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Apoptosis happens continuously for millions of cells along with the active removal of 

apoptotic debris in order to maintain tissue homeostasis. In this respect, efferocytosis, 

i.e., the process of dead cell clearance, is orchestrated through cell exposure of a set of 

“�nd me,” “eat me,” and “tolerate me” signals facilitating the engulfment of dying cells 

through phagocytosis by macrophages and dendritic cells. The clearance of dead cells 

via phagocytes is of utmost importance to maintain the immune system tolerance to 

self-antigens. Accordingly, this biological activity prevents the release of autoantigens by 

dead cells, thus potentially suppressing the undesirable autoreactivity of immune cells 

and the appearance of in�ammatory autoimmune disorders as systemic lupus erythem-

atous and rheumatoid arthritis. In the present study, the apoptosis pathways and their 

immune regulation were reviewed. Moreover, efferocytosis process and its impairment in 

association with some autoimmune diseases were discussed.
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INTRODUCTION

During the lifespan of the human body, a huge number of cells die a�er ful�lling their func-
tions in each tissue (1). In this regard, apoptosis is a highly organized process of cellular suicide 
and programmed cell death, which is critical to control body homeostasis and to regulate tis-
sue development (2). �e removal of cell corpses through di�erent signaling is performed by 
phagocytic and dendritic cells of the innate system in physiological conditions. Immediately a�er 
apoptosis, phagocytes are recruited by appropriate “�nd me” signals and, a�er “eat me” signals are 
released, they may �nally engulf the apoptotic cells (3). �e appropriate operation of cell corpse 
clearance, termed as e�erocytosis, is imperative for organ development, tissue adjustment, and 
accomplishment of a proper immune response (4). Failure in the process of dead cell clearance may 
lead to various disorders, including autoimmune diseases such as systemic lupus erythematous 

Abbreviations: BA1, brain-speci�c angiogenesis inhibitor 1; C1q, complement 1q; CRT, calreticulin; LPC, lysophosphatidyl-

choline; LXR, liver X receptor; MFG-E8, milk fat globule-EGF factor 8; PPARδ/γ, peroxisome proliferator-activated receptor 

γ/δ; RA, rheumatoid arthritis; SLE, systemic lupus erythematous; S1P, sphingosine-1-phosphate; ATG, autophagy-related 

gene; LAP, LC3-associated phagocytosis; TLR1/2, toll-like receptor 1/2; TIM, T cell immunoglobulin mucin receptor; DAMP, 

danger-associated molecular pattern.

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01645&domain=pdf&date_stamp=2018-07-20
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01645
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:sahebkara@mums.ac.ir
mailto:amir_saheb2000@yahoo.com
https://doi.org/10.3389/fimmu.2018.01645
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01645/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01645/full
https://loop.frontiersin.org/people/113492


2

Abdolmaleki et al. Defective Efferocytosis and Autoimmunity

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1645

(SLE), rheumatoid arthritis (RA), and type 1 diabetes (T1D) 
(5, 6). �us, a growing interest has mounted in recent years 
on the mechanisms, modulation, and correlation of dead cell 
clearance in speci�c illnesses (4). In this review, the molecular 
pathways occurring during apoptosis, the role of e�erocytosis as 
a modulator of immune response and the mechanisms leading 
to the omission of cell corpse removal by professional and non-
professional phagocytic cells are outlined.

APOPTOSIS MECHANISM

Apoptosis, as a homeostatic process, happens during development 
and aging in order to promote embryogenesis and maintain cell 
population in organs and tissues (7). Numerous studies employ-
ing di�erent techniques such as the terminal deoxynucleotidyl 
transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and 
real-time qPCR have revealed that such a natural mechanism 
is characterized by the activation of di�erent pathways (e.g., 
caspases pathway) and several morphological changes including 
cell shrinkage, blebbing, chromatin condensation, and DNA 
fragmentation (8, 9). Finally, the apoptotic process should be 
terminated by the phagocytosis of the apoptotic corpses, which 
are enveloped with their entire plasma membrane. Immediate 
phagocytosis of these apoptotic cells by macrophages prevents 
cell secondary necrosis and the release of cellular debris, thus 
avoiding in�ammatory reactions, as well as anti-in�ammatory 
cytokines production (10).

As anticipated, one of the most important feature of apoptotic 
pathways is the presence and activation of caspase proteins. Such 
proteins are expressed in the form of an inactive proenzyme in 
most cells, but their activation induces the initiation of a protease 
cascade leading to apoptotic signaling pathway as well as rapid 
cell death (7). �ere are di�erent kinds of caspases endowed with 
various potentials including initiator caspases (2, 8, 9, and 10 
caspases), e�ector or executioner caspases (3, 6, and 7 caspases), 
as well as in�ammatory ones (1, 4, and 5 caspases). Besides, all 
of them have a common feature, that is, a proteolytic activity to 
separate proteins at aspartic acid residues (11). Apoptotic cells 
have also some biochemical characteristics to be recognized by 
phagocytes in order to have minimum engagement with their 
surrounding tissues. �ese features include: (1) the translocation 
of phosphatidylserinee (PS) to the external layer of the plasma 
membrane, (2) and the expression of calreticulin (CRT) and 
annexin 1 proteins on the surface of apoptotic cells (12). CRT, as 
a second general recognition ligand, can be recognized by an LDL 
receptor-related protein on the engul�ng cells, together with the 
interaction between the apoptotic and engul�ng cells mediated 
by the general recognition ligand PS, which colocalizes with CRT 
on the surface of apoptotic cell and acts as a detection signal for 
phagocytes. Hence, the interaction of annexin V as a recombi-
nant PS-binding protein with PS residues is able to facilitate the 
recognition of apoptosis and the combined action of PS and CRT 
is important for optimal apoptotic-cell recognition and uptake of 
apoptotic cells (13).

Two main pathways of apoptosis include extrinsic or death 
receptor pathway and intrinsic or mitochondrial pathway, 
which are induced via extracellular signaling and mitochondrial 

proteins, respectively (14). To initiate the apoptosis process via 
an extrinsic pathway, two central receptor-mediated interac-
tions are involved: fatty acid synthase ligand and receptor 
(FasL/Fas R) and tumor necrosis factor-alpha and receptor 
(TNF-α/TNF R) (15). Binding of FasL to Fas R can lead to the 
constitution of the death-inducing signaling complex contain-
ing Fas-associated death domain protein (FADD), caspase 8, 
and caspase 10. �is process is followed by the activation of 
executioner caspases 3, 6, and 7, as well as the induction of 
cell death (16). In addition, signaling through TNF ligand to 
TNF R can result in the binding of the adaptor protein TNF 
receptor-associated death domain (TRADD) utilizing FADD 
and receptor-interacting protein and inducing apoptosis in a 
caspase-independent manner (16, 17).

�e main function of the intrinsic apoptosis pathway is 
related to mitochondria. Various factors including DNA damage, 
hypoxia, radiations, heat, and viral infections may cause mito-
chondrial swelling and membrane permeabilization, followed 
by leaking out of apoptotic e�ectors (18, 19). Such a mechanism 
starts via releasing the second mitochondria-derived activator 
of caspases (SMAC) into the cytosol and enhancing the perme-
ability of the mitochondria membranes. Moreover, SMAC is 
able to deactivate the proteins hindering apoptosis (IAPs), thus 
allowing apoptosis to continue (20). In another way, due to the 
formation of a channel in the outer membrane of mitochondria, 
that is the mitochondrial apoptosis-induced channel (21), 
cytochrome C is extracted, thus promoting caspase 9 activa-
tion and related morphological changes in association with 
apoptosis (e.g., changes in the nucleus, DNA fragmentation, 
PS appearance on the cell surface). Accordingly, binding of 
cytochrome C to apoptotic protease activating factor-1 (Apaf-1) 
and ATP can lead to its connection to pro-caspase9 in order to 
produce a set of proteins known as apoptosomes. �e activity of 
apoptosome can also change the procaspase to its active form 
(caspase9) followed by the activation of e�ector caspase-3 (18). 
Mitochondrial functions during apoptosis can be also controlled 
and regulated via members of B-cell lymphoma protein 2 (BCL-
2) protein family (22). �e BCL-2 family members include both 
proapoptotic proteins [e.g., BCL2-associated X protein (Bax), 
BCL2 antagonist killer 1 (Bak), BH3-interacting domain death 
agonist (Bid), BCL2 antagonist of cell death (Bad), and BCL2-
interacting protein BIM (Bim)] and antiapoptotic proteins 
[BCL-2, BCL2 related protein, long isoform (BCL-xl), BCL2 
related protein, short isoform (BCL-xs), and BCL2 associated 
athanogene (BAG)]. �ese proteins are of particular importance 
in order to determine cell fate, i.e., apoptosis or prevention of 
the mechanism. In this sense, the release of cytochrome C from 
the mitochondria to the cytosol can be regulated by changing 
the mitochondrial membrane permeability via BCL2- family 
proteins (7).

�ere is a connection between the extrinsic and intrinsic 
apoptosis pathways. First, the activation of the extrinsic pathway 
by Fas domain leads to the activation of Bid to Truncated Bid 
(tBid) via caspase 8-mediated cleavage. �en, tBid binds and 
inhibits Bcl-2 and also stimulates oligomerization of Bax or Bak, 
leading to the release of cytochrome C and the activation of the 
internal pathway (23, 24).
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Apoptotic Versus Non-Apoptotic Cell 

Death
In addition to programmed cell death (i.e., apoptosis), accumu-
lating evidence has led to a better comprehension of additional 
types of cell death, including necrosis, necroptosis, pyroptosis, 
and ferroptosis. Di�erent stimuli including ischemia, pathogens, 
irradiation, heat, or cytokines may promote necrosis. Since 
necrosis is a passive mode of cell death, it has been suggested 
initially that there was no speci�c mechanism in association with 
necrotic cell death; however, it is now clear that necrotic cell death 
has multiple subtypes, greatly organized by particular molecules. 
For instance, mixed lineage kinase domain-like, receptor inter-
acting serine/threonine kinase 1, receptor interacting serine/
threonine kinase 3 (RIPK3) have been established to contribute 
to a subtype of necrosis termed necroptosis (25), whereas another 
subtype of necrotic cell death, i.e., pyroptosis, is in association 
with caspase-1-mediated cell death (26). An additional subtype of 
non-apoptotic cell death requiring iron ions is named ferroptosis 
(27). It was revealed that these new subtypes of cell death, albeit 
sharing some common mechanisms, may be di�erently regu-
lated. However, there is not enough evidence on the physiological 
activity of these new subtypes of cell death and on the di�erential 
response of macrophages and dendritic cells to these types of cell 
death. In addition, it is still unclear whether the speci�c form of 
cell death can determine the procedure of dead cell clearance.

MECHANISM OF EFFEROCYTOSIS

Several billion cells are dying in the human body to ensure cellu-
lar homeostasis, wound healing, and immune responses. In order 
to allow all these processes, the dying cells should be e�ciently 
removed (28). �e process of dead cell clearance, termed as 
e�erocytosis, is normally done in an orchestrated mechanism 
in the human body through lifespan (29). Due to the released 
signals from dead cells and phagocytes, both professional (i.e., 
macrophages and dendritic cells) and non-professional cells (i.e., 
epithelial cells and �broblasts) participate actively to apoptotic 
corpses identi�cation and engulfment in order to degrade them 
(30, 31). �e engulfment process of apoptotic cells by phagocytes, 
before apoptotic cells release their immunogenic intra-cellular 
contents, is considered as an immunological event. Accordingly, 
impairment of this process can lead to numerous autoimmune 
disorders such as SLE, RA, and other diseases (32). Altogether, 
the e�erocytosis process can be classi�ed into four steps: (1) the 
leaking of the “�nd me” signal by dead cells to recruit phagocytes, 
(2) phagocyte identi�cation and its contribution to the “eat me” 
signals on the cellular corpse, (3) the engulfment of dead cells, 
and (4) the degradation of the engulfed cells (3).

“Find-Me” Signals
Accumulating evidence demonstrated that the dying cells are able 
to reveal their presence to phagocytes (33). Speci�cally, based on 
the acquired data from Caenorhabditis elegans, it was realized that 
recruitment of phagocytes to the area of cell death can happen 
before cell apoptosis is completed (34, 35). Expression of various 
“�nd me” signals by apoptotic cells can attract phagocytic cells 

through a chemotactic gradient (36). Four main “�nd me” signals 
have been described, including nucleotides, CX3CL1, lysophos-
phatidylcholine (LPC), and sphingosine-1-phosphate (S1P).

�e caspase-dependent release of nucleotides as ATP and UTP 
through pannexin-1 (panx1) channels is believed as a crucial 
“�nd me” signal (37), which can result in warning phagocytes to 
cooperate with purinergic receptors (e.g., P2Y2) and removal of 
dead cells (33).

During maturation of B cells, lots of them will be apoptosed 
and release the membrane-associated molecule CX3CL1 
(fractalkine), whose recognition by CX3CR1 can modulate the 
migration of macrophages toward the dying B  cells. Although 
experiments conducted on mice with CX3CR1 de�ciency shed 
light on the migration of macrophages toward apoptotic B cells, 
the mechanisms of apoptotic B cell clearance by phagocytic cells 
needs to be clari�ed (38).

Lysophosphatidylcholine, which is another “�nd me” signal, is 
produced and released through caspase-3-dependent activation 
of phospholipase A2. �ere is evidence that ATP-binding cassette 
transporter A1 may be necessary for LPC release by apoptotic cells 
(39). �is lipid signal is mediated by the G-protein-coupled recep-
tor G2A on macrophages (40). �e other lipid “�nd me” signal, 
released by dead cells, is S1P, which is generated from sphingosine 
by sphingosine kinase and sensed via multiple G-protein-coupled 
receptors (i.e., S1P-R1-5) to regulate phagocyte chemotaxis (41).

In comparison with necrosis or necroptosis, the discharge of 
nucleotides from apoptotic cells is small and the released nucleo-
tides can be easily degraded by extracellular nucleotidases (36). In 
addition to the release of a low amount of extracted nucleotides 
(<2% of intra-cellular ATP) (33), the “�nd me” signals of lipid 
origin during apoptosis all act in a short-range to engage phago-
cytes (32).

�ere are additional issues that make the e�erocytosis process 
even more intricate. For instance, apoptotic cells may release also 
lactoferrin glycoprotein that acts as a “keep me” signal and refuses 
neutrophils and eosinophils from the area of cell death (42, 43). 
�us, the balance between “�nd me” and “keep me” signals might 
be crucial for the �nal destination of the apoptotic debris. Another 
�nding in this domain is the double role of the “�nd me” signal as 
danger-associated molecular pattern to activate innate immune 
system (44) or stimulating factors to prime phagocytes (45).

In conclusion, since dying/dead cells together with healthy 
cells and immune cells coexist in the body, the phagocytes should 
be able to distinguish dying/dead cells from living ones, while 
dying/dead cells should display speci�c signals in order to be 
di�erentiated from living cells and to be engulfed by phagocytes 
(46, 47), thus preventing undesirable in�ammation and ensur-
ing tissue homeostasis (Figure  1A). Although some functions 
of the reported “�nd me” signals have been clearly described 
(e.g., producing cells, releasing pathways, target cells), there are 
still several open questions regarding the possible interaction 
(either positive or negative) between both “�nd me” and “keep 
me” signals and target cells. First, it is unclear whether “�nd me” 
and “keep me” signals may be cell-speci�c, so that di�erent dying 
cells may preferentially recruit di�erent phagocytes. Second, it is 
not established as to whether di�erent “�nd me” and “keep me” 
signals at various concentrations and distances from phagocytes 
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FIGURE 1 | Cell death clearance processing by phagocytes through �nding apoptotic cells, recognition their signals and engulfment of the cell corpses. (A) The 

“�nd me” signal: the dying cells release signals such as UTP, ATP, sphingosine-1-phosphate (S1P), and lysophosphatidylcholine or fractalkine through apoptosis. 

These “�nd me” signals can also conduct phagocytes to the location of cell death. Phagocytes can thus sense the “�nd me” signal to detect apoptotic cells using 

cognate receptors including sphingosine-1-phosphate receptor (S1PRs), purinergic receptors (P2Y2), G-protein-coupled receptor (G2A), and CXCR3. (B) The “eat 

me” signal: the dying cells expose “eat me” signals on their surface, so phagocytes can recognize and engulf apoptotic cells by recruiting a complex of receptors 

and bridging molecules. The main common “eat me” signals include the expression of phosphatidylserine (PS) on the outer layer of plasma membrane, brain-

speci�c angiogenesis inhibitor 1, T cell immunoglobulin mucin receptor (TIM1, TIM3, TIM4), RAGE, and stabilin along with PS-speci�c bridging molecules, Gas6, 

Milk Fat Globule EGF Factor 8 (MFG-E8), and protein S. Other “eat me” signals include calreticulin (CRT) and ICAM3, which can modulate the identi�cation and 

engulfment of apoptotic cells by LRP receptors (via C1q) and CD14, respectively. (C) The engulfment process: after recruitment of engulfment receptors through the 

activity of Rac pathway, the polymerization of actin and rearranging of cytoskeletal are initiated. Although the mechanism of TIM4 in this process is unknown, some 

engulfment receptors recruit the DOCK180/ELMO1 set (αvβ3, TAM, stabilin-2, and LRP). Thus, disorders during this step can lead to autoimmunity and 

in�ammatory.
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may induce di�erent e�ects. �ird, the function of metabolites 
deriving from the extracellular breakdown of “�nd me” signals 
within the microenvironment surrounding dying cells needs to 
be clari�ed. Additional research addressing these issue might 
provide a better understanding of the impact in  vivo of these 
signals both in physiological and pathological conditions.

“Eat-Me” Signals
�e most e�ective “eat me” signal in well-organized e�erocy-
tosis is the extra-cellularly exposed lipid PS. �e asymmetrical 
distribution of lipids in plasma membrane is well recognized; 
thus, PS is normally present in the inner lea�et in living cells, 
whereas it is expressed externally during the apoptotic process 
in a caspase-dependent manner (48). �e mechanism for this 

translocation also includes the TMEM16F as a calcium-mediated 
cation channel, which can moderate lipid scrambling (49). On the 
other hand, the cleavage of the scramblase XKr8 by caspase-3 can 
facilitate the expression of PS on the extra-cellular side of plasma 
membrane (50). In particular, it has been found that apoptotic 
stimuli may promote the formation of a plasma membrane com-
plex between XKr8, basigin, and neuroplastin, which is required 
for the scrambling activity of XKr8 (51). Also, the activity of �ip-
pase ATP11C in transferring the aminophospholipids from outer 
lea�et to inner one during apoptosis is suppressed by caspase-3 
cleavage, which can result in extra-cellularly PS exposure (52). 
PS, as the most critical “eat me” signal, has multiple receptors 
to be recognized by phagocytes including bona �de membrane 
receptors such as stablin-2 (53), RAGE (54), TIM4 (in addition to 
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family members of TIM1 and TIM3) (55, 56), and brain-speci�c 
angiogenesis inhibitor 1 (57). Moreover, additional factors 
participate in PS recognition and dead cell engulfment including 
a number of bridging molecules like proteins, Gas6 (58), and 
MFG-E8 (59), as well as the associations between MFG-E8 and 
integrin αvβ3 or αvβ5 and those between Tyro3-Axl-Mer (TAM) 
family of receptors and proteins and Gas6 (60), CD14 and ICAM3 
(61), and scavenger receptors like SR-A and oxidized LDL-like 
moieties (62). Also, the interaction between external CRT with 
complement C1q (63), and glycosylated surface protein with 
lectin (64) could be considered as additional contributor signals 
for apoptotic cell clearance. In particular, CRT may be expressed 
by apoptotic cells a�er a sequence of key events in the dying cells, 
including endoplasmic reticulum stress, eIF2alpha phosphoryla-
tion, caspase8 activation, Bap31 cleavage, and Bax activation (65). 
�e interaction between apoptotic cell surface CRT and phago-
cyte CD91 is then followed by apoptotic cell phagocytosis.

While exposure of PS is found in low levels on living cells, the 
presence of signals such as CD31, CD47, and CD61 on their surface 
is considered as a “do not eat me” signal for not being engulfed by 
phagocytes (66, 67). In this regard, the balance between “eat me” 
and “do not eat me” signals can more e�ectively and actively regu-
late the clearance of dying cells by phagocytes (5). �ere is also a 
cooperation between dying cells and phagocytes, so that cellular 
corpses can advertise their desire to be engulfed by phagocytes 
by expressing “�nd me” and “eat me” signals; on the other hand, 
the phagocytes can prompt their engulfment through employing 
receptors that distinguish these signals (3) (Figure 1B).

Overall, the role of the complex interplay between “eat me” 
and “do not eat me” signals and the pathological consequences of 
their derangement are far from being well understood. Further 
studies aimed at mapping with molecular probes the crucial 
players of the entire phagocytosis pathway induced by both “eat 
me” and “do not eat me” signals might help to elucidate this issue.

Phagocytosis of Cellular Corpse
�e expression pattern, modes of identi�cation, and downstream 
signaling of PS receptors are di�erent. Beside professional phago-
cytes, PS receptors are expressed in di�erent tissues including 
lungs (RAGE), kidneys (TIM-1), spleen (BAI-1), bone marrow 
(BAI-1), brain (BAI-1), and sinusoidal endothelium (stabilin-2) 
(36). �ere is an association between receptors and tissue 
speci�city, explaining that di�erent tissues need specialized PS 
receptors for e�cient e�erocytosis (3). For instance, expression of 
a defective BAI-1 in glial and neuronal cells can lead to apoptotic 
corpses accumulation and neurodegenerative disorders (68).

It has been shown that PS can be recognized by various domains 
of the above mentioned molecules (55). For example, stabilin-2 
uses its EGF-like domains for PS identi�cation (53), TIM recep-
tors use their Ig-variable (IgV) domain (55) and MFG-E8 its C1 
and C2 discoidin-like domains (69). Beside these, extracellular 
signaling (between PS and bridging molecules), intracellular 
signaling cascades are necessary to facilitate the engulfment of 
dead cells (70). Molecules such as Rho family of small GTPases 
involving Rock, Rac, RhoA, Rab 5, and CDC42 are also engaged 
to mediate the absorption of dead cells (71). �ese molecules are 
moderated between an inactive GDP-bound state and an activated 

GTP-bound one by de�nite guanine-nucleotide-exchange factors 
as the bipartite GEF constituted by DOCK 180 and ELMO1 (72). 
�e process of clearing the dead cells by phagocytes via active 
membrane disruption is also like macropinocytosis process (73), 
which is di�erent from complement-receptor-mediated phago-
cytosis, so that the engulfment of corpse by negative regulation 
of RhoA is inhibited via its overexpression and it is dependent 
on Rho-associated coiled-coil-containing protein kinase (ROCK) 
(74). Using phosphorylation of myosin light chain, ROCK 
kinase activity can also induce actomyosin accumulation and 
cell contraction (73). �us, the decrease of RhoA activation can 
result in the reduction of signaling by ROCK, lessening of stress 
�ber constitution, and preparing cell shape changes for e�cient 
engulfment (74).

Unlike RhoA, the function of Rac1 in an evolutionarily 
preserved pathway is critical for developing phagocytic potential 
(71) since Rac1 activation can induce polymerization of actin and 
arrangement of cytoskeletal through Scar/WAVE composite (75, 
76). Although the mechanism of CDC42 in the engulfment of 
dead cells by phagocytes is not precisely cleared (77), enclosing 
within the phagocyte and the downstream events of this meta-
bolic pathway are started altogether (Figure 1C).

Digestion and Immune Response
�e apoptotic cellular corpse, as an ingested cargo, includes sev-
eral compounds (e.g., lipids, proteins, and others) that can force 
the phagocytes to remove them in an immunologic procedure 
(14). �e fusion of the phagosomes with the lysosomes can lead 
to the activation of lysosome enzymes such as acid proteases 
and nucleases to destruct the apoptotic cell constituents. 
However, this process may lead to local in�ammation. �us, for 
instance, DNAse II is necessary for DNA degradation, a process 
that can be followed by aggregation of DNA fragments within 
phagocytes, which in turn may promote in�ammation and 
polyarthritis (78, 79).

In order to maintain tissue homeostasis and to prevent 
in�ammation, phagocytes with engulfed dead cells can produce 
anti-in�ammatory cytokines, including TGFβ and interleukin-10 
(80). �e engulfment of apoptotic cells may also suppress pro-
in�ammatory cytokines (e.g., TNF-alpha, IL-1, IL-12) (81). In 
addition, via the activation of peroxisome proliferator-activated 
receptor γ/δ, as an important regulator of cellular lipid homeosta-
sis and apoptotic cell clearance, cholesterol can suppress in�am-
matory responses (82).

To manage the process of degradation of the cells, at least 
two de�nite pathways for engulfment of external or internal 
unwanted particles have been described, including phagocytosis 
and autophagy (83). More recently, LC3-associated phagocytosis 
(LAP) has been proposed as a novel non-canonical process of 
autophagy involving the clearance of extracellular apoptotic 
debris and pathogens. LAP, as a process combining the preserved 
pathways of phagocytosis and autophagy machinery, may be 
induced when extra-cellular molecules including pathogens, 
dead cells, or immune complexes are recognized by extra-cellular 
receptors such as toll-like receptor 1/2 (TLR1/2), TLR2/6, TLR4, 
FCR, and TIM4 and result in the application of some members 
of the autophagy machinery to the cargo-containing vesicle (84).
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In spite of having common molecular machineries, there are 
multiple features to discriminate LAP from autophagy based 
on the structure of LC3-decorated phagosome (or LAPosome). 
It was elucidated that autophagosomes involve a bilayer mem-
brane to surround autophagic cargo, whereas the LAP consisted 
of a monolayer membrane structure (85, 86). �e formation 
of autophagosomes also takes long hours, whereas the phos-
phatidylinositol 3-phosphate (PI3P) activity in L3-decorated 
phagosome (LAPosome) is performed in a few minutes a�er 
phagocytosis (86, 87). Autophagy is also dependent on pre-
initiation complex including FIP200, ULK1/2, and ATG13 while 
LAP functions do not (84). Both autophagy and LAP require the 
class III PI3kinase complex and its core components of VPS34, 
VPS15, and Beclin-1; besides, LAP can recruit the UVRAG 
containing class III PI3kinase complex (88). �e defensive role 
of LAP against autoimmune responses has also been established; 
accordingly, its failure can lead to a sustained pro-in�ammatory 
status (86). However, the regulation of immune responses via 
LAP pathway needs further studies to be more clearly delineated 
(Figure 2).

PATHOLOGIES ASSOCIATED WITH 

IMPROPER EFFEROCYTOSIS

Apoptosis, as a well-organized mechanism, can play a critical role 
to adjust immune system and homeostasis. �us, even a small 
failure in this multi-step procedure can lead to many disorders. If 
an apoptotic cell is not removed in a speci�c period of time, it is 
possible to be ruptured and �nally dispense its harmful contents. 
Since these released particles are considered as autoantigens, they 
result in the promotion of immune responses (89, 90). In this 
respect, accumulating evidence demonstrates that impairment 
in the process of e�erocytosis is straightly linked to the appear-
ance of numerous autoimmune and in�ammatory diseases such 
as SLE, RA, type I diabetes, multiple sclerosis (MS), and others, 
which are delineated as follows (91).

Systemic Lupus Erythematous
One of the autoimmune diseases that is strongly associated with 
impaired e�erocytosis is SLE. �is disease can cause a wide range 
of clinical symptoms through the involvement of skin, joints, 
kidney, lungs, nervous system, heart, and blood vessels (92). 
Since unengulfed apoptotic cells exist in the germinal centers of 
the lymph nodes of some patients with SLE and the extracted 
macrophages from these patients can reveal low ingestion abil-
ity of apoptotic cells, the failure of dead cells clearance can be 
attributed to be one of the reasons of SLE (93). Moreover, SLE 
patients have circulating autoantibodies against nuclear antigens 
[e.g., antinuclear antibodies (ANA) and anti-DNA antibodies] 
(94). �us, the binding of autoantibodies with autoantigens leads 
to the constitution of immune complexes, which can participate 
to the etiopathogenesis of SLE-associated nephropathy (95).

Previous experiments conducted on mice with de�ciency in 
one of the various receptors of e�erocytosis including MFG-E8, 
BAI-1, TIM-4, or MerTK have demonstrated that dead cells were 
concentrated in their lymph nodes. In addition, they su�ered from 

an SLE-like disease with splenomegaly and glomerulonephritis 
manifestations (45, 96, 97). �ese mice also generated a high level 
of anti-double-stranded DNA and antinuclear antibodies. As well, 
abnormal splicing of MFGE-8 and failure of C1q complements 
in MFG-E8-de�cient mice resulted in impaired engulfment of 
dead cells, secondary necrosis following the release of cellular 
compartments and production of autoantibodies (45). In this 
regard, mice a�ected with defective MFG-E8 are considered as 
good models for investigating the molecular process in which 
endogenous cellular constituents can stimulate the immune 
system extra-cellularly (45).

As explained above, at the early stage of programmed cell 
death, the apoptotic cells are distinguished and engulfed by 
macrophages mostly due to a PS-dependent way. Nevertheless, 
the mechanism of recognizing and engul�ng necrotic cells via 
macrophages is not completely clari�ed. It has been hypothesized 
that the complement system may have a role in this process (98). 
At the early stage of apoptosis, C1 connects to dead cells through 
IgM-dependent manner and via the expression of LPC signals on 
them for IgM-binding (99). It is also veri�ed that humans with 
de�cient C1q gene are prone to develop SLE. In mice with C1q 
de�ciency like MRL/Mp strain, unengulfed dead cells stimulate 
the development of SLE-like glomerulonephritis (100). It is 
interesting that some polymorphism in ATG5 (101) and likely 
ATG7 genes (102), engaged in both autophagy and LAP, have 
been identi�ed through genomic studies as propensity markers 
for SLE (84, 85, 87).

Among the di�erent organs potentially a�ected by SLE, heart 
involvement may be of particular severity. In particular, QT inter-
val prolongation, which may be promoted by both cardiomyocyte 
apoptosis (103) and chronic in�ammation (104), is a common 
�nding in SLE (105) and may increase the risk of cardiovascular 
complications (106). Since enhanced e�erocytosis of apoptotic 
cardiomyocytes promotes in�ammation resolution and cardiac 
repair (107), this might translate into improved electric impulse 
propagation as well. However, a better understanding of the 
involvement of e�erocytosis in arrhythmias and cardiac involve-
ment in SLE is still needed.

Anemia and Polyarthritis
When apoptotic cells are engulfed by phagocytes, they can be 
degraded within lysosomes into their constituents, including 
nucleotides, fatty acids, amino acids, and monosaccharides. DNA 
is also degraded within lysosomes via DNase II in acidic situa-
tions (108). DNase II is expressed in di�erent tissues, especially 
in macrophages; therefore, insu�cient DNase II in macrophages 
can result in the accumulation of nucleotides followed by pro-
duction of cytokines by macrophages. IFNβ, the main kind of 
cytokines produced by macrophages, is cytotoxic to lymphocytes 
and erythroblasts (109). Speci�cally, via TUNEL assay on mice, 
it was demonstrated that erythroblasts could be killed by IFNβ 
function; thus, severe anemia may occur following IFNβ expo-
sure. Furthermore, severe anemia is also the cause of death in 
mice with DNase II de�ciency in embryogenesis (78). Moreover, 
mice with both de�ciency at DNase II and IFN-type I receptor or 
mice with deleted genes of DNAse II through knockout procedure 
a�er birth could promote polyarthritis (79). RA is a systemic and 
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chronic autoimmune disorder with in�ammatory joint involve-
ment, which can be manifested by developed circulating autoan-
tibodies against citrullinated peptides or complement protein C3 
and rheumatoid factor (110, 111). In the swollen joints of patients 
with RA, i.e., the site of joints with aggressive pannus formation 
and cartilage erosion, the genes of in�ammatory cytokines such 
as IL-1β, IL-6, and TNFα are activated (112). Hence, RA patients 
can be treated via antagonism of these cytokines (79).

Experiments on DNase II null mice showed undigested DNA 
expressing TNF-α mRNA in macrophages, and the presence of 
low levels of TNF-α in serum before detecting any abnormalities 
in the joints. TNF-α production via macrophages can be respon-
sible for the promotion of polyarthritis (113). Synovial cells also 
respond to TNF-α in order to generate IL-1β and IL-6, trigger 
the expression of TNF-α gene (114), and consequently produce 
cytokines in the joint, which can result in polyarthritis develop-
ment (115).

Anemia and polyarthritis may be related to DNase II de�cien-
cies as a more complex lysosomal storage disease, caused by mal-
function of lysosomal enzymes including glycosidases, proteases, 
and lipases. As a consequence, DNA, RNA, proteins, and poly-
saccharides of bacterial or viral origin can stimulate the innate 
immunity and generate di�erent cytokines (116). Obtained from 
DNase II null mice, accumulated DNA in the lysosome of mam-
malian macrophages can activate the innate immune responses. It 
is likely that other undegraded components in lysosome stimulate 
IFNβ and TNFα genes. Secretion of cytokines by macrophages 
that are de�cient in the production of lysosomal acid lipase (117) 
and by �broblasts of patients with Niemann–Pick Disease Type 
C (118) can consequently support this fact. Treatment of some 
polyarthritis patients with bone marrow transplantation con�rms 
the presence of a de�ciency in bone-marrow-derived cells in these 
patients. Besides, determining whether there is a defect in their 
lysosomal enzyme could also be useful to develop a treatment 
procedure (119). Although there is not enough genetic evidence 
to link human RA and e�erocytosis, studies have revealed the 
possibility to increase the amount of bridging molecules for TAM 
receptor or stimulating the liver X receptor/PPARγ, which could 
have therapeutic advantages in mice with in�ammatory arthritis 
(120).

Type 1 Diabetes
Pancreatic insulin-producing B cell destruction is responsible for 
development of T1D, a T  cell-mediated autoimmune disorder 
leading to insulin de�ciency and hyperglycemia. It is believed 
that ine�cient clearance of apoptotic pancreatic cells may pro-
mote the release of signals and autoantigens into the media via 
the creation of necrosis and in�ammation (121). �e lack of T cell 
tolerance to self-antigens is also a critical factor in T1D patients. 
Recently, some studies have demonstrated that defective clear-
ance of dead cells is in association with immunogenic responses 
(not tolerogenic), maturation of DC, and chronic in�ammation. 
In this respect, a study on non-obese diabetic (NOD) mice, 
which instinctively develop TID mellitus, showed that there 
were not only defects in the process of apoptotic cell clearance by 
phagocytes in vitro, but also the e�erocytosis mechanism through 
apoptotic stimulation had its own de�ciencies in  vivo. �us, 

impaired apoptotic cell clearance by NOD mice contributed to 
the generation of ANA (122).

A common feature among patients with both Type1 and Type2 
Diabetes mellitus is the imperfect wound healing. It has been 
observed that aggregation of dead cells at the site of the wound 
can lead to in�ammation and slow wound healing as a result of 
incomplete e�erocytosis (123, 124). Although the relationship 
between diabetes and e�erocytosis has been investigated, the 
absolute mechanism of the e�ect has not been still recognized.

Multiple Sclerosis
Multiple Sclerosis is known as a chronic and degenerative disorder 
of the central nervous system (CNS), distinguished by focal lesions 
with in�ammation, oligodendroglial death, demyelination, and 
axonal damage (125). �ese cellular changes are accompanied by 
neurological de�ciencies such as sensory disruption, visual de�-
cits, loss of motor regulation, and production of elevated level of 
IL-1β cytokine from monocytes and macrophages. MS is usually 
started with an autoimmune in�ammatory response to myelin 
constitutions and develops to a chronic stage via degeneration 
of myelin, axons, and oligodendrocytes (126, 127). �e most 
common reason for MS pathology is related to excitotoxicity, 
produced by primary and/or secondary changes in glutamate 
signaling (128). Via ATP as the main neurotransmitter in the 
CNS, ionotropic (P2X), and metabotropic (P2Y2) receptors are 
activated (129). Interestingly, both P2X and P2Y receptors have 
been involved in MS (130), with variable in�uence according to 
di�erent P2X and P2Y subtypes. Furthermore, both P2X and P2Y 
have been found to recognize di�erent “eat me” and “�nd me” sig-
nals during e�erocytosis (33, 131). �us, P2X and P2Y could be 
regarded as possible target in MS. However, it must be recognized 
that supportive data on how defective clearance of apoptotic 
neural cells contribute to MS pathogenesis are not still clari�ed. 
In particular, despite there is evidence that panx1 is the molecular 
substrate for P2X7 and P2X7 is involved in neuronal death and 
MS (132), the impact of P2X7 neuronal death on e�erocytosis 
has not been de�ned. Hence, additional research is needed for 
a better comprehension on whether impaired e�erocytosis may 
in�uence MS pathogenesis.

Autoimmune Lymphoproliferative 

Syndrome (ALPS)
�e ALPS (133, 134) disease is an autoimmune disease char-
acterized by impaired lymphocyte homeostasis and increased 
susceptibility to malignancies (135). �e disease is manifested 
by hypergammaglobulinemia, increased level of FAS ligand 
(136), and IL-10 (137) in plasma, along with accumulation 
of double-negative T  cells (CD4−CD8− T  cells) (138). First, 
the disease was identi�ed in an experimental mouse with FAS 
and FASL mutations (139), which are imperative for apoptosis 
mechanism. Moreover, it has been understood through further 
investigations on both mice and humans that the given factors as 
parts of the TNF receptor family are necessary for an apoptosis 
procedure in order to prevent the assembly of self-reactive T and 
B lymphocytes (140). In this regard, it is realized that defective 
apoptosis pathway can lead to the activation of immune system 
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and manifest itself as a disease a�ecting other organs of the body 
due to mutation in FASL and de�cit signaling pathway (134, 141). 
Hence, because FAS/FASL pathway may serve as a “�nd-me” sig-
nal in e�erocytosis (142), it is arguable that mutations involving 
genes of this pathway, as observed in ALPS, might have also an 
impact on related diseases.

Ulcerative Colitis
One of the forms of in�ammatory bowel disease (IBD) is ulcerative 
colitis. �e given disease is considered as a chronic and relapsing 
disorder of the large intestine manifested by contiguous in�am-
mation of the colonic lamina propria (143). A critical factor in the 
pathogenesis of the IBD is host identi�cation of bacteria, which 
are sensed by the immune system via speci�c receptors resulting 
in in�ammation (144). Lipopolysaccharide (LPS), as the main 
component of cell wall in bacteria, is also recognized by TLR-4, 
and it can result in NF-κB-related stimulation of in�ammatory 
responses (145). In this regard, mice with de�ciency in TLR-4 
have an impaired response to LPS. Since TLRs are key activators 
of innate immunity, insu�cient activation of innate immune 
system via intestinal luminal antigen or de�cient regulation of its 
signaling results in an imbalance between e�ectors and regula-
tory cells, leading to over-responsiveness to these bacteria and 
intestinal in�ammation (146, 147). Besides TLRs, particularly 
TLR4, other molecules like LPS-binding protein and the bacterial 
permeability increasing protein (BPI) with a high a�nity to LPS, 
have been reported in human serum (148, 149). �ese complexes, 
which are recognized by CD14, a glycosylphosphatidylinositol-
anchored molecule on the monocyte surface, are activated in 
the form of potent antimicrobial proteins (150). Since CD14 
as a bridging gap is in connection with ICAM3, facilitating the 
recognition and engulfment of apoptotic cells results in e�cient 
e�erocytosis.

It has been demonstrated that two mutations in extracellular 
domain of TLR-4 along with a polymorphism in the gene of CD14 
contributed to ulcerative colitis (151). Moreover, it has been 
reported that individuals with both mutations of TLR-4 in the 
airway epithelia do not respond to the induction of LPS; thus, the 
reduced expression of TLR was seen on their apical surface (152), 
which resulted in increased risk of bacterial infections (153). It 
was also realized that de�cient receptors on the cells could not 
activate the signaling cascades of immunity to clear the bacterial 
infection; thus, they resulted in immune responses and the IBD 
(154–156).

Crohn’s Disease (CD)
A kind of chronic in�ammatory disease of the gastrointestinal 
tract is CD, in which, altered immune response against intralu-
minal microbiota may occur in a susceptible host (157). �ere 
are several genes in association with CD, but one of the most 

important is the nucleotide-binding oligomerization domain 
containing 2 or (NOD2) gene, known as CARD15 (158). �e 
Nod-protein family is comprised of intra-cellular and host-
speci�c cytosolic pattern-recognition receptors with a signi�cant 
role in innate immunity to detect pathogen-associated molecular 
patterns of di�erent microorganisms in order to produce tran-
scriptional responses against bacteria (159). In this regard, two 
genes can contribute to autophagy including autophagy-related 
16-like 1 (ATG16L1) (160) and the immunity-related GTPase 
family M (IRGM) (161). Recent studies have also shed light on 
a relationship between Nod2 and autophagy pathway in which 
Nod2 recruits the ATG16L1 to the plasma membrane through 
the bacterial invasion; thus, patients with mutations in Nod2 
have a de�ciency in bacterial tra�cking, autophagy induction, 
and antigen presentation, which result in steady in�ammation 
(162). Beside these genes, the ULK1 is another autophagy gene 
contributing to CD. It has been determined that the silencing of 
ULK1 can inhibit autophagy that �nally results in accumulation 
of dead cells, acute immune responses, as well as in�ammation in 
the gastrointestinal tract (159).

CONCLUSION

Apoptosis is a natural mechanism to maintain homeostasis 
and tissue development, which has been extensively studied. 
Due to the importance of programmed cell death, a deeper 
understanding of the mechanisms of this process, classi�cation 
of its subtypes and pathological signi�cance, as well as further 
comprehension of the relationship between diseases and cell 
death require additional clari�cation. However “postapoptotic 
biological events” have drawn the interest of many researchers. 
Indeed, the �eld of e�erocytosis is rather young and numerous 
autoimmune disorders have been investigated to be correlated 
with impaired e�erocytosis. However, there are many challenges 
in this �eld to be overcome such as the identi�cation of various 
steps of e�erocytosis mechanisms and their relation to diseases 
and understanding of the kinds of engul�ng phagocytes and 
their relation to tissue speci�city. �us, the interest in examin-
ing e�erocytosis and autoin�ammatory disorders continues to 
grow. Precise understanding of e�erocytosis and its biological 
and physiological roles in the autoimmune system can light 
new insights on how to prevent diseases in early stages and 
help with providing therapeutic methods to treat autoimmune 
disorders.
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