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Abstract

Endogenous opioid regulation of neurohypophysial and
hypothalamo–pituitary–adrenal (HPA) axis hormone
secretion in response to forced swimming (90 s in deep
water at 19 )C) was investigated in virgin and 21-day-
pregnant rats. There was no difference in basal plasma
oxytocin concentrations between pregnant and virgin rats,
but the opioid antagonist, naloxone, increased basal oxy-
tocin secretion in the pregnant rats. Forced swimming
increased oxytocin secretion similarly in pregnant and
virgin rats, and this response was enhanced by naloxone. In
pregnant rats naloxone had a greater effect (by 3·1-fold)
than in virgins, showing stronger endogenous opioid
restraint of an enhanced oxytocin secretory response to
stress in pregnancy. Vasopressin secretion was not in-
creased with forced swimming in virgin or pregnant rats,
and naloxone had no effect. ACTH and corticosterone
secretion in response to forced swimming was attenuated
in pregnant rats compared to virgin rats, measured at

5 min. Naloxone had no effect on basal plasma ACTH or
corticosterone concentration, but it reduced ACTH secre-
tion in virgin rats 5 min after forced swimming; in
pregnant rats naloxone had no such effect. Naloxone
removed the pregnancy-related attenuation in corticoster-
one secretion measured at 5 min after forced swimming.
Fifteen minutes after forced swimming, plasma cortico-
sterone concentrations were not different between groups.
In the late-pregnant rats, the increases in plasma ACTH
and corticosterone induced by forced swimming were
significantly prolonged compared to virgins. The results
show that endogenous opioid inhibition emerges in preg-
nancy to restrict the responses of oxytocin neurones to a
stressor. In contrast, the endogenous opioid enhancement
of mechanisms regulating HPA axis secretory responses in
virgin rats is not evident during pregnancy.
Journal of Endocrinology (1998) 158, 285–293

Introduction

In addition to the well-known stimulation of
hypothalamo–pituitary–adrenal (HPA) axis hormone
secretion by a wide variety of stressors, there are robust
neurohypophysial secretory responses to stressors; for
example, forced swimming, immobilisation, social defeat
and intraperitoneal hypertonic saline induce increased re-
lease of oxytocin into the blood (Lang et al. 1983, Gibbs
1986, Wotjak et al. 1996), whereas ether, haemorrhage,
hypoxia and noxious stimuli increase the release of vaso-
pressin (Gibbs 1986, Yagi 1992). Oxytocin secretion in
response to a stressor is restrained by endogenous opioids in
female, but not in male, rats (Carter et al. 1986, Carter &
Lightman 1987a), and opioids also influence HPA axis
activity (Buckingham & Cooper 1984, Plotsky 1986, Suda
et al. 1992, Calogero 1996). Both oxytocin and HPA
axis stress responses are reduced in lactation (Carter &

Lightman 1987b, Higuchi et al. 1988, Walker et al. 1995,
Windle et al. 1997). We have recently shown that the HPA
axis response to stress is attenuated in pregnancy from day
15 onward (Neumann et al. 1998) as well as in lactation
(e.g. Walker et al. 1995, Windle et al. 1997). Although
pituitary mechanisms account for part of these inhibited
secretory responses ( Johnstone et al. 1997, Neumann et al.
1998), central, hypothalamic mechanisms are also likely to
play a part, as parvocellular paraventricular nucleus (PVN)
neurone expression of Fos in response to stress is attenuated
in pregnancy (da Costa et al. 1996). Because stimulation of
oxytocin neurone activity and secretion by the brainstem
input are restrained by endogenous opioids in late preg-
nancy (Douglas et al. 1995), and secretion of another stress
hormone, prolactin, is also inhibited by opioids in preg-
nancy (Soaje & Deis 1994), we hypothesised that there
may be a common, central opioid mechanism inhibiting
neuroendocrine stress responses in pregnancy.
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We have now investigated whether endogenous opioids
modify oxytocin secretion in response to a stressor in
pregnancy. We have also compared the secretion of
oxytocin with vasopressin secretion. In addition, we have
sought a role for endogenous opioids in restraining the
HPA axis secretory responses in pregnancy.

Material and Methods

Animals

Virgin female Sprague–Dawley rats (260–290 g body
weight) were mated overnight with sexually experienced
males and pregnancy was confirmed by finding a vaginal
plug of semen (day 1 of pregnancy). Rats were housed
singly under standard laboratory conditions (12 h
light : 12 h darkness cycle, lights on at 0700 h, 22 )C, 60%
humidity, food and water available ad libitum) for at least
7 days before surgery.

Surgery Under halothane anaesthesia and with sterile
procedures, rats were implanted with a chronic jugular
vein catheter (silastic tubing inside diameter 0·5 mm,
outside diameter 0·75 mm, Altec, Alton, UK) 3–4 days
before the experiment. The catheter was filled with
heparinised (20 IU/ml, Multiparin, CP Pharmaceuticals
Ltd, Wrexham, UK) sterile isotonic (0·9% w/v) saline.
After surgery, the rats were housed singly and familiarised
to daily handling.

Effect of naloxone on secretory responses to forced swimming in
pregnant rats

Three to four days after surgery, the effect of naloxone (a
general opioid antagonist) on neurohypophysial and HPA
axis hormone secretory responses to forced swimming was
tested. Blood samples were taken before and after treat-
ment with naloxone or vehicle in virgin (n=7, body
weight 282&6 g; n=8, body weight 286&9 g respect-
ively) and 21-day-pregnant rats (n=7, 364&9 g; n=8,
362&9 g respectively), and subsequently after a period of
forced swimming.

At 0800 h, the catheter was attached to an extension
tubing (polythene, outside diameter 1·0 mm) connected to
a syringe filled with sterile heparinised saline (20 IU/ml),
and the rats were left undisturbed for 90 min. Blood
samples (0·65 ml), substituted immediately by sterile 0·9%
saline, were taken under basal conditions at 0930 h and
1000 h. Then naloxone (5 mg/kg, 50 µl/100 g body
weight) or vehicle was injected i.v. and a further sample
taken 15 min later. After an interval of 20–30 min, rats
were exposed to forced swimming, a combined physical
and emotional stressor (Abel 1994). With the extension
tubing of the venous catheter still attached, rats were
forced to swim for 90 s in a bucket filled with tap water

(19 )C) to a depth of about 40 cm. After the swim, the rats
were gently dried, using towels, for 10 s and returned to
their home cages. Further blood samples were taken 5, 15
and 60 min after forced swimming. All blood samples were
collected on ice in tubes containing EDTA (5% solution,
15 µl/100 µl blood) supplemented with aprotinin (0·039
trypsin inhibitor units/tube; Sigma, Poole, Dorset, UK)
and centrifuged. Plasma samples (200 µl for oxytocin and
vasopressin, 80 µl for ACTH and 50 µl for corticosterone)
were stored at "20 )C until required for assay.

Hormone assays

Oxytocin and vasopressin concentrations were measured
in extracted plasma samples by highly sensitive and selec-
tive radioimmunoassays (limit of detection 0·1 pg/sample;
cross-reactivity of the antisera with other related peptides,
including oxytocin or vasopressin,<0·7%; for a detailed
description see Landgraf 1981).

Plasma ACTH was measured by radioimmunoassay
using a commercially available kit (ICN, Costa Mesa, CA,
USA). The intra- and interassay coefficients of variation
were less than 7 and 10% respectively. Total plasma
corticosterone was measured by radioimmunoassay using a
scintillation proximity method. Briefly, plasma samples
were denatured by incubation in borate buffer (133 mM
boric acid, 68 mM NaOH; pH 7·4, 1 : 9 v/v) containing
bovine serum albumin (0·5%) in a 96 well microtitre plate
(Falcon) at 80 )C for 30 min. Then the samples and a
range of standards were incubated with 3H-corticosterone
(Amersham Life Sciences, Little Chalfont, Bucks, UK;
11 000 c.p.m. per well) and anti-corticosterone antibody
(1 : 10 000 dilution, rabbit anti-rat, a gift from the High
Blood Pressure Unit, Western General Hospital, Glasgow,
UK) in a total volume of 70 µl for 1 h at room tempera-
ture. Scintillation proximity assay reagent (anti-rabbit,
Amersham Life Sciences, 50 µl, which holds antibody-
bound radioactivity in close proximity to scintillant) was
mixed in and incubated for a further 24 h at room
temperature before counting in a â-scintillation counter.
The intra-assay coefficient of variation was 6%.

Statistical analysis

Statistical analysis was performed by means of statistical
software (Sigmastat, Jandel Scientific, Erkrath, Germany).
Data are presented as group means&... Because the
data were from four groups, representing two reproductive
states, and each set contained repeated measurements from
the same animal, two-way analysis of variance (ANOVA,
reproductive state # time) for repeated measures fol-
lowed by Newman–Keuls post hoc test was used to
compare the interactions between all data. One-way
ANOVA was also utilized to compare basal values and
calculated increments in secretory responses. To analyse
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specifically the different responses to stress after naloxone
compared with those after vehicle in the pregnant and
virgin rats, the standard error of the difference between the
means (vehicle- and naloxone-treated) 5 min after forced
swimming was used (t-test, Swinscow 1983). P<0·05 was
considered statistically significant.

Results

Effect of naloxone on neurohypophysial hormone secretory
responses to forced swimming in pregnancy

Two-way ANOVA for repeated measures of the plasma
oxytocin concentrations in all groups showed a significant
difference between groups (P<0·001) and across time

(P<0·001); all other specific comparisons were derived
from post hoc tests (P<0·05), unless stated otherwise. Basal
plasma oxytocin concentration was not significantly differ-
ent between virgin and pregnant rats, and after forced
swimming, plasma oxytocin concentration increased sig-
nificantly in all groups within 5 min after the swim
compared with values before the swim (Fig. 1a); there was
no significant difference in the response between the
vehicle-treated virgin and pregnant rats. Within 15 min
after the forced swimming, the plasma oxytocin concen-
tration had returned to pre-stress values in the virgin and
vehicle-treated pregnant rats. Naloxone increased basal
plasma oxytocin significantly only in pregnant rats (one-
way ANOVA for repeated measures, P<0·05, Fig. 1a).
Naloxone also significantly enhanced the oxytocin

Figure 1 Effect of naloxone on neurohypophysial hormone secretory responses to forced
swimming in pregnancy. Plasma oxytocin (a) and vasopressin (b) concentrations in virgin,
vehicle-treated (VEH, ,, n=7) and naloxone-treated (NLX, , n=8) rats, and in 21-day-
pregnant vehicle-treated (., n=7) and naloxone-treated (/, n=8) rats. Newman-Keuls post
hoc tests, *P<0·05 compared with before swim in all groups; †P<0·05 compared with all
other groups at same time point. +P<0·05 pregnant naloxone-treated group compared with
pregnant vehicle-treated group and compared with before injection (P<0·01 one-way
ANOVA for repeated measures). #P<0·01, t-test, increment in plasma oxytocin above basal
in virgin naloxone-treated group compared with virgin vehicle-treated group.
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secretory response to forced swimming in both virgin
(5·1-fold greater than basal concentration, compared with
2·6-fold greater in vehicle-treated virgin rats; P<0·01,
t-test, Fig. 1a) and pregnant rats (15·9-fold greater than
basal concentration, compared with 1·9-fold greater than
basal in vehicle-treated pregnant rats; P<0·0001, t-test,
Fig. 1a); the effect of naloxone in pregnancy was 3·1-fold
greater than in virgins. Plasma oxytocin concentration
remained increased in the naloxone-treated pregnant rats
15 min after the swim, but returned to the concentration
recorded before the swim in the naloxone-treated virgin
rats.

Basal plasma vasopressin concentration was not signifi-
cantly different between pregnant and virgin groups, and
did not alter after naloxone or with forced swimming in
any group (Fig. 1b).

Effect of naloxone on HPA axis secretory responses to forced
swimming in pregnant rats

ACTH Two-way ANOVA for repeated measures of the
plasma ACTH concentrations in all groups showed a
significant interaction between time and group (P<0·001);
all other specific comparisons were derived from post hoc
tests (P<0·05), unless stated otherwise. Basal plasma con-
centrations of ACTH did not differ significantly between
virgin and day 21 pregnant rats; forced swimming signifi-
cantly increased ACTH secretion in both groups com-
pared with values before the swim and basal values,
reaching a maximum at 5 min after the swim (Fig. 2a).
The ACTH response to forced swimming was signifi-
cantly lower in pregnant rats compared with that in virgin
controls (Fig. 2a), and in the virgin rats the plasma ACTH
concentration was significantly less 60 min after the forced
swimming than at the peak response, whereas there was
no significant decrease in the pregnant–vehicle group
(Fig. 2a). Naloxone alone had no significant effect on
ACTH concentrations within 15 min after administration
in either virgin or pregnant rats (Fig. 2a). However,
naloxone significantly attenuated the secretory response to
swimming in virgins and there was a significant difference
between the virgin vehicle-treated group and all other
groups at 5 min after the stress stimulus; the plasma ACTH
concentration in naloxone-treated pregnant rats did not
differ from that in vehicle-treated pregnant rats (Fig. 2a).
The increase in plasma ACTH 5 min after forced swim-
ming, calculated as the difference from the mean basal
concentration, was 245&46 pg/ml in virgin rats and the
increases in vehicle-treated pregnant (118&20 pg/ml)
and naloxone-treated virgin and pregnant rats
(154&30 pg/ml, 151&16 pg/ml respectively) were sig-
nificantly less (one-way ANOVA, P<0·05). Naloxone did
not significantly affect the plasma concentration of ACTH
at 60 min after the swim. Further analysis showed that the
effect of naloxone on the stress response was significantly
different (P<0·05) between virgin and pregnant rats (t-test

on the difference between the plasma ACTH concen-
tration in the naloxone- and vehicle-treated groups after
forced swimming and the calculated ... of the differ-
ence between the two independent means: virgins
"103&58 pg/ml; pregnant +40&29 pg/ml).

Corticosterone Two-way ANOVA for repeated
measures of the plasma corticosterone concentrations in all
groups showed a significant interaction between time and
group (P<0·0001); all other specific comparisons were
derived from post hoc tests (P<0·05), unless stated other-
wise. Basal plasma concentrations of corticosterone did not
differ between virgin and day 21 pregnant rats, and forced
swimming significantly increased corticosterone secretion
compared with values before the swim and basal values in
all groups (Fig. 2b); the corticosterone secretory response
to forced swimming in pregnant rats was significantly
less than that in virgin rats (at 5 min after the swim only;
Fig. 2b). There were no differences among the groups at
15 min after the swim, although concentrations remained
similar to those at 5 min within groups. Sixty minutes after
the forced swimming, in the pregnant rats the plasma
corticosterone concentration had not decreased from the
high concentrations at either 5 or 15 min, but that in the
virgin rats had returned to basal values (Fig. 2b). Naloxone
had no significant effect on basal corticosterone concen-
tration compared with vehicle within 15 min after admin-
istration and did not significantly affect the secretory
response to stress in virgins (Fig. 2b); however, the
corticosterone concentration 5 min after swimming in
pregnant rats treated with naloxone was significantly
greater than that in the vehicle-treated pregnant rats
(Fig. 2b). The increments in plasma corticosterone 5 and
15 min after forced swimming, compared with the mean
basal concentration, did not show any significant differ-
ences (one-way ANOVA, P=0·38, P=0·94 respectively,
data not shown). Naloxone did not significantly affect
the plasma corticosterone concentrations at 60 min after
the swim. Further statistical analysis (t-test on the differ-
ence between the plasma corticosterone concentration
in naloxone- and vehicle-treated groups after forced
swimming and the calculated ... of the difference
between the two independent means) showed that the
effect of naloxone on the stress response was significantly
different (P<0·05) between virgin and pregnant rats
5 min after stress (virgins "60&66 ng/ml; pregnant
+200&62 ng/ml).

Discussion

We have shown that the oxytocin secretory response to
forced swimming (a combined physical and emotional
stressor, Abel 1994) persists into late pregnancy, with no
differences in plasma concentrations between pregnant
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Figure 2 Effect of naloxone on HPA axis secretory responses to forced swimming in
pregnancy in the same groups of rats as in Fig. 1. Data are mean&S.E.M. plasma ACTH (a)
or corticosterone (b) concentration in vehicle-treated virgin rats (.) and 21-day-pregnant
rats (cross-hatched columns), and naloxone-treated virgin rats (stippled columns) and
21-day-pregnant rats (stippled, cross-hatched columns). Two blood samples were taken
before vehicle or naloxone treatment (Basal is the mean of these), further blood samples
were taken 5 and 15 min after treatment (post NLX/VEH is the mean of these) and 5, 15
and 60 min after forced swimming (Post SWIM). (a) Newman-Keuls post hoc tests,
*P<0·05 compared with before swim; †P<0·05 compared with virgin vehicle-treated group
at same time point; +P<0·05 compared with peak secretion at 5 min after swim in same
animals. (b) Newman-Keuls post hoc tests, *P<0·05 compared with before swim; †P<0·05
compared with virgin vehicle-treated group at same time point; +P<0·05 compared with
same groups at 5 and 15 min.
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and virgin rats (see also Neumann et al. 1988); this
contrasts with lactation, when the oxytocin secretory
response to a stressor is greatly reduced (Carter &
Lightman 1987b, Higuchi et al. 1991, Neumann et al.
1995). Oxytocin secretion in response to forced swimming
in pregnancy was strongly enhanced by naloxone, which
thus indicates that endogenous opioids actually mask an
exaggerated response after exposure to this stressor. The
lack of a vasopressin response to the forced swim stress
used in our studies is consistent with previous reports of
findings in male and female rats (Lang et al. 1983, Kasting
1988, Wotjak et al. 1996), and shows a highly selective
activation of the neurohypophysial oxytocin system by the
swim stressor. Oxytocin secretory responses to stress,
therefore, are restrained by endogenous opioids during
pregnancy. Endogenous opioids have previously been
demonstrated to inhibit oxytocin, but not vasopressin,
secretory responses to immobilisation stress in male
(Samson et al. 1985) and female virgin rats (Carter et al.
1986), and we now show similar endogenous opioid
inhibition of oxytocin responses to forced swimming in
female rats. Both µ- and ê-opioid systems may be respon-
sible (Carter & Lightman 1987a). Endogenous opioids are
co-localised and co-secreted with oxytocin and vasopressin
(Watson et al. 1982, Meister et al. 1990) and there is
substantial evidence that endogenous ê-opioids restrain
stimulated oxytocin secretion at the level of the neurose-
cretory terminals in the neurohypophysis (Bicknell & Leng
1982). However, previous studies have indicated that, at
the level of the neurohypophysis, endogenous ê-opioid
inhibitory mechanisms are down-regulated at the end of
pregnancy (Sumner et al. 1992, Douglas et al. 1993),
suggesting a greater role for µ-opioids, which act centrally
and not at the neurohypophysis (Russell et al. 1993).

It is clear that endogenous µ-opioids strongly inhibit
oxytocin neurone activity and secretion in late pregnancy
(Douglas et al. 1995), and that this is manifest mainly on
oxytocin neurone cell bodies and their inputs, rather than
on the nerve terminals in the neurohypophysis (Douglas
et al. 1993). The present study has demonstrated that an
endogenous opioid mechanism not only restrains oxytocin
secretion from an expanded neurohypophysis store in
pregnancy (Douglas et al. 1993), but also strongly restricts
the oxytocin neurone response to forced swimming in
pregnancy, as with responses to other stimuli, such as
peripheral administration of cholecystokinin during gesta-
tion (Douglas et al. 1995), and to birth (Hartman et al.
1986, Leng et al. 1987, 1988, Lawrence et al. 1992). This
action could be on oxytocin cell bodies themselves, as they
have opioid receptors (Inenaga et al. 1994, Sumner et al.
1992), or on the input pathways to these neurones
mediating the stress stimulus, perhaps from the brainstem
(Onaka et al. 1995). However, endogenous opioids are not
responsible for the reduced responsiveness of oxytocin
neurones to osmotic stimulation in pregnancy (Bull &
Russell 1992), or to electrical stimulation of lamina

terminalis (Bull et al. 1994) and thus there is likely to be a
selective action of opioids on inputs to oxytocin neurones.
No consistent changes have been described in magno-
cellular or parvocellular neurone prodynorphin or
proenkephalin A mRNA expression, which are indicators
of opioid synthesis, in pregnancy (Schriefer 1991, Douglas
& Russell 1994, Douglas et al. 1993). However, an
increased hypothalamic content of â-endorphin (Wardlaw
& Frantz 1983, Dondi et al. 1991, Broad et al. 1993) and
pro-opiomelanocortin mRNA in the arcuate nucleus
(Redmond et al. 1996) have been described before par-
turition, which may account for the central endogenous
opioid influence on oxytocin neurones in pregnancy.

In parturition, the increased secretion of oxytocin is
reduced by the stress of environmental disturbance and the
intervals between pup births increase (Leng et al. 1987,
1988). The evident dichotomy between these reports and
the stimulation of oxytocin secretion by stressors in virgin
female and male rats in other previous studies (Lang et al.
1983, Gibbs 1986, Carter & Lightman 1987b, Wotjak
et al. 1996) and in the present study on pregnant rats, may
be apparent rather than real. Thus the effects of a stressor
on oxytocin secretion in parturition could be secondary to
the slowing of parturition through another mechanism,
with consequent reduced positive feedback stimulation of
oxytocin secretion. The effect of naloxone to increase
oxytocin secretion in these environmentally disturbed rats
(Leng et al. 1987) may simply reveal the underlying
stimulatory effect of environmental stress on oxytocin
secretion as in pregnancy.

This study confirms that secretion of ACTH and
corticosterone in response to a stressor are reduced during
late pregnancy (Neumann et al. 1998) and this is compar-
able to the reduced HPA axis response to stressors pre-
viously reported in lactation (e.g. Walker et al. 1995).
Naloxone attenuated the increase in ACTH concentration
in virgins in response to forced swimming, revealing that
endogenous opioids enhance ACTH secretory responses.
Naloxone did not attenuate ACTH secretion in response
to forced swimming in pregnant rats, indicating loss of
the endogenous opioid-enhancing effects on the ACTH
secretory response seen in virgin rats. Corticosterone
responses showed a trend similar to those of the ACTH
responses: there was a pregnancy-related attenuation in
corticosterone concentration 5 min after forced swimming
and naloxone reversed this; also, high ACTH and cortico-
sterone concentrations after the swim were prolonged in
pregnant rats compared with those in virgin rats. How-
ever, naloxone did not cause a decrease in the corticoster-
one response to forced swimming in virgin or pregnant rats
at either 5 or 15 min after the swim, although the cortico-
sterone response in virgin rats was not significantly greater
than that in virgin or pregnant rats given naloxone. This is
in contrast with the response of ACTH, perhaps because
the maximal response of the adrenal cortex to ACTH is
limiting (Keller-Wood et al. 1984). In addition, adrenal
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sensitivity to ACTH is increased in pregnancy (Carr et al.
1981, Dupouy et al. 1975, Waddell & Atkinson 1994), and
therefore changes in corticosterone concentration will not
necessarily parallel those of ACTH.

We have previously shown that, in pregnancy, down-
regulated anterior pituitary mechanisms contribute to the
attenuated HPA axis responses, as there is a reduced
pituitary ACTH secretory response to exogenous
corticotrophin-releasing hormone (CRH) in vivo
(Neumann et al. 1998), attenuated cAMP production in
response to CRH in vitro and decreased CRH receptor
binding ( Johnstone et al. 1997). We have now shown that,
in pregnancy, the enhancing action of endogenous opioid
on ACTH release in response to forced swimming, which
is normally seen in virgins, is removed. The reduction in
ACTH secretion in response to the stressor after naloxone
in virgins is consistent with the findings of previous studies
showing that opioid antagonists reduce ACTH and corti-
costerone secretion in response to a stressor in male rats
(degli Uberti et al. 1995). Naloxone is likely to be exerting
its effects on the HPA axis via the hypothalamus (Wang
et al. 1996), and thus may affect hypothalamic–pituitary
mechanisms through CRH release. µ-Opioids appear to
mediate the naloxone-induced reduction in stress re-
sponses (Cover & Buckingham 1989), whereas ê- and
ä-opioids may modulate HPA axis hormone secretion
under basal conditions (Iyengar et al. 1986, Plotsky 1986).
The ê-opioid effects probably occur within both the
hypothalamus (Nikolarakis et al. 1987) and the anterior
pituitary (Calogero 1996). We are not aware of any direct
action of naloxone on the adrenal cortex.

The removal of endogenous opioid enhancement on
central mechanisms regulating HPA axis responses to
stressors in pregnancy may partly underlie the reduced
activation of parvocellular PVN neurones by immobilis-
ation (da Costa et al. 1996) and decreased CRH mRNA
expression in the PVN (Douglas & Russell 1994).
Together, these changes constitute evidence for reduced
feed-forward activity in the hypothalamo–pituitary com-
ponent of the HPA axis in pregnancy. The prolonged
increase in ACTH and corticosteroid secretion after stress
in the pregnant rats is evidently not consistent with
enhanced fast negative feedback in pregnancy, but is
consistent with either a prolonged adrenocortical secretory
response or reduced metabolic clearance, perhaps as a
result of increased circulating corticosteroid binding
globulin in pregnancy (Seal & Doe 1967). Maternal plasma
corticosterone concentrations may be additionally contrib-
uted to by the fetus (Dupouy et al. 1975). In addition,
increased oxytocin secretion after the swimming stress may
enhance the secretion of ACTH or corticosterone, or both,
by actions on the corticotrophs or adrenal cortex (Samson
& Schell 1995, Stachowiak et al. 1995, Link et al. 1993).

The placenta limits the exposure of the fetus to high
concentrations of maternal HPA axis hormones, as ACTH
does not cross from the maternal to the fetal circulation

(Dupouy et al. 1980) and the transfer of glucocorticoid is
regulated by several placental enzymes, of which 11â
hydroxysteroid dehydrogenase Type II (Seckl et al. 1995)
predominates in the last few days of pregnancy, inactivat-
ing corticosterone (Burton & Waddell 1994). Thus the
reduced immediate peak ACTH secretory response to the
stressor in pregnancy may act in concert with placental
mechanisms to protect the fetus from excessive concen-
trations of corticosteroid toward the end of pregnancy
which could have potentially lifelong deleterious effects
(Weinstock 1997). Possible changes in feedback mech-
anisms in pregnancy are currently under further
investigation.

In conclusion, oxytocin neurone secretory responses to
exposure to forced swimming are not reduced, but are
instead strongly restrained from responding in an exagger-
ated fashion, by endogenous opioids in late pregnancy.
This opioid restraint will contribute to conservation of the
neurohypophysial store of oxytocin for primary use in
promoting uterine contractions in parturition, when about
a third of the oxytocin content is depleted within about 2 h
(Fuchs & Saito 1971). HPA axis secretion in pregnancy in
response to forced swimming is no longer stimulated by
endogenous opioids, which may contribute to protecting
the fetus from exposure to excessive concentrations of
corticosteroid in the mother during initial responses to
stress.
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