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The role of electrical stimulation 
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Abstract 

Electrical stimulation is used to elicit muscle contraction and can be utilized for neurorehabilitation following spinal 
cord injury when paired with voluntary motor training. This technology is now an important therapeutic intervention 
that results in improvement in motor function in patients with spinal cord injuries. The purpose of this review is to 
summarize the various forms of electrical stimulation technology that exist and their applications. Furthermore, this 
paper addresses the potential future of the technology.
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Epidemiology
Globally, approximately 250,000 to 500,000 new spinal 
cord injury (SCI) cases occur every year [1]. Blunt force 
trauma is primarily responsible for SCI, with motor vehi-
cle crashes serving as the leading cause of injury (38.2%), 
followed by falls (32.3%) [2]. Medical expenses over US $3 
billion are spent annually on managing SCI, and individ-
ual costs can range from US $380,000 to US $1,160,000 
in the first year alone, and between US  $46,000 and 
US $202,000 for each subsequent year [2].

Sequelae
Neurologic injury of the spinal cord affects nearly every 
physiologic system, and patients can present with a mul-
titude of symptoms that drastically influence their func-
tion and quality of life. The SCI level determines which 
systems are affected and has a significant impact on the 

potential rehabilitation and final functional status of the 
patient.

Musculoskeletal system
While C1–C4 SCI typically results in tetraplegia, lower 
cervical (C5–C8) SCI can spare varying degrees of upper 
extremity function. The C5 nerve root primarily inner-
vates the deltoid muscle to perform shoulder abduction, 
but is also responsible elbow flexion. Accordingly, C5 
complete SCI (ASIA A) results in complete dependence 
for transfers and assistance for activities of daily living. 
The C6 nerve root controls wrist extension and biceps 
flexion, the C7 nerve root controls elbow extension and 
wrist flexion, and the C8 nerve roots controls finger flex-
ion. SCI below C6 results in relatively greater independ-
ence, with patients able to achieve transfers either with 
the assistance of a transfer board (C6) or independently 
(C7/C8). These patients require less assistance and fewer 
adaptive aids for activities of daily living. Any complete 
level thoracic SCI results in paraplegia, however, SCI 
distal to L2 level may spare varying lower extremity 
function.
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Damage to descending spinal cord tracks results in 
hyperexcitability and spasticity [3, 4]. Spasticity is a 
velocity-dependent increase in muscle tone due to a 
hyperexcitable stretch reflex [5]. Spasticity may poten-
tially have beneficial effects by promoting venous return, 
decreasing the incidence of orthostatic hypertension and 
deep venous thrombosis, increasing stability, and facili-
tating activities such as transfers [3, 6, 7]. However, these 
must be weighed against the negative effects that include 
contractures, gait disturbances, decreased mobility, and 
pain [3, 8, 9].

Due to mobility limitations, paraplegia or tetraplegia 
patients do not load their spine or limbs, disturbing bone 
homeostasis as a result of mechanical unloading. Cessa-
tion of weight bearing in these patients leads to increased 
bone resorption and suppressed bone formation. The 
resulting osteoporosis is typically isolated to the long 
bones below the level of injury, increasing the risk of fra-
gility fractures [10–13].

Integumentary system
One of the most common adverse events following an 
SCI is pressure ulcers due to insensate regions. Ulcera-
tion occurs due to persistent pressure over bony promi-
nences as a result of immobility, poor nutrition, and 
changes in skin physiology including deficient vascu-
lar reactions to catecholamine signaling and decreased 
fibroblast activity. These changes delay the natural wound 
healing capabilities below the level of the injury, resulting 
in ulceration [14, 15]. The annual incidence of pressure 
ulcers in SCI patients ranges from 20% to 31%, with the 
resulting increased healthcare utilization approximately 
quadrupling annual costs compared with SCI patient 
without ulcers [16, 17].

Cardiopulmonary system
SCI in the cervical or high thoracic regions can disrupt 
respiratory muscle function, ranging from exercise intol-
erance to complete respiratory failure requiring mechan-
ical ventilation assistance [18]. In patients with prolonged 
ventilation, tracheostomy may be required. Poor respira-
tory muscle recruitment in combination with inhibited 
reflexes results in impaired cough, bronchospasm, and 
increased secretions, predisposing SCI patients to pneu-
monia, atelectasis, and exacerbation of respiratory failure 
[14, 19].

SCI patients also have increased risk of ischemic heart 
disease because of the increased prevalence of coro-
nary artery disease (CAD) and hypertension after SCI 
[20]. The prevalence of symptomatic cardiovascular 
disease ranges from 30% to 50% compared with 5–10% 
in matched able-bodied populations [21, 22]. CAD 
risk factors, including hyperlipidemia, diabetes, and 

obesity, that exist within the SCI population have primar-
ily been attributed to the sedentary nature of SCI patients 
[23–27].

Sympathetic nervous system
SCI proximal to T6 level may result in autonomic dys-
reflexia, affecting autonomic responses to demands on 
vascular tone and heart rate, with greater severity of 
dysregulation associated with higher levels of injury [28, 
29]. Autonomic dysreflexia results in sympathetic over 
activity causing hypertension that increases the risk of 
stroke, pain, and hemodynamic instability. Parasympa-
thetic compensation, including bradycardia and vasodila-
tion, occurs only above the level of the injury, resulting 
in sweating, chills, headache, and flushing [30, 31]. Dys-
reflexia is often initiated by noxious stimuli below the 
level of the spinal cord injury, including cutaneous or 
visceral etiologies, but is most often triggered by a uro-
logic source such as urinary tract infection or bladder 
distention [32]. Injuries below T6 do not typically result 
in autonomic dysreflexia due to the intact splanchnic 
innervation [33].

Urinary system
SCI can disrupt both storage and emptying of the blad-
der. The majority of bladder dysfunction results from 
detrusor overactivity causing urge incontinence. Patients 
can also have detrusor sphincter dyssynergia, where the 
bladder contracts against a hyperactive closed sphincter 
leading to vesicoureteral reflux [34–38]. Detrusor are-
flexia has also been noted in SCI patients with involve-
ment of lower motor neurons resulting in chronic 
urinary retention with incomplete emptying and over-
flow incompetence [38]. Due to these conditions, many 
patients require intermittent catheterization or indwell-
ing catheters that increase the risk of developing urinary 
tract infections (UTIs) [38–41]. Patients with SCI are also 
noted to have an increased incidence of nephrolithiasis 
secondary to immobilization hypercalciuria, which may 
also predispose patients to UTIs [14, 38, 42–45].

Reproductive system
In addition to urologic impairments, SCI often results in 
sexual dysfunction. The incidence of impotence in men 
after SCI is approximately 75%, where the level of the 
injury dictates the type of sexual dysfunction. If there is a 
lower motor neuron lesion at the level of the sacral roots, 
parasympathetic innervation will be interrupted and 
reflexogenic erections are impacted (i.e., tactile stimula-
tion resulting in an erection). Alternatively, psychogenic 
erections are mediated through sympathetic pathways 
originating from T10–T12. As such, psychologically 
mediated erections are possible in patients with injuries 
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caudal to T12 [38]. There is a paucity of literature on sex-
ual dysfunction in women with SCI, but an impaired abil-
ity to achieve orgasm after SCI has been described [38].

Classifications of neurologic injury
The Frankel scale was introduced in 1969 as a 5-point 
scale to grade SCI [46]. Patients are classified as complete 
(grade A), sensory only (grade B), motor useless (grade 
C), motor useful (grade D), or no neurological deficit/
complete recovery (grade E). Continued use of this scale 
was limited by its subjective nature in judging “useful-
ness” of any remaining motor movements and its fail-
ure to account for the level of injury [46]. The American 
Spinal Injury Association published the International 
Standards for Neurological Classification of Spinal Injury 
in 1982 [47]. This classification has evolved into the cur-
rent American Spinal Injury Association Impairment 
Scale (AIS) [48]. In contrast to the Frankel system, the 
AIS improves reproducibility via standardized testing of 
myotomes and dermatomes to identify the level of injury 
[49, 50]. Additionally, the AIS differentiates between 
complete and incomplete injuries.

The AIS is now the international standard for evalua-
tion and classification of patients with SCI [50]. The scale 
grades A–E: Patients with Grade A have complete spinal 
cord injuries and as such, have no motor or sensory func-
tion (including sacral roots) distal to the level of injury. 
Patients with Grade B have some sensory function, but 
no motor function below the level of injury. Grade C 
injuries consist of a motor strength less than 3/5 in more 
than half of the major muscle groups below the level of 
injury, while Grade D injuries have a motor grade 3/5 or 
greater. Patients with Grade E have full motor and sen-
sory function after sustaining a SCI [48].

Electrical simulation
Spinal cord injury is a discontinuity syndrome that dis-
rupts efferent and afferent pathways, including the 
descending motor fibers from the motor cortex to the 
spinal motor neurons and the ascending somatosensory 
fibers from the peripheral nervous system through the 
spinal cord and to the brain [51]. In other regions of the 
body, conduction blockage is resolved with regrowth, 
regeneration, and sometimes functional reconnectivity of 
axons to the end organ resulting in functional recovery. 
However, the central nervous system has impaired ability 
to restore neural circuits across a lesion. Accordingly, sci-
entific innovations have been created to bypass the area 
of injury and reconnect end organ function.

The use of electrical stimulation after spinal cord inju-
ries has been utilized for over half a century [52]. One 
of the earliest uses of electrical stimulation in the 1960s 
utilized electrical current to stimulate the peroneal nerve 

to initiate muscle function and correct foot drop in the 
setting of stroke-related hemiplegia [53]. Since then, vari-
ous types of electrical stimulation have been developed 
and employed to conserve the function of the aforemen-
tioned physiologic systems (Table 1).

Complete SCI prevents any signal from descending 
below the level of the injury due to incomplete circuitry. 
Even in completely injured patients, some circuits are 
spared, although these circuits are often not sufficient 
to establish an adequate level of excitability to stimulate 
motor neurons caudal to the injury. Electrical stimula-
tion is believed to work by inducing neuroplastic changes 
at synapses within the spinal cord. Neuroplasticity is the 
process in which axons and synapses reorganize and 
adapt to their cellular environment.

After SCI, axon growth can include collateral sprout-
ing of spared and injured axons, synaptic remodeling, 
and axon regeneration, albeit to a lesser extent than that 
which occurs outside the central nervous system [54]. 
Axonal sprouting and synaptic remodeling result in cir-
cuit reorganization, while axonal regeneration involves 
the regrowth of transected axons. Electrical stimulation 
induces neuroplasticity by increasing the baseline level of 
spinal excitability such that low levels of input result in 
voluntary motor function [55]. It has been hypothesized 
that the combination of electrical stimulation with vol-
untary motor commands is necessary to induce neuro-
plastic changes. When descending signals from the brain 
reach the corticospinal anterior horn synapse at the same 
time as antidromic signals traveling up the peripherally 
stimulated nerve by electrical stimulation, the synapse is 
strengthened and increases the probability of subsequent 
firing in a Hebbian-type learning effect, which postu-
lates that an increase in synaptic efficiency arises from 
repeated stimulation [56]. This synaptic plasticity likely 
involves descending motor axons, proprioceptive affer-
ents, motor neurons, and interneurons. By using electri-
cal stimulation paired with voluntary motor training, the 
elicited neuroplasticity results in improvements in motor 
function.

Transcutaneous electrical neural stimulation
Transcutaneous electrical neural stimulation (TENS) is 
a surface applied neuromodulation system that has been 
utilized in the treatment of various types of chronic pain, 
including noninvasive neuropathic pain relief through 
stimulation of sensory A-beta fibers and blocking of pain 
signals transmitted via A-delta and C-nociceptive fibers 
[57–59]. TENS is also used in the management of spas-
ticity through a mechanism of neuroplasticity or modu-
lation of inhibitory circuits [60–62]. TENS has been 
shown to enhance vibratory inhibition of the H reflex, the 
electrical equivalent of the monosynaptic stretch reflex, 
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Table 1  Summarized literature references by topic

Title Authors

Transcutaneous electrical neural stimulation

 Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions Levin et al. [60]

 Patterned sensory stimulation induces plasticity in reciprocal Ia inhibition in humans Perez et al. [61]

 Electrical stimulation in treating spasticity resulting from spinal cord injury Bajd et al. [62]

Neuromuscular electrical stimulation

 Electrical treatment of spasticity. Reflex tonic activity in hemiplegic patients and selected specific electrostimulation Alfieri [64]

 Two theories of muscle strength augmentation using percutaneous electrical stimulation Delitto et al. [65]

 Neuromuscular electrical stimulation-induced resistance training after SCI: a review of the Dudley protocol Bickel et al. [66]

 Neuromuscular electrical stimulation in neurorehabilitation Sheffler et al. [67]

 Electrical stimulation of wrist extensors in poststroke hemiplegia Powell et al. [68]

Functional electrical stimulation

 Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review Marquez-Chin et al. [69]

 Functional electrical stimulation in spinal cord injury: from theory to practice Martin et al. [70]

 Functional electrical stimulation and spinal cord injury Ho et al. [71]

 Functional electrical stimulation post-spinal cord injury improves locomotion and increases afferent input into the 
central nervous system in rats

Beaumont et al. [72]

 Functional electrical stimulation for neuromuscular applications Peckham et al. [73]

 Surface-stimulation technology for grasping and walking neuroprostheses: improving quality of life in stroke/spinal cord 
injury subjects with rapid prototyping and portable FES systems

Popovic et al. [74]

 An update on functional electrical stimulation after spinal cord injury Gorman [75]

 Paradigms of lower extremity electrical stimulation training after spinal cord injury Gorgey et al. [76]

 Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury Mangold et al. [77]

 Influence of different rehabilitation therapy models on patient outcomes: hand function therapy in individuals with 
incomplete SCI

Kapadia et al. [78]

 Functional electrical stimulation therapy of voluntary grasping versus only conventional rehabilitation for patients with 
subacute incomplete tetraplegia: a randomized clinical trial

Popovic et al. [79]

 A noninvasive neuroprosthesis augments hand grasp force in individuals with cervical spinal cord injury: the functional 
and therapeutic effects

Thorsen et al. [80]

 A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete 
spinal cord injury

Street et al. [81]

 Implanted functional electrical stimulation: an alternative for standing and walking in pediatric spinal cord injury Johnston et al. [82]

 Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment Maležič et al. [83]

 A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking 
competency

Kapadia et al. [84]

 Therapeutic effects of functional electrical stimulation on gait, motor recovery, and motor cortex in stroke survivors Shendkar et al. [85]

 The effectiveness of functional electrical stimulation for the treatment of shoulder subluxation and shoulder pain in 
hemiplegic patients: a randomized controlled trial

Koyuncu et al. [86]

 Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview Hamid et al. [51]

 Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor 
recovery in stroke patients

Sabut et al. [87]

 The efficacy of electrical stimulation in reducing the post-stroke spasticity: a randomized controlled study Sahin et al. [88]

 Functional electric stimulation-assisted rowing: increasing cardiovascular fitness through functional electric stimulation 
rowing training in persons with spinal cord injury

Wheeler et al. [89]

 Efficacy of electrical stimulation for spinal fusion: a systematic review and meta-analysis of randomized controlled trials Akhter et al. [90]

 Functional electrical stimulation therapies after spinal cord injury Gater et al. [91]

 An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle Smith et al. [92]

 Implanted functional neuromuscular stimulation systems for individuals with cervical spinal cord injuries: clinical case 
reports

Triolo et al. [93]

 Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study Peckham et al. [94]

 Factors influencing body composition in persons with spinal cord injury: a cross-sectional study Spungen et al. [96]

 The effects of trunk stimulation on bimanual seated workspace Kukke et al. [97]

 Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury Triolo et al. [98]
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Table 1  (continued)

Title Authors

 The effects of combined trunk and gluteal neuromuscular electrical stimulation on posture and tissue health in spinal 
cord injury

Wu et al. [99]

 Long-term performance and user satisfaction with implanted neuroprostheses for upright mobility after paraplegia: 2- to 
14-year follow-up

Triolo et al. [101]

 An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with 
paraplegia

Ha et al. [102]

 Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraple-
gics

Graupe et al. [103]

Phrenic nerve pacing

 Diaphragm pacing for respiratory insufficiency Chervin et al. [105]

 Diaphragm pacing by electrical stimulation of the phrenic nerve Glenn et al. [106]

 Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in 
bridging to independent respiration

Posluszny et al. [107]

 Successful reinnervation of the diaphragm after intercostal to phrenic nerve neurotization in patients with high spinal 
cord injury

Nandra et al. [108]

Spinal cord stimulation

 Restoration of sensorimotor functions after spinal cord injury Dietz et al. [110]

 Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury Inanici et al. [111]

 Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetra-
plegia

Inanici et al. [112]

 Transcutaneous electrical spinal-cord stimulation in humans Gerasimenko et al. [113]

 Non-invasive activation of cervical spinal networks after severe paralysis Gad et al. [114]

 Weight bearing over-ground stepping in an exoskeleton with non-invasive spinal cord neuromodulation after motor 
complete paraplegia

Gad et al. [115]

 An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function 
in individuals with spinal cord injury

Phillips et al. [116]

 Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: a systematic review Megia Garcia et al. [117]

 Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics Capogrosso et al. [119]

 Targeted neurotechnology restores walking in humans with spinal cord injury Wagner et al. [120]

 Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury Wenger et al. [121]

 Cardiovascular autonomic dysfunction in spinal cord injury: epidemiology, diagnosis, and management Wecht et al. [124]

Autonomic neuromodulation

 New approaches for treating atrial fibrillation: focus on autonomic modulation Sohinki et al. [125]

 Neuromodulation for the treatment of heart rhythm disorders Waldron et al. [126]

 Low-level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antia-
poptosis reactions in canines

Chen et al. [127]

 Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury Ganzer et al. [128]

 Acute cardiovascular responses to vagus nerve stimulation after experimental spinal cord injury Sachdeva et al. [129]

 Vagus nerve stimulation paired with rehabilitative training enhances motor recovery after bilateral spinal cord injury to 
cervical forelimb motor pools

Darrow et al. [130]

 Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind Ptito et al. [131]

 Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation Wildenberg et al. [132]

 High-resolution fMRI detects neuromodulation of individual brainstem nuclei by electrical tongue stimulation in 
balance-impaired individuals

Wildenberg et al. [133]

 Electrical tongue stimulation normalizes activity within the motion-sensitive brain network in balance-impaired subjects 
as revealed by group independent component analysis

Wildenberg et al. [134]

 Altered connectivity of the balance processing network after tongue stimulation in balance-impaired individuals Wildenberg et al. [135]

 Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case 
study

Chisholm et al. [136]

 Cranial nerve non-invasive neuromodulation improves gait and balance in stroke survivors: a pilot randomised controlled 
trial

Galea et al. [137]

 A prospective, multicenter study to assess the safety and efficacy of translingual neurostimulation plus physical therapy 
for the treatment of a chronic balance deficit due to mild‐to‐moderate traumatic brain injury

Ptito et al. [138]
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which has been attributed to presynaptic inhibition 
[60]. TENS treatment for spasticity enhances presynap-
tic inhibition, which is intrinsically suppressed in SCI 
patients. Furthermore, TENS resembling sensory feed-
back has been shown to induce short-term neuroplasti-
city by increasing the strength of reciprocal Ia inhibition 
between ankle flexor and extensor muscles [61].

Neuromuscular electrical stimulation
Neuromuscular electrical stimulation (NMES) is 
electricity applied across the surface of the skin, and 
involves direct stimulation of targeted nerves to con-
tract paralyzed muscles and increase muscle strength. 
NMES is thought to improve spasticity via disynap-
tic reciprocal inhibition in which the activation of one 
muscle produces an inhibition of the opposing muscle 
group [63, 64]. NMES is used to reverse muscle mass 
loss and improve functional movement similar to tradi-
tional muscle exercise [65, 66]. Furthermore, NMES is 
used in conjunction with repetitive movement therapy 

to facilitate motor relearning [67]. For example, NMES 
combined with standard rehabilitation has been shown 
to increase recovery of wrist extension over standard 
care in hemiplegic patients [68]. These therapeutic 
applications may lead to an effect that enhances but 
does not directly provide function. When NMES is 
used to directly accomplish functional tasks, it is called 
functional electrical stimulation (FES).

Functional electrical stimulation
Functional electrical stimulation (FES) is a subtype of 
NMES that involves applying electrical stimuli to para-
lyzed nerves or muscles to induce muscular contraction 
in order to complete a functional task [69]. Conven-
tional FES has been used in neurorehabilitation for 
tasks such as rowing or cycling [70, 71]. FES in neu-
rorehabilitation is thought to support the rewiring and 
regeneration of damaged synaptic connections [72].

Table 1  (continued)

Title Authors

Sacral nerve stimulation

 Design and implementation of low-power neuromodulation S/W based on MSP430 Hong et al. [139]

 Electrical stimulation of sacral dermatomes can suppress aberrant urethral reflexes in felines with chronic spinal cord 
injury

McCoin et al. [140]

 Neuromodulation for restoration of urinary and bowel control Raina [141]

 Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury Sievert et al. [142]

 Bladder neuromodulation in acute spinal cord injury via transcutaneous tibial nerve stimulation: cystometrogram and 
autonomic nervous system evidence from a randomized control pilot trial

Stampas et al. [143]

 Lower urinary tract dysfunction in the neurological patient: clinical assessment and management Panicker et al. [144]

Neuromodulation by surface electrical stimulation of peripheral nerves for reduction of detrusor overactivity in patients 
with spinal cord injury: a pilot study

Ojha et al. [145]

Galvanic vestibular stimulation

 Vestibulospinal responses in motor incomplete spinal cord injury Liechti et al. [146]

 Impaired scaling of responses to vestibular stimulation in incomplete SCI Wydenkeller et al. [147]

 Does galvanic vestibular stimulation decrease spasticity in clinically complete spinal cord injury? Čobeljić et al. [148]

Transcranial direct current stimulation

 Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) Lefaucheur et al. [149]

 Cortical vs. afferent stimulation as an adjunct to functional task practice training: a randomized, comparative pilot study 
in people with cervical spinal cord injury

Gomes-Osman et al. [150]

 Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury Cortes et al. [151]

 Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after 
incomplete spinal cord injury: a systematic review and meta-analysis

de Araújo et al. [152]

 Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incom-
plete spinal cord injury during Lokomat® gait training

Kumru et al. [153]

 Low-frequency rectangular pulse is superior to middle frequency alternating current stimulation in cycling of people 
with spinal cord injury

Szecsi et al. [155]

 Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial Shapiro et al. [156]

 Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor 
cells after spinal cord injury

Zhang et al. [157]

 Epidural oscillating field stimulation as an effective therapeutic approach in combination therapy for spinal cord injury Bacova et al. [158]
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Stimuli
FES uses surface or implantable electrodes to deliver 
electrical stimuli. The placement of the electrode deter-
mines the selection of muscles stimulated and resulting 
movements. However, the optimal location of electrode 
placement and intensity of electrical stimuli requires trial 
and error to isolate the desired movement. The inten-
sity of the electrical stimuli is determined by adjusting 
the duration and amplitude of the pulse (Fig.  1). Pulse 
duration is the time in which the stimulation is present, 
while pulse amplitude is the magnitude of the stimula-
tion and determines which nerve fibers respond to the 
stimulation. As the intensity of the pulse increases, in 
either amplitude or duration, the current spreads and 
activates a larger cross-sectional area of skeletal mus-
cle increasing the force exerted. Large nerves, which 
innervate large motor units, have the lowest threshold 
for stimulation and are recruited first, followed by small 
neurons and motor units. This phenomena is known as 
reverse recruitment and is the opposite of the physiologic 
size principle of motor neuron activation [73]. Unfortu-
nately, this early recruitment of large muscles commonly 
leads to muscle fatigue, which may be mitigated to some 
degree through the modification of pulse frequency. 
Pulse frequency is the rate at which stimulation pulses 
are delivered. By increasing the pulse frequency, individ-
ual muscle twitches compound into a sustained contrac-
tion to produce movement called tetanic contraction. A 
minimum frequency of 16–20  Hz is required to induce 
contractions [74]. Higher frequencies create stronger 
contractions but also exacerbate muscle fatigue. Thus, a 
range of 20–50 Hz are typically used in FES.

Pulses used in electrostimulation can be either mono-
phasic, also known as direct current, or biphasic, also 

known as alternating current (Fig.  2). Monophasic 
pulses consist of a unidirectional pulse, whereas bipha-
sic pulses are bidirectional with a positive and negative 
phase. The primary risk of monophasic pulses is thermal 
injury to surrounding tissue. Biphasic pulses can alter-
nate anode and cathode electrodes (alternating biphasic 
pulses), which is believed to be safer for surrounding tis-
sue. Biphasic pulses have a net charge of zero as the ini-
tial phase elicits an action potential in nearby nerves and 
the second phase balances the charge injection to protect 
surrounding tissue.

FES is either controlled as an open or closed loop sys-
tem (Fig. 3). Open loop systems apply electrical current 
using fixed settings and do not incorporate biofeedback, 
and therefore lack the ability to self-correct. Alterna-
tively, closed loop systems continuously relay contraction 
force and joint position information via sensors back to a 
computer to modulate input [75].

Therapeutic use
FES plays a prominent role in rehabilitation following 
SCI, mainly to restore extremity function. FES has been 
shown to increase muscle power output and resistance 
[76]. Multiple studies have validated the use of FES in 
helping to restore upper extremity function following 
SCI [77–80]. FES has also been used in rehabilitation 
of the lower extremity to improve gait parameters such 
as foot pulling acceleration, swing power, and ground 
impact force, ultimately resulting in improved walking 
speeds and more efficient system of muscle strength for 
gait [81–85]. A study using ankle weights to measure 
improvement in muscle strength after FES treatment for 
AIS A–C patients unable to stand demonstrated an aver-
age of 2–4× increase in power output in a 12 week study 

Fig. 1  Functional electrical stimulation parameters: pulse duration, pulse amplitude, and pulse frequency
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Fig. 2  Pulse shapes for functional electrical stimulation

Fig. 3  Closed and open loop systems. Open loop systems do not provide feedback. Closed loops systems have a feedback loop that continuously 
sends information back to the controller to self-correct
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[76]. Additionally, FES has also been shown to improve 
patient transitions, spasticity, cardiovascular function, 
and pain [86–89]. Lastly, recent evidence has found that 
electrical stimulation increases the success rate of spinal 
fusion [90]. As such, functional or direct electrical stimu-
lation could potentially be used to reverse and counter 
the bone loss and risk of fragility fracture in SCI patients.

Neuroprosthesis
FES technology has been integrated into neuropros-
theses to control paralyzed muscles and improve func-
tional independence. These systems comprise four 
major parts: the electrical stimulator, electrodes, sen-
sors, and an orthosis. The electrical stimulator generates 
the electrical discharges that produce muscle contrac-
tions. These stimulators contain multiple channels, with 
each channel consisting of a pair (anode and cathode) of 
electrodes. Multiple channels are used to stimulate mul-
tiple muscles individually to produce functional move-
ment. Electrodes are the interface between the external 
circuitry and the tissue and can be transcutaneous or 
implantable. Transcutaneous systems are noninvasive, 
do not require surgery, and are easy to reposition [74]. 
They can be connected to an external stimulator worn 
around the body that regulates and initiates the electri-
cal stimulation, however, these systems are not suitable 
for stimulation of deep muscles and do not consistently 
achieve effective stimulations [73]. Implanted electrodes 
are surgically placed in the body, which allows for precise 
placement and direct stimulation of the desired muscles, 
resulting in repeatable and well-controlled contractions 
[73]. While reliable and effective, they have higher risks 
of complications, such as infections, due to their invasive 
nature. Additionally, their placement cannot be modi-
fied without additional surgery [51, 91, 92]. Sensors pro-
vide the biofeedback for the neuroprosthesis to achieve 
maximum functionality. Feedback-based control systems 
monitor the musculoskeletal system to alter the stimula-
tion parameters in real time to achieve the desired move-
ment. Finally, an orthosis provides additional structural 
assistance to perform desired movement by preventing 
muscle fatigue and helping patients conserve energy [93].

Hand and arm control are the most desired functions 
for patients with cervical SCI. FES neuroprosthesis have 
been developed to facilitate upper limb functions of 
reaching and grasping. The Freehand system developed 
by Hunter Peckham, Ron Triolo, and colleagues at the 
Cleveland FES Center was the first hand system to be 
granted United States Food and Drug Administration 
(FDA) approval [94]. The system consisted of implant-
able electrodes and a joystick to control the device. 
While it is no longer commercially available, a newer ver-
sion, referred to as the implanted stimulator-telemeter 

(IST-12), was developed by the same team and has shown 
promising results in a clinical trial for improving the abil-
ity to grasp and manipulate objects [95].

After SCI, atrophied trunk musculature often lacks the 
required forces to control posture [96, 97]. Continuous 
FES can be used to stiffen trunk and hip extensors to sta-
bilize the torso, correct kyphotic posture, improve venti-
lation, and normalize lateral vertebral alignment [98, 99]. 
Implanted electrodes at L1–L2 recruit lumbar erector 
muscles in combination with electrodes that activate the 
gluteus maximus improve trunk and hip extension. By 
activating these muscles, patients experience improved 
seated stability, seated posture, and enhanced bimanual 
reach [98]. However, this improvement cannot be main-
tained without constant stimulation. Further research is 
underway in a clinical trial investigating a trunk neuro-
prosthesis that is surgically implanted to facilitate trunk 
stability while sitting [100].

Neuroprostheses have shown promise in restoring the 
ability to stand and walk. FES used in combination with 
an ankle foot orthosis to provide support has helped 
patients activate the muscles in the lower extremity 
necessary for standing and walking [93]. Patients with 
implanted neuroprosthesis electrodes that continuously 
activate the erector spinae and gluteus maximus muscles 
for trunk and hip extension have been shown to maintain 
standing for greater than 10  minutes [101]. This small 
time frame enables patients to access wheelchair inac-
cessible areas and to utilize their upper extremities for 
activities other than maintaining balance with assistive 
devices. Furthermore, neuroprostheses have successfully 
reduced the torque and power output needed to initi-
ate walking movement [102]. One of the most success-
ful neuroprostheses for walking is Parastep. Parastep is 
an FDA approved device that uses transcutaneous elec-
trodes over the peroneal nerves to allow ambulation 
[103]. Lower extremity neuroprostheses still face signifi-
cant limitations due to the rapid onset of muscle fatigue 
and upper-body effort required to maintain balance with 
an ambulatory assistive device. A clinical trial is currently 
underway to investigate a new standing neuroprosthesis 
that uses multiple contact peripheral electrodes to slow 
fatigue onset and increase standing duration [104].

Phrenic nerve pacing
High cervical spinal injuries carry the risk of altering res-
piratory function, which can result in respiratory failure. 
An alternative to ventilator dependence is diaphragmatic 
pacing via electrical stimulation of the phrenic nerve 
[105]. Phrenic nerve pacing has been used successfully 
for over 30 years, and a variety of implanted systems have 
been developed and commercialized [106]. Phrenic pac-
ing has been shown to reduce time on the ventilator and 
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may provide a full-time alternative to a ventilator [107]. 
Phrenic nerve pacing requires intact nerve function. 
However, pacing was recently achieved in patients with 
high cervical SCI (C3–5) and loss of phrenic nerve func-
tion via intercostal nerve grafting and implantable elec-
trodes [108].

Spinal cord stimulation
Spinal cord stimulation (SCS) is a neuromodulation 
technique used to treat neuropathic pain by virtue of its 
purported effect of blocking the transmission of pain sig-
nals through nociceptive nerve fibers entering the dorsal 
horn, similar to TENS [109]. SCS involves transcutane-
ous electrodes placed on the skin over the vertebral col-
umn or implanted epidural electrodes in the dorsal spinal 
cord. Increasing evidence shows that SCS also improves 
motor function via neuroplasticity following SCI [60, 
110]. Recently, transcutaneous SCS has been shown to 
increase upper and lower extremity function, compa-
rable to implanted SCS [111–117]. These findings are 
controversial and the rationale for the current Up-LIFT 
clinical trial that seeks to evaluate the effectiveness of 
noninvasive electrical SCS in treating upper extremity 
functional deficits in patients with chronic tetraplegia 
[118]. The advantages of transcutaneous SCS include its 
noninvasive application, affordability, and compatibility 
with conventional and commercially available stimula-
tion devices. Recent advances in SCS include the delivery 
of spatiotemporal stimulation based upon gait kinemat-
ics and locomotor performance. However, this technol-
ogy will require implantation for the foreseeable future 
to target specific areas of the spinal cord and stimulate 
unique muscles with precise timing. Implanted devices 
that can apply complex spatiotemporal patterns have 
reproduced voluntary control of locomotion in severely 
paralyzed patients [119–121]. Clinical trials are under-
way evaluating SCS in recovering lower extremity, blad-
der, bowel, and sexual function [122, 123]. Additionally, 
both transcutaneous and implanted SCS have been 
shown to improve autonomic cardiovascular dysfunction 
that occurs after SCI [124].

Autonomic neuromodulation
SCI disrupts sympathetic vasomotor control, result-
ing in severe cardiovascular dysfunction. While phar-
macological treatment of autonomic nervous system 
(ANS) regulation has demonstrated limited effective-
ness, device-based neuromodulation has been shown to 
successfully modulate the cardiac ANS [125, 126]. Vagal 
nerve stimulation (VNS) has been shown to promote 
synaptic plasticity and improve autonomic instability and 
motor control in preclinical models with the potential to 
treat dysautonomia related to SCI [127–130].

An alternative method of autonomic neuromodulation 
is translingual neurostimulation. Translingual neuro-
stimulation is a noninvasive method used to elicit neural 
changes in cranial nerves by targeting the anterior por-
tion of the tongue activating the lingual branch of the 
trigeminal nerve [131, 132]. Prior research has shown 
that this method induces changes in the brainstem and 
cerebellum, specifically targeting areas important for 
postural drive [132–135]. As such, studies have shown 
improvement in balance and gait function in patients 
following SCI, stroke, and traumatic brain injury (TBI) 
[136–138].

Sacral nerve stimulation
Sacral nerve stimulation (SNS) has been established as a 
treatment for urinary retention, frequency, and inconti-
nence [139, 140]. Sacral nerve stimulation restores nor-
mal bladder function by facilitating storage and voiding 
and suppressing reflex bladder activity through adaptive 
neuronal plasticity [141]. SNS has successfully treated 
neurogenic bladder dysfunction via implanted sacral and 
transcutaneous sacral root, posterior tibial, and dorsal 
genital nerve stimulation [142–145].

Galvanic vestibular stimulation
Galvanic vestibular stimulation (GVS) applies current at 
the mastoid process and activates afferent fibers of the 
vestibular nerve. Vestibulospinal neurons converge on 
spinal interneurons, promoting inhibitory or excitatory 
actions. These actions affect the tone of postural muscles, 
where stimulation of the anode results in hypotonia and 
stimulation of the cathode results in hypertonia. GVS can 
modulate the vestibulospinal tract and has been used to 
supplement the neurological examination by diagnosing 
and quantifying vestibulospinal deficits in patients with 
incomplete SCI [146]. GVS has been shown to reduce 
spasticity in SCI patients, and increase postural stability 
[147, 148].

Transcranial direct current stimulation
Transcranial direct current stimulation (tDCS) is a non-
invasive approach that delivers low-intensity direct 
current via electrodes placed on the head. tDCS is 
hypothesized to promote neuronal plasticity by alter-
ing membrane potential and cortical excitability [149]. 
Whether tDCS is depolarizing or hyperpolarizing, and 
inhibitory or excitatory, depends on the exact spatial 
locations of the contacts, the current path, the underly-
ing geometry of the brain, and the degree of shunting to 
the scalp and skull. tDCS has been combined with motor 
training to promote activity-dependent neuronal plas-
ticity, and has been shown to improve manual dexterity 
[150–152]. However, improvements in lower extremity 
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motor function remain controversial [153]. A clinical 
trial is currently underway to investigate transcutaneous 
direct current stimulation (tcDCS) on walking function 
in individuals with incomplete SCI [154]. Variations of 
tDCS include alternating current stimulation (ACS) and 
oscillating field stimulation (OSF). ACS delivers tran-
scranial alternating current electrical stimulation and 
has been shown to decrease pain perception and increase 
muscle work in SCI patients [155]. OSF has shown prom-
ise for remyelination and axon regeneration in preclinical 
models, but failed to significantly improve motor status 
in humans [156–158].

Future directions
Current trends in health care delivery have encour-
aged research in methods to deliver FES on an outpa-
tient basis. One solution is a garment-based stimulation 
technology developed by the textile computing com-
pany Myant (Toronto, Canada) (Fig. 4). These garments 
combine cloth with silver thread or conductive layers to 
embed electrodes into the clothing to deliver electrical 

stimulation. These wearable garments should be cus-
tomizable, cost effective, versatile, and durable compared 
with alternative options, and allow for independent appli-
cation by the patient [159].

Previously, TENS/FES/SCS has been used to restore 
function using various command interfaces including 
electromyography (EMG), voice recognition, mouth 
sticks, chin-controlled joysticks, sip-and-puff, inertial 
measurement units (accelerometer, gyroscope), eye gaze, 
head tracking, and tongue movement [160–167]. Brain–
computer interfaces (BCI) are an emerging technology 
with the potential to be used in SCI rehabilitation. Elec-
troencephalogram (EEG)-based BCI has been shown to 
translate a task-related motor intention neural signal into 
a specific command [168]. Recently, progress has been 
made in using intracortical brain–computer interfaces 
to interpret intended movement signals and command 
transcutaneous and intramuscularly implanted FES elec-
trodes to generate the intended movements of reaching 
and grasping [169–173]. Furthermore, clinical trials are 
underway investigating a spine interface that will bridge 

Fig. 4  Myant wearable garments. Garments can be worn under clothes and provide stimulation through electrodes embedded into clothing. 
Permission to print photos granted by Myant (Toronto, Canada)
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spinal cord lesions by interpreting neural information 
above a lesion and transmitting it to electrodes below the 
lesion [174].

Neuromodulation for SCI
The direction of care for patients with SCI can often be 
complex given the numerous modalities available to 
assist in rehabilitation. Spinal surgeons may be inclined 
to place any number of implantable devices during the 
index spinal cord stabilization surgery. Unfortunately, 
due to the nature of SCI, the full extent of a patient’s 
functional limitations may not be known until signifi-
cant time has passed. As such, this poses a challenge for 
determining the proper intervention early in the disease 
course when early intervention could drastically improve 
long-term functional recovery.

Preoperatively, spine surgeons must consider the extent 
of SCI using objective scales such as the AIS, as well as 
their own clinical judgement regarding the long-term 
recovery of the patient. In the future, surgeons may uti-
lize advanced diffusion tactography sequences on mag-
netic resonance imaging (MRI), which have been shown 
to detect functional changes in SCI patients to help pre-
dict outcomes and guide treatment [175]. Although the 
entire course of a SCI is difficult to predict at onset, cer-
tain extremes of injury can be predicted based on initial 
examination findings. These dysfunctional injuries may 
benefit from early intervention in high probability areas 
of functional impairment. For example, a patient with 
complete cord transection resulting from high cervi-
cal spinal injury will almost surely be placed on a venti-
lator for immediate life-saving support and, therefore, 
have a high likelihood of showing early improvement 
with a phrenic nerve pacer to prevent atrophy of res-
piratory musculature. The implication of such interven-
tions would be the prevention of multiple surgeries when 
anticipated sequelae could be prevented during the index 
procedure.

Early neurorehabilitation with electrical stimula-
tion has the potential to reduce morbidity and mortal-
ity in patients with SCI. Future research should focus on 
ways to organize and plan early management to prevent 
unnecessary surgeries, while increasing functionality and 
recovery. Additionally, further consideration is required 
to compare the risks and benefits of these interventions 
as technology continues to flourish in the wake of faster, 
more precise, and effective techniques.

Conclusion
Electrical stimulation can be used in various forms to 
improve the well-being and functionality of patients with 
SCI. The scope of electrical stimulation continues to 
grow as more advanced technologies and interventions 

are developed and studied. The neuroplasticity induced 
by electrical stimulation portends a promising future 
for developing better therapeutic interventions that can 
lessen the functional disability and enhance the qual-
ity of life of patients with SCI. The prevalence of elec-
trical stimulation will likely increase in the future, with 
neuroprosthetic devices playing an important role in 
rehabilitation.
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