of colonic ACE2,
thus supporting the appearance of intestinal symptoms in some
COVID-19 patients (28). SARS-CoV-2 infection of the intestinal
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tract impairs the absorption of nutrients altering the intestinal
function and activation of the enteric nervous system, causing
gastrointestinal manifestations (29). Recent findings confirmed
the role of gut dysbiosis in the induction of ARDS and its
importance in possibly determining tissue damage in SARS-CoV-
2 infection (16, 30).

Gut Microbiota as Lungs’ Defense Against
SARS-CoV-2
The gut microbiota regulates the function of the immune
system and cellular homeostasis of both gut and lung tissues
due to antimicrobial peptides and metabolites derived from
intestinal commensals (18, 31). The enteric nervous system
is composed of the myenteric plexuses, which control fluid
movement and intestinal motility; and is influenced by the
activation pattern recognition receptors (PRRs), especially toll-
like receptors (TLRs) which recognize pathogens (32).

SARS-CoV-2 infection may promote intestinal inflammation,
epithelial barrier disruption, and decreased production of
antimicrobial peptides (AMPs), until developing secondary
enteric infections. An increased inflammatory status of the gut
induced by SARS-CoV-2 may alter gut permeability causing
epithelial leakage, which may enhance bacterial translocation
and trigger systemic inflammation and inflammatory response
to other organs (22). Additionally, over-expression of fecal
calprotectin is implied in gut inflammation in COVID-19 (33).
The passage of gut bacteria from the intestinal to the lung tissues
is regulated by the ability of gut tight junctions in maintaining
epithelial permeability, and intestinal bacteria in preserving the
intestinal barrier. Among the proposedmechanisms of alteration,
products of commensal bacteria fermentation like butyrate
and other short-chain-fatty-acids (SCFAs) are responsible of
intestinal barrier function and regulation of tight junctions’
permeability (34). Additionally, the alteration in the secretion of
mucin by goblet cells can lead to impairedmucus layer, increasing
susceptibility to increased gut permeability (35). Dysbiosis results
in diminished production of microbial-associated molecular
patterns including TLRs and nucleotide oligomerization domain
(NOD)-like agonists and microbial metabolites such as SCFAs,
thus reducing antibacterial pulmonary immunity (18). Hence,
by altering the gut immune homeostasis, respiratory viral
superinfection may occur. Gut bacteria were found in lung
microbiome, suggesting possible translocation from the intestinal
tract to the lungs via the hematic circulation (36). The abundance
of gut-associated pathogens in the lungs is increased in non-
COVID-19 ARDS patients, but little is known regarding ARDS
associated with COVID-19. Patients with ARDS revealed a higher
prevalence of Lechnospiraceae as a strong predictor of reduced
survival (37). Some authors investigated the lung bacterial
burden and diversity of patients with non-COVID-19 ARDS,
concluding that the lung microbiota is reduced in term of
diversity and is increased in terms of bacterial burden (38).

Immune Response
The multifunctional SARS-CoV-2 Envelope (E) protein, which
interact with host tight junction protein ZO1, showed great
contribution to virus assembly, while contributing to epithelial

barrier damage, pathogenesis (binding to ACE2 receptor), and
disease severity (39). Human intestinal epithelial cells (in the
esophageal upper epithelia, gland cells, enterocytes of the
ileum and colon) are potential target of viral replication, also
promoting spreading of SARS-CoV-2 and immune response
mediated by type III interferon (IFN) (40, 41). At lungs level,
studies have highlighted the impact of gut microbiota on the
lungs’ production of type I IFN, which is implied in the
control of viral infections (42, 43). Microbial metabolites such
as desaminotyrosine and SCFAs are critical for microbiota
homeostasis. For example, significant changes in the composition
of gut microbiota have been identified in an experimental model
of pulmonary influenza (44). Desaminotyrosine is produced
by an anaerobe clostridium called Clostridium orbiscindens to
protect the lungs and activate the innate immune response
passing through the blood system against influenza infection.
Desaminotyrosine implements type I IFN signaling of lungs’
phagocytes by promoting genes transcription (45). Similarly,
SCFAs result important in priming the pulmonary immune
innate system (18, 31). The subsequent inflammatory response
can promote and encourage local inflammation followed by
endothelial and epithelial injury (Figure 1).

The inflammatory response of SARS-CoV-2 infection is
very complex. In fact, SARS-CoV-2 may interfere with the
innate antiviral immune response that is made up two different
antiviral pathways.

Phagocytes are recruited to fight against local infections and
to repair and regenerate the epithelium. As aforementioned, the
manipulation of cytokines and IFNs may play an important
role in the prevention of infections and mucosal protection.
Particularly, IL-22 and IFN-λ act as mucosal defenders and
upregulate antimicrobial peptides (46). The IFN regulatory
factors increase transcription of type I and III IFNs, which
stimulate natural killer cells and cluster differentiation (CD)8+
T lymphocytes, whereas the nuclear factor-kB (NF-kB) promotes
the activation of monocytes and their differentiation into
macrophages (type M1). Cytokines are therefore released, and
T-cells activated (inflammatory T-cells Th1 and Th17). Notably,
a “cytokine storm” appears to occur in cases of severe COVID-
19, as demonstrated by increased levels of interleukin (IL)-2,
IL-17, granulocyte-colony stimulation factor, IFN-γ, inducible
protein 10, monocyte chemoattractant protein-1, macrophage
inflammatory protein 1-α, and tumor necrosis factor-α (7).
Previous studies found that IL-22 is substantially expressed
during viral infections, and animals with deficiency of IL-22
were unable to repair and regenerate epithelial tissues (47).
Moreover, IL-22 usually enhance the recruitment of other
inflammatory cells, thus amplifying the systemic inflammatory
response (46, 48), which along with the local damage may
predispose COVID-19 patients to secondary bacterial infections,
capillary leakage syndrome, and systemic bacterial translocation
(49), thus enhancing the risk of multiple organ damage (20–
22). Nevertheless, in the COVID-19 era the role of cytokines
and interferons on epithelial integrity and systemic reaction
is still not clear, and IL-22 and IFN-λ might be considered
as further promising targets to maintain the COVID-19 lungs’
integrity, but more evidences are urgently needed (50). This
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FIGURE 1 | Mechanisms of microbiota gut-lung axis dysbiosis. This figure represents the possible evolution of dysbiosis in the lungs and intestine. A local

inflammatory process is activated, thus converting in a systemic inflammatory process with possible infection and multiorgan disease syndrome (MODS).

exaggerates cytokines and interleukins release may increase
the expression of markers like programmed death-1, T-cell
immunoglobulin, mucin domain-containing protein-3 while
favoring lymphocyte apoptosis and necrosis. Lymphopenia is
frequent and is associated with disease severity and inflammation
(51). Lymphopenia in COVID-19 may be induced by several
mechanisms, including direct infection of lymphocytes, viral
aggression of lymphatic organs, or continuous inflammation
with cytokines release that could induce lymphocyte deficiency
(52–54). Additionally, lymphopenia may be associated with
glucocorticoids treatment (51). Since gut microbiota is one of
the key components of the host immune system, and primary
responses to infections and other immune insults, lymphopenia
due to SARS-CoV-2 infection may interfere and predispose to
changes in the normal flora by opportunistic germs (52–55).

COMPOSITION OF THE GUT-LUNG
MICROBIOTA IN CASES OF SEVERE
COVID-19 PNEUMONIA

The gut represents the largest microbial environment in
humans. The healthy (eubiotic) intestinal microbiota represents a
highly heterogeneous ecosystem including eukaryotic organisms
(including Yeast), Virus, Archaea and Bacteria. The latters are the
most represented members and include nine different phyla, of
which Bacteroidetes and Firmicutes represent the most common

populations (13, 32). Differently from the gut, the microbiota is
scarcely represented in the lung, being mainly associated with
mucosal surfaces. The gut microbiota of patients with COVID-19
demonstrated a high prevalence of opportunistic pathogens over
commensals that persisted after negative swabs and resolution
of respiratory symptoms. The abundance of Coprobacillus,
Clostridium ramosum, andClostridium hathewayi correlated with
the severity of COVID-19 (33). Another study confirmed a high
prevalence of opportunistic pathogens in patients with COVID-
19, including Streptococcus, Rothia, Veillonella, and Actinomyces
with a reduced relative abundance of symbionts (56).

The high prevalence of gastrointestinal disorders associated
with acute infection by SARS-CoV-2 (anorexia, dysgeusia,
ageusia, diarrhea, nausea, and hematemesis) (57) might be
associated with the damage to the intestinal ecosystem that
may be modified (58). In fact, SARS-CoV-2 infection can
impact on some tight junction proteins (like PALS1), that
compose the intestinal and lung epithelium. However, definitive
confirmation on the impact of SARS-CoV-2 on tight junctions
and intestinal permeability while potentially damaging to
enterocytes are still limited and warrants further molecular
researches (59). Gastrointestinal symptoms have been also
associated with reduced number of circulating lymphocytes, and
the circulating lymphocytes were inversely associated with virus
discharge in stool (58). Moreover, a recent meta-analysis on
gastrointestinal symptoms of SARS-CoV-2 infection concluded
that gastrointestinal symptoms on admission were associated
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more with complications, including ARDS, acute cardiac injury,
and acute kidney injury (57).

The main difference between gut and lung
microenvironments is the higher turnover of lung bacteria
with regard to the gut counterpart. This characteristic of the
lung microbiota is due to the high rate of immigrated and
eliminated pathogens (aspiration and mucosal dispersion vs.
cough and muco-ciliary clearance). The gut microbiota, which
is usually enriched in nutrients, makes tough competition with
dense resident communities. In contrast, the lung microbiota is
enriched in pharyngeal microbes (60, 61), as demonstrated in
numerous studies (62, 63).

The oral cavity is the second largest microbiota in humans,
and Neisseria, Corynebacterium, Leptotrichia, Streptococcus,
Veillonella, Prevotella, Fusobacterium, and Capnocytophaga
are among the most common bacterial taxa (64). Similarly,
the healthy lung microbiota is predominantly composed
of Streptococcus, Fusobacterium, Pseudomonas, Veillonella,
Prevotella, and Capnocytophaga (65). In a recent study
of eight patients with SARS-CoV-2 infection, samples of
bronchoalveolar lavage fluid (BALF) were sequenced for
meta-transcriptome. The host variants varied from 0 to 51
due to a high rate of evolution of the virus. Differences in
microbiota composition between healthy controls and those
with SARS-CoV-2 were observed, although the variation was
not specific (65). Opportunistic bacteria have been found in
BALF of patients with COVID-19, particularly Veillonella and
Capnocytophaga, which are commensal of the oral cavity (66).
Another study on BALF of patients with COVID-19 revealed
predominance of Leptotrichia buccalis, Veillonella parvula,
Capnocytophaga gingivalis, and Prevotella, whereas Acinetobacter
baumannii, Klebsiella pneumoniae, Aspergillus flavus, Candida
glabrata, and Candida albicans were detected in nasal swabs
(67, 68). Several studies demonstrated a higher incidence of
ventilator-associated pneumonia (VAP) in patients with ARDS
due to SARS-CoV-2 infection. In a multicentric study in 586
patients admitted to ICU, VAP incidence resulted as high
as 29%, being Pseudomonas aeruginosa and Staphylococcus
aureus the most involved microorganisms. Septic shock at VAP
onset and ARDS were associated with fatality (69). Another
study which compared 81 COVID-19 and 144 non-COVID-19
patients, concluded that those with SARS-CoV-2 infection were
significantly more likely to develop VAP (Cox proportional
hazard ratio 2.01, 95%CI 1.14–3.54, p = 0.0015). The organisms
responsible of VAP and microbiome were similar between
groups, but COVID-19 patients were more susceptible to
Aspergillus and Herpes infections than general ICU patients (70).
Again, data extracted by Rouzé et al. (71) from an European
multicentric cohort of 1,576 patients concluded that lower
respiratory tract infections associated to ventilation were
significantly higher in patients with COVID-19 as compared
to influenza patients, and those without viral infections. The
most common causative pathogens included Pseudomonas
aeruginosa, Enterobacter spp, and Klebsiella spp. Further studies
are warranted to confirm the real incidence of lung dysbiosis
and VAP in cases of severe COVID-19 pneumonia. Figure 2
depicts differences in lung and gut microbiota composition in

patients with severe COVID-19 pneumonia and patients with
typical ARDS.

RISK FACTORS AND PREVENTION OF
DYSBIOSIS IN SEVERE COVID-19-ARDS

Recognizing the causes of dysbiosis in critical illness is
challenging (16). Literature confirm that hospital admission
may only partially alter patients’ ecosystem, while increasing
severity is commonly seen when implementing the level of
cares. Indeed, several and impacting iatrogenic forces are applied
during ICU care, thus affecting the physiology of the host,
which in turn alters the community structures of resident
microbes. In healthy or minimally ill individuals the elimination
of pathogens is normally rapid and mediated by the passage
through the intestinal tract via defecation. During critically
illness, glucose and electrolyte disturbances, endogenous and
exogenous opioids, sedatives and catecholamines, myorelaxants,
poor oral hygiene, endotracheal or nasotracheal intubation,
cuff pressure balance, body position, patients’ transport and
mobilization represent only few of the possible risk factors
that may influence dysbiosis (72, 73). The consequent systemic
response includes a lowering of the stomach and intestinal
transit-time, drops in bile salt production, impairment of
immunoglobulin type A production, and loss of the mucosal
barrier. Moreover, the intestinal wall is often hypoperfused,
leading to mucosal inflammation, altered oxygen gradient and
increased nitrate concentration, while reducing the commensal
bacteria in favor of the pathogens, and lowering the transit-
time and pathogens’ elimination. Additionally, when mechanical
ventilation is applied, the ecological system of the lungs is highly
stressed with possible impairedmuco-ciliary clearance, depressed
cough reflex and pathogens’ overgrowth (16). If to these
important grounds typical COVID-19 patients’ comorbidities are
added, the risk of dysbiosis is dramatically increased.

Comorbidities of Patients With Severe
COVID-19-ARDS and Their Role in
Dysbiosis
The age of patients with severe COVID-19 is commonly high,
and populations of gut bacteria normally change with age. In
the gut of the elderly, less Bifidobacteria have been identified,
maybe because of reduced gut epithelial barrier function, reduced
immune function, and increased inflammation (74). In addition,
obesity seems to be a typical characteristic of COVID-19, and it
is associated with higher levels of pro-inflammatory cytokines
and a poorer gut barrier. These mechanisms may favor the
passage of gram-negative bacteria with possible endotoxemia
(75). Intestinal bacteria along with their products (like SCFAs)
play a key role in the protection of the mucosal intestinal
barrier, and in the maintenance of adequate permeability
through tight junctions, that may be down-regulated by
pro-inflammatory cytokines and chemokines (76). Low-grade
systemic inflammation is also present in those with chronic
cardiovascular disease, type II diabetes mellitus, arthritis, and
cancer. This may increase the risk of infection and altered
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FIGURE 2 | Differences in lung and gut microbiota composition in patients with severe COVID-19 pneumonia and typical ARDS.

microbiota (77). A great proportion of COVID-19 patients has
hypertension (78). SCFAs has a crucial role in regulating blood
pressure, while trimethyl amine-n-oxide (TMAO) is involved
in atherosclerosis, hypertension, and coronary artery diseases’
pathogenesis (79).

COVID-19 patients who present type II diabetes mellitus are
around 30%. Lactobacilli are higher in diabetic patients, while the
abundance of Firmicutes is correlated with inflammation (80).
This basal diversity should be kept in mind when approaching
dysbiosis in a COVID-19 patient with both SARS-CoV-2
infection and type II diabetes mellitus. Finally, according to
the CDC’s weekly report, around 35% of critically ill COVID-
19 patients have an underlying chronic lung disease, such as
asthma (81). As previously explained, the direct lung damage
may be responsible for microbiota dysbiosis and over-infections.
The airway mucosal barrier may lose the critical defense against
SARS-CoV-2 and other infections (46).

Indirect Risk Factors of Dysbiosis
Associated With Mechanical Ventilation in
COVID-19
Oral Hygiene and Aseptic Mouthwashes
Poor oral hygiene has been associated with increased incidence of
pneumonia and dysbiosis in critically ills (82), and no scientific
evidence exists yet to recommend mouthwashes to control the
SARS-CoV-2 load in the oral cavity. Some antiseptic mouth
rinses have antiviral ingredients able to decrease the viral load,

but conclusive evidences are still limited. Besides, changes in
the normal oropharyngeal flora as a consequence of poor oral
hygiene could be related, not only to a greater ease of infection
by SARS-CoV-2 with consequent higher viral load and greater
severity (83), but also to secondary superinfections (84).

Common periodontal pathogens have been identified in
the lungs of ICU patients, including Treponema denticola,
P. gingivalis, Fusobacterium nucleatum, Actinobacillus
actinomycetemcomitans, and Veillonella parvula (85, 86). In
a cohort of 122,251 patients, the risk of pneumonia increased
in those who did not engage in good oral care, including
the presence of dental caries and missing teeth (87). The
use of mouthwashes to prevent pneumonia is still debated.
A randomized controlled trial (RCT) on 80 ICU patients
who were randomized to receive Nanosil mouthwashes
and chlorhexidine 0.12% for 5 days demonstrated that the
pneumonia rate was reduced in the Nanosil group (2.7 vs.
23.7%, p = 0.008), but mortality was similar in both groups
(88). Another trial investigating the role of peroxide hydrogen
over normal saline in the prevention of pneumonia concluded
that patients treated with peroxide hydrogen had a lower risk
of contracting VAP (relative risk [RR], 2.6; 95% confidence
interval [CI], 1.04–6.49, p= 0.0279) (89). Although no data on
patients infected with SARS-CoV-2 are available, mouthwashes
containing cetylpyridinium chloride reduced in vitro SARS-
CoV-2 infectivity. The reduction of SARS-CoV-2 infectivity may
reduce lung dysbiosis, but the novelty of this study is limited
by the fact that, being in vitro, it cannot reproduce the real
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condition of an in-vivo oral flora (90). Moreover, the efficacy of
mouthwashes with hydrogen peroxide has not been in doubt,
especially their capacity to inactivate corona and influenza
viruses (91, 92). In conclusion, irrespective of the mouthwash
agent, maintaining good oral hygiene is an effective strategy to
reduce the rate of over-infections in all ICU patients, especially
in those with COVID-19 and ARDS which may present higher
risk of superinfections (70, 71).

Endotracheal Intubation, Cuff Pressure Control, and

Chest Physiotherapy
Unfortunately, no specific study in severe COVID-19 pneumonia
is actually available and current suggestions come from ICU
patients. The choice of nasal intubation over the endotracheal
route should be weighed against several factors, including a
higher level of comfort, less use of sedatives and analgesics, but
also the higher incidence of sinusitis and possible translocation
of nasal bacteria to the lungs (93). A study comparing
patients intubated endotracheally with polyurethane tubes
with continuous assessment of cuff pressure and subglottic
drainage with patients intubated with PVC and intermittent
cuff pressure measurements and intermittent subglottic drainage,
demonstrated that prevention of VAP could be performed by
using polyurethane tubes, performing continuous subglottic
drainage, and continuous cuff pressure measurement (94). The
use of chest physiotherapymaneuvers such as subglottic secretion
drainage has been identified as a valuable adjuvant for the
prevention of VAP in ICU patients. This technique is currently
in use in several ICUs during the COVID-19 pandemic, although
with limited resources and higher risks. Amodified technique has
recently been proposed by our group to limit airborne exposure
(95). A recent meta-analysis investigated the real benefits of
this maneuver, concluding that subglottic secretion drainage is
effective but not significant in reducing VAP (RR, 0.56; 95%CI,
0.48–0.63, p = 0.841) (96). A recent RCT compared chest
physiotherapy with controls for the prevention of VAP, and found
that VAP occurred in 39% of the intervention group vs. 8% of
the control group (odds ratio, 14; 95% CI, 0.03–0.56; p = 0.002);
no differences were found in terms of mortality and length of
ICU stay (97). However, a meta-analysis concluded that chest
physiotherapy does not reduce the incidence of VAP, although
these results should be viewed cautiously due to the heterogeneity
of the studies and poor evidence (98).

Body Position
As understood by decades of research, body position plays
a pivotal role in the development of pneumonia and lungs’
dysbiosis (99). The lateral position is known to be effective
for improving oxygenation in monolateral pneumonia (100),
but severe COVID-19 pneumonia seems to interest both lungs
(101). Besides, lateral position in COVID-19 is applied (102,
103). Despite the confirmed application of lateral position in
COVID-19, its effects on possible superinfections and subsequent
dysbiosis has not been investigated yet. The majority of literature
concerning the effects of body position on superinfections and
possible dysbiosis come from non-COVID-19 setting. A meta-
analysis from 10 RCTs compared a semi-recumbent position

(30◦-60◦) and a supine position (0◦-10). The semi-recumbent
position, with the higher elevation of the head of the bed,
reduced the risk of VAP (14 vs. 40%; RR, 0.36; 95% CI, 0.25–0.5)
(104). The lateral Trendelenburg position and a semi-recumbent
position were compared in a recent RCT, which concluded
that the semi-recumbent position was associated with a higher
incidence of VAP than the lateral Trendelenburg (4 vs. 0.5%;
RR, 0.13; 95% CI, 0.02–1.03; p = 0.04), with no differences
in mortality and other secondary outcomes (105). Finally, the
prone position, which assumes a pivotal role for severe COVID-
19 with ARDS (101), did not seem to increase the incidence
of VAP (incidence rate per 100 days of mechanical ventilation
of 1.18 vs. 1.54 for supine and prone positions, respectively, p
= 0.1) (106), as confirmed by a previous similar RCT (107).
Similar results were obtained from a multicentric study on 586
COVID-19 patients (69). In conclusion, as stressed above, few
studies investigating the role of body position on lung dysbiosis
in severe COVID-19 pneumonia are currently available. We
suggest that body position may play a role in the development
of dysbiosis.

Medications as Possible Risk Factors of
Dysbiosis
Antibiotics
Numerous medications are administered in the ICU. Antibiotic
consumption in ICUs is almost doubled that in non-ICU wards.
During the COVID-19 pandemic, severely ill ICU patients
received more antibiotics (66, 108). Antibiotic use is associated
with important changes in gut microbial communities with a
subsequent loss of the colonization resistance, a hallmark feature
of the healthy gut microbiota, thus increasing the susceptibility
to gastrointestinal infections by nosocomial pathogen (109,
110). Antibiotic exposure seems to increase the phyla of
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria
(111). The COVID-19 pandemic is associated with a higher and
often unnecessary use of antibiotics in the early phases of the
disease, in older people, and in mechanically ventilated patients
(112, 113). Azithromycin is one of the largely used antibiotics in
COVID-19 due to its antiviral and immunomodulatory effects
in vitro, which include the interference with receptor mediated
binding, viral lysosomal escape, intracellular pathways and
enhancement of type I and III interferon expression (20). Besides,
recent trials on the use of azithromycin combined or not with
hydroxychloroquine in critically ill COVID-19 patients tended
toward non-routine use (114). Similar results were obtained from
a large observational study (115, 116). Another RCT on the
use of azithromycin in hospitalized patients with COVID-19 is
currently ongoing (117).

Sedatives, Analgesics, and Myorelaxants
Sedation and analgesia in mechanically ventilated COVID-19
patients are important pieces of this complex multisystemic
puzzle. Patients with severe COVID-19 pneumonia and
multiorgan disease are often kept sedated and curarized for
longer periods than non-COVID-19 patients (median 10 days
vs. 1 day) (118). Moreover, stopping sedatives, analgesics,
and myorelaxants a greater proportion of COVID-19 patients
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experienced delirium (119). Growing evidence confirm the
role of sedatives, analgesics opioids and myorelaxants on gut
microbiota composition. Opioids receptors are located both in
the digestive tract and central nervous system, and its effects
on dysbiosis have been largely reported by literature. Moreover,
some bacterial components can modify the expression of opioids
receptors, changing the tolerance to pain (120). Larger studies
are needed to confirm the effect of these medications on gut
microbiota composition and outcome.

Inotropes and Vasopressors
Critically ill mechanically ventilated COVID-19 with ARDS
frequently report the need of vasopressors and inotropes for
treating septic shock or other multisystemic diseases (69, 121).
Insights from animal models concluded that catecholamines
may increase the growth of bacteria, virulence-associated factors,
adhesions, and biofilm formation, while influencing the outcome
of infections in many hosts (122). Inotropes have been associated
with the growth of pathogens, and vasopressors inhibit growth
(123, 124). To date, no evidence concerning the effects of
inotropes and vasopressors on gut dysbiosis have been described.

Proton Pump Inhibitors (PPI) and H-2 Receptor

Antagonists (H2RA)
PPI and H2RA are largely used in ICU for stress ulcer
prophylaxis, and likely increases mortality but with low certainly
evidence (125–127). The effect of PPI on gut microbiome has
been largely investigated in animal studies. PPI showed increased
intestinal permeability when compared to non-treated animals,
thus changing themicrobial composition, impairing colonization
resistance, and inducing dysbiosis (128) and pneumonia in
humans (129). This was also confirmed by other evidences in
humans (130), but few specific investigations on COVID-19 are
available yet. In a small monocentric study in 152 COVID-19
patients the impact of PPI was tested (131). Sixty-two patients
were treated with PPI, of whom 48.4% without clear reason.
Forty-eight percentage of patients treated with PPI, and only
20% of those non-treated presented with secondary infection.
Forty-eight percentage of PPI treated patients and 12% of
non-treated developed ARDS. The development of secondary
infections remained significant after adjusting for other potential
confounding (131). Although the sample size of this study is
small, we believe that an association between the use of PPI and
H2RA and superinfections in COVID-19 who are -per se- at
higher risk of superinfections should be considered. Moreover,
another study concluded that the pre-hospital use of PPI was
associated with worse clinical outcome in hospitalized COVID-
19 (132, 133).

Steroids
The Surviving Sepsis Campaign Coronavirus Disease 2019
recently published the first update of their known guidelines
(134). High-quality evidence showing reduction in death and
minimal adverse effects with short course of corticosteroids.
Thus, the guidelines strongly recommended the use of a short
course of systemic corticosteroids over not using corticosteroids.
There are no trials comparing different corticosteroids with each

other, but dexamethasone was associated with good treatment
effect compared to no corticosteroids (135, 136). On one
hand, corticosteroids reduce death and severity of COVID-19;
on the other hand, corticosteroids remain mediators of the
stress response that may enhance the hypothalamus-pituitary-
adrenal axis which is implied in the control of immune
response to stressor agents and intestinal microenvironment.
Glucocorticoids may be therefore be involved in the alteration
of gastrointestinal microbiota by enhancing the translocation
of aerobe and gram negative enteric bacteria to extraintestinal
tissues (137). A recent RCT reported no substantial differences
in infections among critically ill COVID-19 patients treated
with dexamethasone (21.9%) and those not treated (29.1%).
However, few conclusive studies are warranted to confirm the real
effects of corticosteroids on superinfections in severe COVID-19
pneumonia (138).

TREATMENT PROPOSALS

Prebiotics and Probiotics
Probiotics are living micro-organisms which confer benefits
to the host when administrated in adequate dose, and most
used organisms include bifidobacteria, lactic acid bacteria,
enterococci, and yeast (139). Probiotics usually have distinctive
characteristics such as the ability of surviving under intestinal
conditions, stimulating the immune system and acting against
pathogens, also preventing health-care associated pneumonia
(140). Furthermore, probiotics exert interesting properties
by modulating cytokines production, interacting with TLRs,
antagonizing pathogens in cell adhesion and mucin homeostasis,
and by stimulating SCFAs production (141).

Probiotics act by enhancing epithelial barrier function and
are anti-inflammatory, improving gut diversity and competing
against opportunistic pathobionts for the same ecological niches
in the gut (including competition for nutrients or cellular
receptors on the mucosal surface). Specifically, they act by
blocking or activating multiple signaling pathways (such as
NF-kB and STAT1) and producing protective metabolites
such as SCFAs. Gastrointestinal symptoms (including diarrhea)
appear to be common in COVID-19, possibly reflecting
alterations in the composition of gut microbiota (dysbiosis),
inflammation and disruption of the epithelial barrier. In this
context, administration of probiotics and/or prebiotics might
be considered. As an example, Lactobacilli are well-known
modulators of intestinal inflammation and immune response,
so that their administration is recommended to counteract high
level of inflammation, in prevention of diarrhea, and during
infections sustained by enteric pathogens (139). Additionally,
Bifidobacteria, are able to produce vitamins, enzymes, acetic and
lactic acids, lowering the pH in the colon microenvironment
and inhibiting (potential) pathogens (142). Evidence of beneficial
effects, such as decreased infections frequency, shortening of
the duration of episodes by 1–1.5 days, reduced shedding of
rotaviruses or an increase in the production of rotavirus-specific
antibodies, have been demonstrated for Lactobacillus rhamnosus
GG (LGG), L. casei Shirota, L. reuteri, Bifidobacterium animalis
ssp. lactis Bb-12, and a number of other probiotic strains (143).
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Probiotics, prebiotics (formulation of nutrients exploited by
probiotic bacteria), and symbiotics (a synergistic combinations of
pro- and prebiotics) are currently used to improve gut dysbiosis,
by favoring the proliferation of healthy protective bacteria in the
intestine, ameliorating or preventing inflammation (balancing
proinflammatory and immunoregulatory cytokines) and other
intestinal diseases (144). The use of probiotics has also been
associated with a reduction in the incidence and severity of
VAP. Probiotics reduced the duration of mechanical ventilation
in critically ill patients (145, 146). Specifically, use of the
probiotic Streptococcus salivarius K12 has been proposed for
patients with COVID-19 (146). Also, the presence of ACE2 was
identified in certain probiotics strains. Oral delivery of human
ACE2 through the probiotic species Lactobacillus paracasei
increased ACE activity in the serum and tissues of mice. Similar
results can be obtained with the bacteria-derived B38-CAP
enzyme (147, 148). Recent research highlighted the role of
mucin biopolymers as pivotal in regulating mucin production,
which is implied in viral replication in the gut. Lactobacilli are
known implementors of the mucus layer and glycocalyx, and
inhibitors of pathogenic adherence, thus preventing intestinal
inflammation (149). A recent network meta-analysis provided
a rationale for the implementation of probiotics in preventing
and treating COVID-19. They identified 90 genes potentially
implicated in COVID-19 probiotics treatment. Moreover, the
clearly shown that the application of probiotics could play
a pivotal role on ACE2-mediated virus entry, activation of
the systemic immune response, immunomodulatory pathways,
lung tissue damage, cardiovascular complications, and altered
metabolic pathways in the disease outcome (150). There are
currentlymultiple lines of researchwith probiotics and numerous
potential therapeutic indications, however studies with strong
scientific evidence of therapeutic benefits are required.

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT) is gaining ground as
a treatment option for certain changes in the gut microbiota.
The mechanism of action of FMT requires a fecal suspension
from a healthy donor deposited into the gastrointestinal tract
of a patient by using an endoscope, nasal tube, or capsule.
However, FMT is still considered “off label” except for recurrent
or refractory Clostridium difficile infections, where reconstitution
of the intestinal microbiota by FMT has proved extremely
successful and has definitively confirmed the role of dysbiosis in
the pathogenesis such infection. Only one study reported FMT
in COVID-19 population (151). Because COVID-19 frequently
presents with gastrointestinal symptoms (such as diarrhea), fecal
transplantation could potentially contribute to spreading the
virus. Therefore, the authors suggested careful identification of
donors, considering typical symptoms and history of possible
contacts, as well as donor testing for SARS-CoV-2 by real-
time PCR (152). Eleven COVID-19 patients who received
fecal microbiota transplantation resulted in altered peripheral
lymphocyte subset, restored gut microbiota and alleviated
gastrointestinal disorders (151). FMT efficacy may be affected
by some microbial metabolites as primary bile acids (such as
cholic acid and chenodeoxycholic acid), that are conjugated by

the gut microbiota and bile salt hydrolase to form secondary
bile acids (such as deoxycholic acid, lithocholic acid, and
ursodeoxycholic acid) (153). The post-antibiotic expansion of C.
difficile population was shown to be strongly associated with the
depletion of secondary bile salts, consequently to an antibiotic-
mediated depletion of microbial taxa mediating the conversion of
primary into secondary bile acids (154). Primary and secondary
bile acidsmay also exert anti-inflammatory properties and inhibit
several viruses by modulating the cytokine-storm via NF-kB
(influenza A, and other viruses) (155).

Most intriguingly, while the treatment’s success of FMT
mostly revolves around intestinal viable healthy bacteria that are
transferred through fecal suspensions, it should be considered
that the viable bacteria fraction may not be the only factor
affecting the recipient’s biology. Viruses, archaea, fungi, donor’s
colonocytes, immunoglobulin, protists, and a number of
metabolites, made by the donor’s commensal bacteria (as SCFAs)
or intestinal cells, can be implanted, potentially triggering a
plethora of functionally different effects (156).

Dietary Composition
In the acute phase of ICU admission, inflammation, energy
expenditure, and catabolic metabolism are enhanced (157).
During their stay in the ICU, patients often develop post-
ventilation-acquired dysphagia and ICU-acquired weakness,
which mean nutritional support has a pivotal role in maintaining
the necessary muscular strength to help wean patients from the
ventilator (158–160). Moreover, critical illness is considered to
be a major environmental factor in influencing gut homeostasis
and dysbiosis, and nutritional therapy could play an essential role
in these processes. Among the various environmental factors,
indeed, diet is a source of dominant variation of the whole gut
microbial community (161). As an example, nutritional models
based on plant-based foods were shown to promote a more
favorable gut microbiota profile based on the high amount of
dietary fiber and SCFA (162). Therefore, nutrition may exert
different indirect effect on intestinal function by modulating the
gut microbial composition. A recent study on fecal samples of
patients with COVID-19 revealed a high abundance of bacterial
species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus
infantis, Morganella morganii, and higher nucleotide de novo
biosynthesis, amino acid biosynthesis, and glycolysis. These
were distinct from fecal samples of patients without COVID-
19 who had higher abundance of SCFAs-producing bacteria,
including Parabacteroides merdae, Bacteroides stercoris, Alistipes
onderdonkii, and Lachnospiraceae bacterium 1_1_57FAA (163).
It is now well-recognized that SCFAs exert several beneficial
effects, influencing a number metabolic (as the lipids, cholesterol
and glucose metabolism) and inflammatory (as the butyrate-
mediated inhibition of macrophagic NF-κB or inhibition of the
LPS-induced cytokines IL-6 and IL-12p40) responses (164).

Colon bacteria respond to fermentable substrates provided
by the diet to produce SCFAs and gases through anaerobic
metabolism (165). Within this context, dietary intake is an
essential factor for resilience of patients’ gut microbiota and its
impact on upper respiratory tract infections (145).
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The use of early enteral nutrition has been associated
with improved immunologic function, decreased bacterial
translocation, and better mucosal integrity (111). Moreover,
the composition of enteral nutrition has a great impact
on intestinal homeostasis. The gut microbiota is normally
preserved be feeding with various dietary components in
different concentrations. With that in mind, an inadequate
dietary composition may alter the composition of the intestinal
microbiota, thus increasing the growth of opportunistic
pathogens over commensals (111).

General nutritional consideration for ICU patients should
be applied to COVID-19 patients (166). As COVID-19 is
frequently associated with gastrointestinal symptoms, patients
can be at high risk of refeeding syndrome. If this risk is
present, SCCM/ASPEN guidelines recommend starting at∼25%
of the target energy intake (whether enteral or parenteral)
(166). The ESPEN guideline estimates around 27 kcal/kg body
weight/day, based on total energy expenditure, for patients aged
>65 years with multiple comorbidities, or 30 kcal/kg body
weight/day, based on total energy expenditure, for severely
underweight patients with multiple comorbidities and older
adults (individually adjusted on the basis of nutritional status,
physical activity, and disease status) (167). An energy goal of
15–20 kcal/kg actual body weight should be reached within
the first week of nutritional support even in COVID-19 (166).
Recently, in a prospective observational study Cereda et al. in
mechanically ventilated COVID-19 patients who have been fed
with a low caloric intake in the early phase of ICU admission,
found a higher risk of death. Additionally, patients with mild
obesity were associated with higher mortality, while those with
moderate-severe obesity were more difficult to wean from the
ventilator (168). Early overfeeding should be avoided, because
aggressive caloric intake can cause hyperglycemia or the need for
insulin therapy (169). In case of contraindications to oral and
enteral nutrition, parenteral nutrition should be implemented
and increased within 3–7 days (170, 171). In critically ill patients
intolerant to enteral feeding, intravenous erythromycin should
be considered as the first-line prokinetic therapy, followed by
intravenous metoclopramide or a combination of both (170).
Prone positioning is being used with increasing frequency to treat
both typical ARDS and respiratory distress in severe COVID-
19 pneumonia. Traditionally, this leads to forced periods of
rest from enteral nutrition (172), although enteral nutrition has
recently been demonstrated to be feasible and safe in the prone
position as well (173). In patients at high risk of aspiration, post-
pyloric enteral nutrition can be provided instead (170) to reduce
the possible risks related to prone positioning and development
of pneumonia.

The specific recommendations for nutritional management
in COVID-19 (167) suggest that a high-energy, low-to-normal
carbohydrate (based on diabetic status and glycemic control),
normal-to-high protein diet should be considered. Contrasting
findings are available concerning the optimal protein intake
for critically ill patients (174). Protein intake can influence the
catabolic response. During the catabolic phase, within the first
10 days of ICU admission, a reduction in muscle mass of up
to 1 kg/day in patients with multiorgan dysfunction can occur

(175). A recent RCT compared enteral feeding with high-intact-
protein formula (VHPF) with a standard high-protein formula
(SHPF). The VHPF facilitated feeding without increasing energy
intake, which is consistent with previous ESPEN guidelines (176).
However, early high protein intake is associated with a lower
mortality rate only in patients with a low skeletal muscle area at
hospital admission, not in those with a normal skeletal muscle
area (177). Another study found that improvement in daily
protein intake could reduce 3-month mortality after hospital
discharge (178). A standard high-protein (>20%) isosmotic
enteral formula may be used in the early phase of critical illness,
with possible addition of fibers (if tolerated) for maintenance
of gut microbiota function (166). Consider 1 g protein/kg body
weight/day in older persons (individually adjusted on the basis of
nutritional status, physical activity, disease status, and tolerance),
and 1.2–2.0 g protein/kg body weight/day (166) in patients with
multiple comorbidities (167). An isocaloric, high-protein diet is
recommended for obese patients, especially guided by urinary
nitrogen losses (170); if this measurement is not available, a
protein intake of 1.3 g/kg should be considered. The latest
ESPEN guidelines recommend a daily protein intake of 1.3
g/kg, delivered progressively (170). However, a great number
of COVID-19 patients require continuous renal replacement
therapy as part of the systemic multiorgan dysfunction that they
manifest. Thus, specific consideration of protein intake during
the use of such filters for renal depurations should have been
counted by novel guidelines (179).

The amount of glucose, whether parenteral or via
carbohydrates by enteral feeding, should not exceed 5mg/kg/min
(170). However, current guidelines in COVID-19 did not account
that hypertension, obesity, and diabetes mellitus are the most
prevalent comorbidities that may alter patients’ metabolic
profile (180). Similar consideration may be done for lipids
administration in a population composed by a large number
of obese patients, as COVID-19 population is (180). Indeed,
guidelines recommend that intravenous lipids for parenteral
nutrition should not exceed 1.5 g/kg/day (170). The intake of
carbohydrates and fat should be adapted according to energy
ratio of 50:50 from fat and carbohydrates for ventilated patients
(167). Additionally, a ketogenic diet for obese or diabetic patients
should be considered (181). Since COVID-19 often leads to
liver and renal failure, parenteral Gln dipeptide should not be
administered (170). Blood glucose should be measured at ICU
admission and at least every 4 h for the first 2 days. Insulin
therapy should begin when glucose levels exceed 180 mg/dL
(170). Triglyceride levels should be considered in cases of
prolonged sedation with propofol or prolonged administration
of intravenous lipid emulsion for parenteral nutrition (166).
Adequate intake of vitamins and minerals is paramount for the
prevention of viral infections. Particularly, vitamins A, E, B6, B12,
C, and D; zinc; selenium; iron; and omega-3 polyunsaturated
fatty acids should be administered with a view to ameliorating
clinical outcomes, as advised for other viral illnesses (167, 182).
A recent RCT demonstrated that no mortality advantages were
found in critically ill patients who received early implementation
of vitamin D (183). In COVID-19, a serum 25-hydroxyvitamin-
D level of around 30 mg/mL reduced the risk for adverse clinical
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FIGURE 3 | Dietetic recommendations in cases of COVID-19 with ARDS. Nutritional recommendations for critically ill patients with COVID-19 and ARDS from ICU

admission to ICU stay. NRS, nutritional risk screening. Each nutritional support is suggested to be calculated on Ideal body weight.

outcomes (184), but further studies are needed to confirm these
findings. General dietetic recommendations for critically ill
patients with COVID-19-ARDS are depicted in Figure 3.

Other Nutritional Interventions to Modulate
Dysbiosis in COVID-19
Other nutritional interventions have been proposed to modulate
the cytokine storm in ARDS and COVID-19, but studies
are lacking. Therefore, the following sentences represent
an overview of nutritional treatments for immune and
inflammatory dysfunctions in COVID-19 patients. ARDS
is considered an overwhelming systemic inflammatory
process. Patients with COVID-19 frequently present with
hypoalbuminemia and lymphopenia, which may reflect
malnutrition and hyperinflammation and have been associated
with a negative prognosis (1). Although the albumin level should
not be considered a nutritional marker in patients with active
inflammation, prealbumin levels are associated with progression
to ARDS (185). Patients who survived severe COVID-19
pneumonia often present significant functional limitations, and
experience higher morbidity and mortality (186).

Immunonutrition
Immunonutrition has been proposed for patients with severe
COVID-19 pneumonia (187, 188) because supplementary
immunonutrients and antioxidants have been shown to promote
favorable outcomes in the general critically ill population (186,
189, 190). The severity of disease influences the efficacy of

immunonutrition (190). In one meta-analysis, immunonutrition
reduced mortality and improved oxygenation in patients
with ARDS (191); however, more recent studies failed to
replicate these findings (186, 192–194). Several products are
available to provide immunonutrition. Broadly, these consist
of antioxidant vitamins (e.g., vitamin E, vitamin C, carotene),
trace elements (e.g., selenium, zinc), essential amino acids (e.g.,
glutamine, arginine), and essential fatty acids (e.g., omega-3 fatty
acids, eicosapentaenoic acid, docosahexaenoic acid, linolenic
acid) (186).

Monounsaturated and polyunsaturated fatty acids
are involved in cytokine production (190). When
immunonutritional enrichment of fatty acids is administered,
many components of the immune response are modulated and
suppressed (190) by modification of the lipid bilayer of multiple
cell types. Omega-3 fatty acids are essential lipids that are able
to suppress pro-inflammatory eicosanoid biosynthesis, reduce
lung permeability, inhibit inflammation by enhancing T cell
function, and decrease pulmonary edema (189, 195). On the
other hand, the administration of omega-6 fatty acids may have
opposite effects. Thus, the intravenous administration of lipid-
enriched solutions may be detrimental, increasing mortality and
complications in critically ill patients, because of the infusion of
high amounts of omega-6 fatty acids (196).

Glutamine and arginine are sulfur-containing amino acids
that have been proposed as components of immunonutrition for
their immunomodulatory properties. Particularly, the properties
of glutamine include improvement of gut barrier function and
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FIGURE 4 | Immunonutrition. The main pathways activated (green) or inhibited (red) during immunonutritional therapy. Effects of omega-3 fatty acids on stabilization of

the NF-κB/IκB pathway and reduced production of cytokines from inflammatory cells. Effects of NF-κB on the nucleus include DNA transcription and production of

inflammatory mediators. NF-κB, nuclear factor kappa-B; ω-3, omega-3; DNA, deoxyribonucleic acid. Modified from Grimble (100).

immunomodulation of lymphocyte, neutrophil, and macrophage
function (186). Glutamine also enhances glutathione synthesis
and cell proliferation, thus enhancing antioxidant mechanisms.
Likewise, arginine enhances nitric oxide synthesis, lymphocyte
function, growth hormone production, and anabolism (189).
Arginine is synthesized from proline and participates in the
synthesis of ornithine, which is essential for immune function.
Arginine deficiency has been found to correlate with suppression
of T cell proliferation and cluster of differentiation (CD)3
(190). An RCT of a specific anti-inflammatory and antioxidant
nutritional therapy regimen for patients with COVID-19 is
ongoing (197). Precursors of cysteine may be administered
exogenously in the form of N-acetylcysteine or procysteine,

although cysteine and methionine are not easily captured into
cells (190). The putative mechanisms of immunonutrition are
summarized in Figure 4. Although glutamine and antioxidants
could be considered in patients with oxidative stress, benefits to
outcomes have not been reported. On the contrary, an increase
in mortality was found in critically ill patients with multiorgan
failure (198). Therefore, caution is needed since conclusive
evidences are not available yet.

Ketogenic Diet
Ketogenic diet is a nutritional alternative to mitigate
inflammation in COVID-19 patients. The ketogenic diet is
a low-carbohydrate, high-fat nutritional support strategy
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FIGURE 5 | Ketogenic diet. SARS-CoV-2 infects the lung and induces hyperinflammation with recall of monocytes, platelets, and neutrophils by macrophages

polarized to the M1 phenotype. A ketogenic diet is able to reduce the synthesis of adenosine triphosphate (ATP) from glucose by limiting aerobic glycolysis, usually

implicated in the production of lactate and pyruvate, and activation of the tricarboxylic acid cycle, culminating in increased nicotinamide adenine dinucleotide (NADH).

Glucose concentration in the blood is reduced, thereby increasing the production of β-hydroxybutyrate (BHB) and acetoacetate (ACA) from hepatocyte mitochondria.

that promotes metabolic ketosis. This has proved to be
efficient in controlling glucose levels and body weight,
and in promoting anti-inflammatory effects in obesity and
type 2 diabetes (199, 200). Ketogenic diets were initially
proposed to control refractory status epilepticus and protect
the central nervous system (201, 202). Over time, evidence
emerged that very low-carbohydrate diets decreased energy
intake while improving lipid and glucose homeostasis
(203), as well as decreasing levels of inflammatory markers
(181). Preliminary results in a murine model of beta
coronavirus infection demonstrated that ketones protect
against systemic inflammatory response (204). The rationale
for using ketogenic diet in COVID-19 is summarized in
the following paragraphs. Furthermore, a trial investigating
the use of ketogenic diet for patients with COVID-19 is
ongoing (205).

The release of inflammatory cytokines and caspase-1, as
occurs in SARS-CoV-2 infection following the activation of
innate immunity in response to damage-associated molecular
pattern (DAMPs) (7), can be modulated by the nod-like receptor
protein-3 (NLRP3) inflammasome (206). Ablation of NLRP3
is able to attenuate type 2 diabetes and atherosclerosis (7),

which have been identified in most patients with severe COVID-
19. During a ketogenic diet, alternative sources of energy
are produced by the liver, including the ketone bodies β-
hydroxybutyrate (BHB) and acetoacetate (ACA), to maintain the
metabolic functions of the brain, heart, and skeletal muscles.
The increased consumption of liver glycogen stores that is
characteristic of all ketogenic diets is also associated with altered
immune cell function. Specifically, the use of lactate as a source of
mitochondrial oxidative energy plays a key role in the production
of innate immune type I cells and interferon type I, which are
effective in the host defense against viral infections (207). In
an experimental mouse model, caloric restriction implemented
through a ketogenic diet was found to exert anti-inflammatory
effects; ketone bodies attenuated caspase-1 activation and IL-1β
secretion bymodulating the NLRP3 inflammasome (208). Recent
research has proposed that the inhibitor of glycolysis, deoxy-D-
glucose, could be a reasonable therapeutic strategy for SARS-
CoV-2 infection (209), because it has been found to reduce the
duration of ventilator support and partial pressure of carbon
dioxide in patients with acute respiratory failure (210). The
mechanisms of action of a ketogenic diet are summarized in
Figure 5.
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CONCLUSIONS

Dysbiotic states of the microbiota may impact on
the pathogenesis, as well as on the complexity, of
immune and inflammatory diseases. Several mechanisms
have been identified as potential targets to reduce
inflammation and secondary infections. Particularly,
novel nutritional interventions have been proposed
to regulate the mechanisms underlying dysbiosis
of the lung and intestinal microbiota. However,
further studies on patients with severe COVID-
19 are needed to confirm the effective benefit of
such interventions.
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