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The role of energy storage in deep decarbonization
of electricity production
Maryam Arbabzadeh1, Ramteen Sioshansi2, Jeremiah X. Johnson3 & Gregory A. Keoleian 1

Deep decarbonization of electricity production is a societal challenge that can be achieved

with high penetrations of variable renewable energy. We investigate the potential of energy

storage technologies to reduce renewable curtailment and CO2 emissions in California and

Texas under varying emissions taxes. We show that without energy storage, adding 60 GW

of renewables to California achieves 72% CO2 reductions (relative to a zero-renewables

case) with close to one third of renewables being curtailed. Some energy storage technol-

ogies, on the other hand, allow 90% CO2 reductions from the same renewable penetrations

with as little as 9% renewable curtailment. In Texas, the same renewable-deployment level

leads to 54% emissions reductions with close to 3% renewable curtailment. Energy storage

can allow 57% emissions reductions with as little as 0.3% renewable curtailment. We also

find that generator flexibility can reduce curtailment and the amount of energy storage that is

needed for renewable integration.
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D
ue to cost decreases1,2, renewable energy is experienc-
ing greater use (https://www.eia.gov/outlooks/steo/pdf/
steo_full.pdf). Many jurisdictions have policies in place to

incentivize renewable use (http://www.dsireusa.org/). These
policies are often intended to decrease the carbon-intensity of
electricity production.

The role of energy storage in aiding the integration of renew-
able energy into electricity systems is highly sensitive to the
renewable-penetration level3. California, for instance, is experi-
encing days during which demand is too low to accommodate all
of the solar energy that is available midday4. This overgeneration-
related renewable curtailment can be exacerbated by thermal
generators having limited flexibility in how quickly they can
adjust their production or how low their production levels
can go5.

The development and deployment of grid-scale energy storage
is advancing due to technology development and policy actions,
such as California’s energy storage mandate6,7. Energy storage
can provide a variety of services and its economic rationale is
highly application-dependent8. Numerous studies optimize the
size and operation of energy storage within a specific power
system to achieve the best economic or environmental outcome.
However, there are no studies in the extant literature that
investigate systematically the economic viability of using energy
storage to alleviate renewable curtailment for the purposes of
decarbonizing electricity production. Moreover, the existing lit-
erature does not examine the impacts of emissions policy, such as
a carbon tax, on the economics of energy storage for mitigating
renewable curtailment. Detailed analysis is required to estimate
the value of energy storage that is used for different applications,
including renewable integration9. This study addresses this gap by
optimizing the investment in and operation of nine currently
available energy storage technologies to minimize cost of the
California and Texas power systems. We assume varying
renewable penetrations and different CO2-tax policies.

Energy storage technologies have different characteristics and
potential applications10–13. As such, no single technology excels
on all characteristics. Integrating energy storage into the grid can
have different environmental and economic impacts, which
depend on performance requirements, location, and character-
istics of the energy storage system14–16. The cost of energy storage
systems and regulatory challenges are major obstacles to their
adoption13,17–19. Braff et al.20 examine the value of using energy
storage to increase the price at which wind and solar energy can
be sold in wholesale markets. They find that many energy storage
technologies are currently too costly for this application and
determine the cost reductions that are needed to make this
application economically viable. Other works21–25 examine the
environmental impacts of energy storage, showing that it depends
upon how it is operated and the technical characteristics of the
power system into which it is integrated.

Thus, there is a need to optimize the operation of energy
storage to achieve desired economic and environmental out-
comes. Many studies optimize the operation and size of an energy
storage system for a given grid application based on economic
criteria26,27. Others propose optimization models for sizing and
operating energy storage to minimize total electricity cost or to
maximize investor profits28–30. Another set of studies model
emissions and economic considerations in optimizing energy
storage use31–33.

Our study extends the existing literature by evaluating the role
of energy storage in allowing for deep decarbonization of elec-
tricity production through the use of weather-dependent renew-
able resources (i.e., wind and solar). The model optimizes the
power and energy capacities of the energy storage technology in
question and power system operations, including renewable

curtailment and the operation of generators and energy storage.
This is done to minimize total system costs, which consist of the
capital cost of energy storage, generator-operations costs, and
CO2-emissions costs. Technical constraints in the model include
operating limits of generators and energy storage and load-
balance requirements. We examine nine currently available
energy storage technologies: pumped-hydroelectric storage
(PHS), adiabatic (ACAES), and diabatic (DCAES) compressed air
energy storage (CAES), and lead-acid (PbA), vanadium-redox
(VRB), lithium-ion (Li-ion), sodium-sulfur (NaS), polysulfide
bromide (PSB), and zinc-bromine (ZNBR) batteries. Our model
allows us to determine which energy storage technologies are
most cost-effective in aiding renewable integration and the extent
to which the cost of a currently uneconomic technology must
come down to make it cost-effective. We use two case studies,
which are based on the California and Texas power systems in
2010–2012, and consider up to 20 GW of wind and 40 GW of
solar capacity added to the system. We also consider the impact
of a CO2 tax of up to $200 per ton.

Our analysis of the cost reductions that are necessary to make
energy storage economically viable expands upon the work of
Braff et al.20, who examine the combined use of energy storage
with wind and solar generation assuming small marginal pene-
trations of these technologies. Conversely, we examine their
economics at significant renewable penetrations that are neces-
sary for deep decarbonization of electricity production.

Our findings show that renewable curtailment and CO2

reductions depend greatly on the capital cost of energy storage.
Moreover, increasing the renewable penetration or CO2 tax
makes energy storage more cost-effective. This is because higher
renewable penetrations increase the opportunities to use stored
renewable energy to displace costly generation from non-
renewable resources. Among the energy storage technologies
that we consider, PHS and DCAES are deployed in more of the
scenarios that we examine. This is due to the lower capital costs of
these technologies. Other technologies see deployment under
some scenarios. We also find that relatively modest reductions in
the capital costs of other energy storage technologies can make
them cost-effective for this proposed application.

Results
Energy storage deployment. Supplementary Table 1 sum-
marizes the energy capacity of the energy storage technologies
that are installed with different wind- and solar-penetration
levels and CO2 emissions-tax regimes in 2012 in the base case
with a 7.0-GW minimum-dispatchability requirement in the
California Independent System Operator (CAISO) system.
Supplementary Table 2 summarizes the same for the Electric
Reliability Council of Texas (ERCOT) system under the base-
case 8.2-GW minimum-dispatchability requirement. The tables
show that higher renewable penetrations or emissions taxes
tend to improve the economics of energy storage deployment.
Due to their relatively low capital costs, PHS and DCAES
are deployed in more scenarios and with greater capacity
than most of the other technologies. Conversely, a technology
that is currently more-expensive but has a higher round-
trip efficiency, such as Li-ion batteries, is not deployed in any
of the scenarios that are summarized in these two tables.
Table 1 shows the results of a sensitivity analysis, in which
lower cost assumptions for Li-ion batteries lead to significant
Li-ion deployment and resultant curtailment and emissions
reductions. Supplementary Data 1 summarizes the amounts
of energy storage that are installed in the other years and
with the other minimum-dispatchability requirements that we
analyze.
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Supplementary Tables 1 and 2 show that irrespective of the
carbon-tax level, energy storage is not cost-effective in California
for the application that we model without added renewables. This
is because California’s fossil-fueled generators are all natural gas-
fired. Thus, there is limited value in using energy storage for
energy arbitrage, because of small differences between on- and
off-peak marginal generation costs. In California, the value of
energy storage stems primarily from its ability to reduce
renewable curtailment, thereby displacing fossil-fueled genera-
tion. This benefit is greater with a higher carbon tax, because
fossil-fueled generation is more costly in the presence of a tax.
Recent estimates from the California Energy Commission show
that as of October 2017, California has 5.6 GW of wind and 16.2
GW of solar installed (https://www.energy.ca.gov/almanac/
renewables_data/wind/). Thus, California is approaching
renewable-penetration levels at which a number of energy storage
technologies are cost-effective for mitigating renewable
curtailment.

Even in the absence of renewables, deploying some energy
storage technologies in Texas is cost-effective under higher
emissions-tax rates. This is because the ERCOT system has a
more mixed generation fleet, with both coal- and natural gas-fired
units that have very different generation costs. Moreover, the
differences in the carbon contents of coal and natural gas gives
larger differences in marginal generation costs between coal- and
natural gas-fired units with higher CO2-tax rates.

Renewable curtailment. Figure 1 shows total annual renewable
curtailment with and without access to energy storage with dif-
ferent amounts of renewable capacity and CO2-emissions taxes in
2012 in California under the base case 7.0-GW minimum-
dispatchability requirement. Figure 2 shows the same for Texas
under its 8.2-GW base case minimum-dispatchability require-
ment. The curtailment results for other minimum-dispatchability
requirements and years are provided in Supplementary Data 1.
The figures show that California has much higher renewable-
curtailment rates relative to Texas. This is because California has
much higher outputs from inflexible resources (e.g., nuclear,
geothermal, biomass, and hydroelectric units) and energy imports
compared to Texas. This greater inflexibility makes it more
challenging for the CAISO system to absorb wind and solar
generation. The figures show that with relatively low emissions
taxes (i.e., $50 per ton or less), PHS and CAES are the only
economically viable technologies for averting renewable curtail-
ment. However, with higher emissions taxes, all of the energy
storage technologies (except for Li-ion batteries) become cost-
effective for this application. This is consistent with Supplemen-
tary Tables 1 and 2, which show that most of the energy storage

technologies are deployed in some of the renewable-penetration
scenarios if the CO2-emissions tax is sufficiently high.

Consistent with real-world experience4, renewable curtailment
is greatest in the spring. This is due to the spring having relatively
low electricity demand and many days with good midday solar
availability. California has experienced recently an increasing
number of spring days on which these factors require solar
curtailment.

CO2 emissions. Figure 3 summarizes the benefits of energy sto-
rage in decarbonizing in-state electricity production in California
in 2012, under the base case 7.0-GW minimum-dispatchability
requirement. Figure 4 shows the same in Texas under the base
case 8.2-GW minimum-dispatchability requirement. Results for
other minimum-dispatchability requirements and years are pro-
vided in Supplementary Data 1. Without any added renewables or
energy storage, California can achieve negligible 0.2% CO2-
emissions reductions with a sufficiently high carbon tax through
dispatch switching. In Texas, dispatch switching can decrease
emissions by 24% without added renewables. California’s fossil-
fueled generators have negligible emissions-rate differences. With
a carbon tax, generating loads can be switched to units that have
higher operating costs and lower emissions rates. Texas, con-
versely, has a mix of coal- and natural gas-fired generating units.
A sufficiently high carbon tax switches the merit order between
these units.

Without any access to energy storage, California’s 2012 CO2

emissions could have been reduced by 72%, through deployment
of renewables with a 7.0-GW minimum-dispatchability require-
ment and a $200 per ton CO2 tax. However, energy storage
decarbonizes electricity production to a greater extent by
reducing renewable curtailment. Li-ion batteries would have
provided essentially no emissions improvements in 2012, due to
their high capital costs. Conversely, DCAES yields the greatest
emissions reductions in California in 2012. Texas shows similar
trends. Without energy storage, renewable deployment, in
conjunction with a $200 per ton CO2-emissions tax, can reduce
CO2 emissions by 54% in 2012 with the base case 8.2-GW
minimum-dispatchability level. As in California, DCAES yields
the greatest emissions reductions in Texas.

Figure 5 summarizes energy storage’s impacts on renewable
curtailment and CO2 emissions in California in the 3 years that
we analyze. The results that are shown in the figure assume 20-
GW and 40-GW wind- and solar-penetration levels, respectively,
a $200 per ton CO2-emissions tax, and the base-case 7.0-GW
minimum-dispatchability requirement. The results are similar for
other minimum-dispatchability requirements. Renewable curtail-
ments are shown as percentages of potential renewable produc-
tion while emissions reductions are reported as percentages
relative to a no-renewables case. The figure shows significant
interannual variability in renewable-curtailment rates, which stem
from differences in electric loads. 2012 has significantly higher
loads compared to 2010, meaning that California can accept more
renewable generation in 2012. Each of the energy storage cases
that is shown in the figure corresponds to the technology that
achieves the greatest curtailment or emissions reduction. PHS
achieves the greatest curtailment reductions in all of the years that
are analyzed and the greatest emissions reductions in 2010.
However, DCAES achieves greater emissions reductions in the
other 2 years. These results suggest that if curtailment reduction is
the goal of deploying energy storage, PHS is a relatively stable
technology choice in California. Conversely, if emissions reduc-
tion is the policy priority, there is less technology robustness.

DCAES is, conversely, a more robust technology in Texas,
achieving the greatest curtailment and emissions reductions in all

Table 1 Changes in renewable curtailment and CO2

emissions resulting from lower Li-ion and PSB costs and
higher NaS costs as a percentage of renewable curtailment
and CO2-emissions levels with the baseline costs

Technology Renewable

Curtailment (%)

CO2 Emissions (%)

CAISO ERCOT CAISO ERCOT

Li-ion −27.1 −56.9 −22.3 −1.6

NaS 60.2 89.6 43.9 1.4

PSB −15.1 −34.4 −8.9 −0.5

Results shown are for 2012 assuming 20-GW wind- and 40-GW solar-penetration level, a $200
per ton CO2-emissions tax, and base-case minimum-dispatchability requirements of the CAISO
and ERCOT systems
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of the years and with all of the minimum-dispatchability
requirements that we examine. However, energy storage delivers
smaller incremental benefits in reducing Texas’s CO2 emissions.
Figure 5 shows that without energy storage, adding 60 GW of
renewables yields emissions reductions that range between 71 and
92% across the years that are analyzed. Energy storage increases
these emissions reductions to between 90 and 97%. ERCOT
achieves 52–56% emissions reductions from adding 60 GW of
renewables without energy storage. DCAES increases these
emissions reductions to 56–59%. This relatively small impact of
energy storage in Texas is because there is relatively little
renewable curtailment compared to California. As such, energy
storage has a more limited role in increasing the use of renewable
energy in Texas relative to California. Instead, the emissions-
reduction benefits of DCAES in Texas largely stem from helping
to shift some generating loads from coal- to natural gas-fired
generators.

Discussion
Our case study shows that energy storage can play a non-trivial
role in decarbonizing California’s electricity production through

greater use of renewables. Some technologies (e.g., PHS, CAES,
and VRB and PSB batteries) can eliminate cost-effectively over
90% of CO2 emissions relative to a no-renewables case. Without
energy storage, massive renewable deployment can only achieve
about 72% CO2-emissions reductions (with the base-case 7.0-GW
minimum-dispatchability requirement and a $200 per ton CO2-
emissions tax). In Texas, energy storage deployment yields 57%
CO2-emissions reductions compared to a no-renewables case
(assuming an 8.2-GW minimum-dispatchability requirement and
a $200 per ton emissions tax). Without energy storage, 60 GW of
renewables reduce emissions by 54% relative to a no-renewables
case. Recent analyses1,34 show that Texas had over 22 GW of
wind installed as of 2017. Thus, the case with 60 GW of renew-
ables represents a significant increase in solar capacity and an
already-achieved wind-penetration level.

California has less supply-side flexibility (i.e., more output
from nuclear, geothermal, biomass, and hydroelectric units and
energy transactions) compared to Texas, resulting in relatively
high renewable curtailment in California. Thus, energy storage is
valuable in reducing renewable curtailment and displacing fossil-
fueled generation. Conversely, even without added renewables,
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Fig. 1 Annual renewable curtailment as a percentage of potential renewable production in California for the year 2012 in the base case with a 7.0-GW

minimum-dispatchability requirement. Figure panels correspond to different wind- and solar-penetration levels, which are indicated at the left-hand side

and bottom, respectively, of the figure. Source data are provided as a Source Data file
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energy storage is cost-effective in Texas with a carbon tax, as it
can be used to shift generating loads away from coal-fired units
toward natural gas-fired generation.

Our results represent a lower bound on energy storage’s role in
renewable integration and electricity decarbonization. This is
because at high renewable penetrations, energy storage may play
other roles that are not captured in our model3. For instance,
energy storage can be a low-cost source of flexibility to accom-
modate subhourly or minute-to-minute variability in wind and
solar availabilities. Because our model assumes an hourly tem-
poral resolution, such a benefit of energy storage is not captured.

Our results show that its capital cost is the primary factor in
determining the scale at which an energy storage technology is
deployed. Even with ambitious renewable penetrations and a high
emissions tax, a relatively expensive (but high-efficiency) tech-
nology, such as Li-ion batteries, has a limited role to play. Our
results suggest, however, that modest reductions in Li-ion-battery
costs may increase their deployment. We determine this by
examining the reduced cost of energy storage capacity, which is
obtained from solving our optimization model. In the context of
our model, the reduced cost can be interpreted as indicating how

much the capital cost of an uneconomic energy storage tech-
nology must change before it is cost-effective to build35. Our
results show that in scenarios in which Li-ion batteries are not
built, capital cost reductions of between $1 per kWh and $40 per
kWh are sufficient to make the technology economically viable.
Given the major reductions in battery-manufacturing costs over
the past decade, such cost reductions may be possible. This would
mean that energy storage technologies that appear uneconomic in
our case study may well be viable in the near future. The reduced
costs results for other storage technologies are provided in Sup-
plementary Data 1.

Given the wide range of costs for Li-ion, NaS, and PSB batteries
that are reported in the literature (https://www.lazard.com/
media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.
pdf), we conduct a sensitivity analysis, in which the capital costs
of Li-ion batteries are reduced to $259 per kWh and $59 per kW,
the costs of NaS batteries are increased to $350 per kW and $350
per kWh, and the costs of PSB batteries are reduced to $200 per
kW and $90 per kWh. Table 1 summarizes the impacts of these
changed capital costs. Specifically, the table reports changes in
renewable curtailments and CO2 emissions relative to the levels
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Fig. 2 Annual renewable curtailment as a percentage of potential renewable production in Texas for the year 2012 in the base case with an 8.2-GW
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that are achieved with the baseline costs, as a percentage of the
baseline curtailment and emissions impacts of Li-ion, NaS, and
PSB. The results that are in the table are for 2012, assuming
20 GW of wind and 40 GW of solar are added to each system, a
$200 per ton CO2-emissions tax, and the base-case minimum-
dispatchability requirement for each system. The amounts of
energy storage added, renewable curtailments, and CO2 emissions
that are achieved in other scenarios are provided in Supple-
mentary Data 1.

Our results demonstrate that increasing the CO2-emissions tax
makes energy storage more cost effective. Yong and McDonald36

show that an emissions-tax regime that is set by a government
with a willingness to commit to it, has a positive influence on
the size and the direction of firm-level investment in clean
technologies. Thus, adding a strong emissions tax to the already-
established energy storage mandate in California may have ben-
eficial economic, policy, and technology-development impacts.
We also show that greater generator flexibility, which is

represented through a lower minimum-dispatchability require-
ment, reduces renewable curtailment and the amount of energy
storage that is needed.

There are some important limitations of our analysis that can be
examined in future research. The only environmental impact of
electricity production and energy storage use that we examine is
CO2 emissions. There may be other important impacts. Our results
show that PHS holds great promise, due to its relatively low cost.
There are concerns around other environmental impacts of PHS,
such as land and water use, species mortality, and impacts on bio-
logical production, however. Moreover, PHS is location-dependent
and requires sites with specific characteristics12. The deployment of
CAES is also limited, as specific underground formations are needed
to store the compressed air12. Further examination of these limita-
tions would provide a more comprehensive understanding of the
deployment potential of these technologies.

Our optimization model could be applied to other case studies,
with different generation mixes. We assume no degradation of
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energy storage throughout its operation. Arbabzadeh et al.37 show
that its degradation does not change significantly the environ-
mental impacts of using energy storage for generation-shifting.
Nevertheless, future work could examine the impact of such
degradation on the cost-effectiveness of using energy storage for
alleviating renewable curtailment. We also assume that energy
storage can operate between 0 and 100% state of charge. Future
analyses can define technology-specific operational windows for
energy storage.

Methods
Optimization model. Our analysis uses an optimization model with an hourly time
resolution over a T-h optimization horizon. The model determines the size of the
energy storage system as well as the hourly operation of the power system. Spe-
cifically, we let �Q and �S denote the power and energy capacities of the energy
storage, which are measured in MW and MWh, respectively. We let gt,i represent
the hour-t production level (measured in MW) of generator i, where i 2 I , the set
of natural gas- and coal-fired, nuclear, biomass, hydroelectric, and geothermal
generators. We let �Rt and Rt denote the total amount of renewable production that
is available and the amount of renewable production that is used in hour t,

respectively. Both of these quantities are measured in MW. The difference,

ð�Rt � RtÞ, gives hour-t renewable curtailment. Finally, we let qct and qdt denote MW
that are charged into and discharged from energy storage, respectively, in hour t.
We also let st denote the ending hour-t state of charge (SoC) of storage, which is
measured in MWh.

The optimization model is formulated as:

min

�Q;
�S; g;R; qc; qd ; s

κQ �Qþ κS�Sþ
X

T

t¼1

cS þ EρS
� �

qdt þ
X

i2I

ci þ Eρi
� �

gt;i

" #

ð1Þ

s:t:
P

i2I

gt;i þ Rt þ qdt ¼ Lt þ qct ; 8t ¼ 1; ¼ ;T; ð2Þ

P

i2I

gt;i þmin �S; st�1f g � ϕt ; 8t ¼ 1; ¼ ;T; ð3Þ

0 � gt;i � Ki; 8t ¼ 1; ¼ ;T; i 2 I ; ð4Þ

0 � Rt � �Rt ; 8t ¼ 1; ¼ ;T; ð5Þ

st ¼ st�1 þ ηcqct � qdt ; 8t ¼ 1; ¼ ;T; ð6Þ
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0 � st � �S; 8t ¼ 1; ¼ ;T; ð7Þ

0 � qct �
�Q; 8t ¼ 1; ¼ ;T; ð8Þ

0 � qdt � �Q; 8t ¼ 1; ¼ ;T: ð9Þ

Eq. (1) minimizes the total cost of operating the system. The first two terms in
the objective function, κQ �Qþ κS�S, reflect the cost of building energy storage.
Energy storage is assumed to have a capital cost that can depend on its power and
energy capacities, with κQ denoting the power-capacity cost (given in $ per MW)
and κS the energy-capacity cost (given in $ per MWh). The remaining term in the
objective function denotes the hourly operating costs. Some energy storage
technologies (e.g., DCAES) use a fuel, such as natural gas, when discharging stored
energy. cS denotes the direct cost (in $ per MWh) of discharging stored energy for
such technologies (i.e., cS= 0 for technologies that do not consume fuel when
discharging) while the term, EρS, denotes any CO2-related costs. Specifically, E
represents the $ per ton CO2 tax and ρS is the CO2-emissions rate (in ton MWh−1)
of discharging stored energy. ci is the direct cost (in $ per MWh) of producing
energy from generator i and ρi is the CO2-emissions rate (in ton MWh−1) of
generator i.

Constraints (2) ensure that load is exactly met in each hour. We let Lt denote
the hour-t load, in MW. Constraints (3) enforce the minimum-dispatchability
requirement, where ϕt represents the hour-t requirement in MW. If real-time
renewable availability is sufficiently high, renewable generation is curtailed to
ensure that the minimum-dispatchability requirement is met4. This dispatchability
requirement can be met using generators (other than wind and solar), as well as
energy storage. Constraints (4) and (5) impose generation limits on non-renewable
and renewable generators, respectively. We let Ki denote generator i's production
capacity in MW. Constraints (6) define the ending hour-t SoC of energy storage to
be the SoC at the end of hour (t− 1), plus any energy that is charged and less any
energy that is discharged in hour t. We apply an efficiency factor, ηc∈ (0, 1), to the
energy that is charged, which is a typical method of accounting for the round-trip
efficiency losses of storing energy38. Constraints (7)–(9) impose the energy- and
power-capacity constraints on the SoC and charging and discharging of energy
storage, respectively.

The model is formulated using version 20170902 of the AMPL mathematical
programming language and solved using version 12.7.1.0 of the CPLEX linear
program solver.

Annualization of capital cost of energy storage. The capital costs of building
each energy storage technology are annualized using a capital charge rate39. This
annualization makes the capital costs comparable to the power system operating
costs, which are modeled over a single-year period, in the optimization model. The
capital charge rate takes into account the service life of each energy storage tech-
nology. In essence, a longer service life yields a lower capital charge rate, because
the capital cost of building the energy storage can be amortized over a longer
period. The capital charge rate, γ, is computed as:

γ ¼ δ þ
δ

ð1þ δÞY � 1
; ð10Þ

where Y is the service life of the technology and δ is the discount rate, which we
take to be 10%. This yields capital charge rates ranging between 10% (for the
technologies with 60-year service lives) and 16% (for ZNBR batteries, which have
10-year service lives).

Wind and solar modeling. The scenarios that we model vary the penetration of
wind and photovoltaic solar exogenously. We consider cases with up to 20 GW and
40 GW of added wind and solar, respectively. The hourly generation that is
available from the added wind plants are modeled using the Wind Integration
National Dataset Toolkit (WIND Toolkit)40. The WIND Toolkit provides modeled
historical wind-availability data for more than 126000 sites across the United States
for the years 2007–2013. Because our other case study data are for the years 2010
through 2012, we use wind-availability data for the same years.

To capture the impacts of spatial diversification of the added wind, we compute
hourly wind capacity factors that are averaged across each of the states of California
and Texas. To do this, we letW denote the set of wind sites in each state that are in
the WIND Toolkit. Then, we let At,w denote the MW of wind that is available at
location w in hour t. We compute the state-average wind capacity factor in hour t,
Wt, as:

Wt ¼

P

w2W At;w
P

w2W
�Aw

; ð11Þ

where �Aw is the assumed nameplate capacity of the wind generator at location w in
the WIND Toolkit dataset. The amount of wind that is available in hour-t (in our
optimization model) is computed as:

Wt � �W; ð12Þ

where �W is the aggregate amount of wind that is added to the system (i.e., �W
equals either 0 GW, 10 GW, or 20 GW).

Hourly solar availability is modeled in the same way, using modeled historical
solar data that are obtained from the National Solar Radiation Database
(NSRDB)41,42. The NSRDB data are processed using version 5 of the PVWatts
software tool43. PVWatts simulates the output of a photovoltaic system, given
solar and other weather-condition data. We assume that the added photovoltaic
plants are fixed axis with a 180° azimuth and a tilt that is equal to each location’s
latitude. To account for geographic diversification of where solar can be added
within each state, we compute state-average hourly solar capacity factors. To do
this, we let P denote the set of 5636 and 1751 sites within the states of California
and Texas, respectively, that are represented in the NSRDB dataset. Then,
we define the state-average solar capacity factor in hour t, Pt, as:

Pt ¼

P

p2P Bt;p
P

p2P
�Bp

; ð13Þ

where Bt,p and �Bp are the photovoltaic output that is available in hour t and the

assumed nameplate capacity of the photovoltaic generator at location p,
respectively, in the NSRDB data. We then model available solar in hour t (in our
optimization model) as:

Pt � �P; ð14Þ

where �P is the aggregate amount of solar that is added to the system. We
compute the total amount of renewable energy that is available in each hour as:

�Rt ¼ Wt � �W þ Pt � �P: ð15Þ

Case studies—overview. We examine using energy storage to ease the integration
and reduce the curtailment of renewable energy in California and Texas. California
makes for an interesting case study because it has limited ability to decarbonize
through fuel switching (the fossil-fueled fleet in the state is almost entirely natural
gas-fired). Concurrently, the state is pursuing ambitious renewable portfolio
standards with the aim of decarbonization and is promoting more recently energy
storage through policy measures. Given this context, Solomon et al.44 evaluate the
opportunities for increased use of renewable energy in California with and without
energy storage. Eichman et al.45 examine the value of California’s energy storage
mandate with high penetrations of renewable energy. They do not, however,
endogenize the sizing of energy storage nor do they examine the range of tech-
nologies, renewable penetrations, and carbon-related policies that we do.
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A second case study examines Texas, specifically focusing on the ERCOT
system. ERCOT is largely electrically isolated from the rest of North America46.
ERCOT makes for an interesting case relative to California, because it has greater
variety in the mix of thermal generation, including coal- and natural gas-fired
units, meaning that there is potential for fuel switching to achieve CO2 reductions.
Texas also has excellent renewable resources46.

Case studies—data. Due to limited data availability, our case studies cover 20
April 2010 until 31 December 2012. During this period, California had about
237 natural gas-fired generating units whereas ERCOT had about 39 coal- and
234 natural gas-fired units installed. Table 2 summarizes the installed capacity
of other generation technologies and the annual-average loads in the two
systems.

The natural gas- and coal-fired generators are assumed to be dispatchable
(i.e., their production levels can be varied to achieve supply/demand balance).
The capacities and heat and CO2-emissions rates of these generators are
obtained from United States Environmental Protection Agency Air Markets
Program Data (https://ampd.epa.gov/ampd/) and Form EIA-860 and EIA-923
data from the United States Energy Information Administration (EIA). The
nuclear, biomass, hydroelectric, and geothermal generators (that were installed
in the study years) are treated as being non-dispatchable. The outputs of these
units are fixed based on historical hourly production levels that are reported by
the CAISO and ERCOT. Table 3 summarizes the fuel prices that we use for the
dispatchable natural gas- and coal-fired units, which are obtained from Form
EIA-923 data (these are reported in $ per MMBTU, as MMBTU is the unit that
is used most commonly in the United States for reporting fuel prices). Fuel
prices for other generating technologies are not needed, because these units are
modeled as being non-dispatchable.

California exchanges energy with neighboring states. We assume these
exchanges to be fixed in our case study, based on historical CAISO data. ERCOT
has extremely limited energy exchanges, due to its being electrically isolated from
the rest of North America. Thus, we model the ERCOT system as having no energy
exchanges. CAISO and ERCOT also provide hourly historical load data, which we
use in our analysis. We assume that the two systems have dispatchability
requirements that the total output of the natural gas-fired, coal-fired, nuclear,
biomass, hydroelectric, and geothermal generators plus the amount of energy that
could be provided by energy storage be above some minimum value. This
requirement reflects the limited flexibility of the non-renewable generators in
reducing their output as well as the desire by system operators to maintain some
dispatchable generation to accommodate unanticipated system contingencies47.
We define the minimum-dispatchability requirement for the CAISO system based
on an analysis of its flexibility4 and generation and curtailment data that are
published by CAISO. On this basis, we consider four different minimum-
dispatchability requirements of 0.0 GW (i.e., the system is fully flexible with no
minimum-dispatchability requirement), 5.4, 7.0, and 12.6 GW, with 7.0 GW as the
base case. We set the minimum-dispatchability requirements for the ERCOT
system by scaling on a pro rata basis compared to the values that are used for the
CAISO system. This gives minimum-dispatchability requirements of 0.0, 6.3, 8.2,
and 14.8 GW, with 8.2 GW as the base case, for the ERCOT system.

We examine nine energy storage technologies that have suitable characteristics
for renewable integration- and curtailment-related applications: PHS, ACAES,
DCAES, and PbA, VRB, Li-ion, NaS, PSB, and ZNBR batteries8,37. These
technologies are characterized by their round-trip efficiencies, service lives, and
capital costs, which are summarized in Table 4 and obtained from a comprehensive
literature review8,10–13,29,37,48–52. The service lives of the technologies are accounted
for when annualizing their capital costs. This annualization makes the capital costs
of the technologies comparable to the cost of power system operations, which are
modeled over a single-year period for each year that is studied. Because we only
have data starting from 20 April 2010, we subannualize the capital cost in this year
to make the capital and operating costs comparable.

The round-trip efficiency of DCAES is modeled differently than those of the
other energy storage technologies. The other technologies are pure energy storage,

in the sense that they each use electricity as the sole energy input. DCAES uses
electricity when charging but combusts natural gas when discharged. Each MWh of
electricity that is stored in a DCAES system is assumed to produce 1.39MWh of
electricity when discharged but uses 4.20 MMBTU of natural gas in doing so13,53.
This natural gas combustion is assumed to result in CO2 emissions of 0.058 ton
MMBTU−1 37. The direct cost of the natural gas that is consumed by the DCAES is
computed using the values that are reported in Table 3.

Case studies—scenarios. For each energy storage technology, we model its
optimal investment level and hourly operation of the power system in 36 scenarios
that correspond to different renewable-penetration levels and carbon policies.
These cases are examined in the CAISO and ERCOT systems for each of the years
2010–2012. Specifically, we examine three wind-penetration levels, which are cases
with 0, 10, and 20 GW of wind total, three solar-penetration levels, with 0, 20, and
40 GW of photovoltaic solar total, and four carbon-tax regimes, with tax rates of
$0, $50, $100, and $200 per ton. The outputs of the wind and solar plants can be
curtailed, as required by the constraints of the optimization model to achieve
hourly supply/demand balance.

Data availability
The data that support the analysis within this paper and other findings of this study are

available from the corresponding author upon reasonable request. The source data

underlying Figs. 1–5 are provided as a Source Data file.

Table 2 Installed generation capacity and annual-average load (MW)

California ERCOT

2010 2011 2012 2010 2011 2012

Nuclear 4577 4647 4647 4966 4960 4960

Biomass 1086 1156 1182 115 126 121

Hydroelectric 13850 13890 13901 689 689 689

Geothermal 2648 2648 2703 0 0 0

Average Load 20000 24430 26894 36335 38127 37017

Source: Form EIA-860 data from the United States Energy Information Administration

Table 3 Fuel prices ($ per MMBTU)

Fuel 2010 2011 2012

Natural gas 5.09 4.72 3.42

Coal 2.27 2.39 2.38

Table 4 Technical characteristics of energy storage
technologies

Technology Round-

trip

efficiency

Service

life

(years)

Installation Cost

Energy Power

Component

($ per kWh)

Component

($ per kW)

PHS11–13,37,50 0.85 60 5 441

ACAES11–13,37 0.95 60 40 700

DCAES11–13,37 a 60 2 400

PbA10,12,13,37,50 0.90 15 200 222

VRB12,13,37,50 0.95 15 150 398

Li-ion12,37,48,51,52 0.90 15 320 620

NaS11–13,37,48,50,52 0.90 15 180 250

PSB13,50 0.85 15 120 330

ZNBR11,13,50 0.75 10 150 178

aThe efficiency of DCAES is modeled differently than those of other technologies. Each MWh of
stored electricity can produce 1.39 MWh of electricity when discharged with 4.20 MMBTU of
natural gas being consumed in the process13,53
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