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(Yada-Hashimoto et al. 2003). These cases emphasize that 
cancer metastasis plays a vital role in promoting cancer pro-
gression and reducing patient survival (Steeg 2006; Yeung 
et al. 2015).

Cancer metastasis is caused by a reversible biological 
process, that induces the transition from non-metastatic 
cancer cells to metastatic cancer cells. In epithelial cancer, 
epithelial cells are converted into mesenchymal cells that 
have increased invasive properties due to loss of intercellular 
adhesion and thus gain of motility. The process is known as 
epithelial–mesenchymal transition (EMT), initially called 
epithelial–mesenchymal transformation (Fig. 1) (Kalluri 
and Neilson 2003; Kalluri and Weinberg 2009; Thiery et al. 
2009; Bradley et al. 2013; Cho et al. 2019). EMT is pivotal 
in embryogenesis and is recognized as an essential pro-
cess in cancer metastasis (Thiery 2003; Barrallo-Gimeno 
and Nieto 2005). Epithelial cells are characterized by api-
cal–basal polarity, which helps cells tightly position each 
other on a basement membrane via intercellular junctions 
(Lamouille et al. 2014). Through EMT, cancer cells lose 
the cell–cell adhesion and gain enhanced motility and inva-
siveness. Several molecular processes need to be engaged 
during EMT initiation, such as the activation of transcrip-
tion factors, expression of specific cell surface proteins and 
cytoskeletal proteins, production of extracellular matrix 
(ECM)-degrading enzymes, and changes in expression of a 
particular pool of microRNAs (Serrano-Gomez et al. 2016). 
In addition, cells that have undergone EMT often become 
resistant to apoptosis and senescence (Thiery et al. 2009).

Chemotherapy is the most widely used among various 
approaches to treat cancer (DeVita and Chu 2008; Min 
and Lee 2021). Unfortunately, drug therapies have become 
increasingly problematic because of resistant mechanisms 
in response to cancer-targeting drugs (Song and Faber 
2019). Two types of drug resistance are recognized, namely 
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Introduction

Metastatic cancer is the leading cause of cancer deaths 
worldwide, despite large-scale clinical trials by research-
ers to overcome it. The 5-year relative survival rate of lung 
cancer patients is 5%, with more than half of the patients 
diagnosed with metastatic disease (Howlader et al. 2015; 
Siegel et al. 2020). In addition, the 5-year survival rate after 
resection of metastatic ovarian tumors is less than 20% 
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intrinsic and acquired drug resistance. Intrinsic drug resist-
ance exists in cancer cells before drug treatment, whereas 
acquired drug resistance develops after the exposure of 
cancer cells to drug treatment (Lippert et al. 2011). When 
multi-drug resistance occurs in cancer cells, the possibil-
ity of cancer metastasis and recurrence increases, and the 
clinical outcomes become worse (Hao et al. 2010). In addi-
tion, chemotherapy resistance has been observed with an 
increased ability to invade cells (Kajiyama et al. 2007; Işeri 
et al. 2011; Zhang et al. 2014). According to a recent study, 
the development of drug resistance leads to EMT through 
upregulation of EMT-promoting transcription factors 
in breast cancer (Mallini et al. 2014; Duran et al. 2017). 
Therefore, EMT has been investigated to understand the 

mechanism of cancer metastasis and responses to anti-cancer 
drugs (Oliveras-Ferraros et al. 2012; Wilson et al. 2014; Du 
and Shim 2016).

EMT signaling and EMT‑transcription factors

The gene expression pattern during EMT is regulated indi-
rectly or directly by EMT-transcription factors (EMT-TFs) 
such as Snail, Twist1, and the zinc-finger E homeobox-
binding 1 (ZEB1) (Fig. 2) (Bradley et al. 2013). Subsequent 
EMT induction by EMT-TFs is associated with invasion, 
propagation, metastasis, and cancer stem cell phenotype 
(Thiery et al. 2009; Puisieux et al. 2014). EMT-TFs are 
also correlated with resistance to chemotherapy, radiation, 

Fig. 1   Epithelial–mesenchymal transition (EMT) in cancer metastasis. In the process of cancer metastasis, the characteristics of epithelial cells 
change to typical mesenchymal cells. These cells have the flexibility to penetrate blood vessels. They travel along the blood vessel and then settle 
to develop cancer. Cancer metastasis occurs when cells from the primary cancer site travel to a secondary site. MET, mesenchymal–epithelial 
transition
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and targeted therapy (Sequist et al. 2011; Davis et al. 2014; 
Ansieau et al. 2014).

EMT-TFs are regulated by various intracellular signal-
ing pathways (Fig. 3a). The extracellular signal molecules 
bind to each specific membrane receptor and trigger intra-
cellular signal transduction; growth factors, transforming 
growth factor beta (TGF-β), Wnt, and the Jagged family 
bind to receptor tyrosine kinase, TGF-β receptor, Frizzled, 
and Notch, respectively (Polyak and Weinberg 2009; Brad-
ley et al. 2013; Lu and Kang 2019). Ligand-bound recep-
tors transduce intracellular signals via the pathways, such 
as mitogen-activated protein kinase, phosphatidylinositol 
3‑kinase (PI3K)/protein kinase B (Akt), nuclear factor-κB, 
β-catenin, or the Smad signaling pathway, which regulate the 
expression and stability of EMT-TFs (Bradley et al. 2013). 
EMT-TFs suppress the expression of epithelial markers, such 
as E-cadherin, cytokeratins, and tight junction proteins, and 
induce the expression of mesenchymal markers, including 
N-cadherin, vimentin, fibronectin, α-smooth muscle actin, 
matrix metalloproteinases (MMPs), and lethal giant larvae 
protein homolog 1/2 (Fig. 3b) (Kalluri and Weinberg 2009; 
Chao et al. 2014; Lu and Kang 2019). Reduced E-cadherin 
is the most representative indicator of cancer stemness and 
cancer resistance to treatment (Mani et al. 2008; Gupta et al. 
2009). This orchestration of intracellular pathways and gene 
expressions regarding EMT-TFs is essential for the EMT 
process and the cancer therapeutic resistance correlated with 
EMT.

In the following, we will explore how EMT-related sign-
aling factors affect drug resistance. Epidermal growth factor 
receptor (EGFR) is overexpressed in human cancers, and its 
activation is required for TGF-β1-induced EMT (Grandis 
and Sok 2004; Li et al. 2015). Thomson et al. suggested that 
the sensitivity to inhibition of EGFR depends on the degree 
of EMT occurrence in EGFR-expressing human non-small 
cell lung cancer (NSCLC) xenograft (Thomson et al. 2005). 
In particular, when E-cadherin was expressed, it showed 
higher sensitivity to EGFR inhibition (Thomson et al. 2005). 

Fig. 2   Structure of EMT-related transcription factors (EMT-TFs). The size scale of each domain reflects the domain sequence length within the 
amino acid sequence in each protein. The N-terminal is located on the left and C-terminal is located on the right. SRD serine-rich domain, NES 
nuclear export signal, ZnF zinc fingers, NLS nuclear localization sequences, bHLH basic helix-loop-helix, WR tryptophan and arginine motif, 
SBD Smad binding Dodoma, HD homeodomain, CID CtBP interaction domain

Fig. 3   Key intracellular pathways and transcriptional target genes of 
EMT-TFs. a Several intracellular pathways induce transcription of 
EMT-TFs by binding to their promoter regions. b EMT-TFs regulate 
the expression of essential genes for EMT and drug-resistant related 
genes. NF-κB nuclear factor-κB, IKK IκB kinase, TNF-α tumor necro-
sis factor- α, TNFR tumor necrosis factor receptor, TNF-β transform-
ing growth factor beta, GSK-3β glycogen synthase kinase-3β, TCF/
LEF T cell factor/lymphoid enhancer factor, HIF1α hypoxia-induc-
ible factor 1 α, IL-6 interleukin-6, JAK1/2 Janus kinase 1/2, STAT3 
signal transducers and activators of transcription 3, PARP1 poly 
(ADP-ribose) polymerase, ERCC1 excision repair cross-complement-
ing group 1, GAS6 growth arrest-specific 6, L1CAM L1 cell adhesion 
molecule, BIM Bcl-2-like protein 11, ZO-1 zonula occludens-1, ATM 
ataxia-telangiectasia mutated, LLGL1/2 lethal giant larvae protein 
homolog 1/2, α-SMA α-smooth muscle actin
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Furthermore, a decrease of E-cadherin and an increase of 
vimentin was observed in gefitinib-resistant A549 lung ade-
nocarcinoma cells. These cells also revealed cross-resistance 
against other EGFR tyrosine kinase inhibitors (EGFR-TKI) 
such as erlotinib and ZD6478 (Rho et al. 2009). These stud-
ies imply that the EMT process is vital in determining sen-
sitivity to EGFR and its inhibitors. Notably, the extent of 
the EMT process is essential for predicting responses to the 
receptor, the uppermost molecule of intracellular signaling 
vital for cancer development.

Akt2, which is closely related to Twist1 in the EMT pro-
cess, has also been associated with cancer resistance. Akt2 
is thought to be responsible for chemoresistance to docetaxel 
via protection of survivin in A2780 or MDA-MB-231 cells 
(Xing et al. 2008a, , b). Other studies suggest that growth 
factors induce cell growth and resistance to tamoxifen by 
regulating PI3K/Akt2 signaling (Sun et al. 2001). In addi-
tion, Akt2 is involved in resistance to several chemotherapies 
regulated by HER2 in MCF-7 cells (Zhang et al. 2011).

MMPs are essential proteolytic enzymes that promote 
the migration of cancer cells to adjacent tissues through 
ECM breakdown (Chen and Parks 2009). Invasive cancer 
cells have a high level of MMP-2/9 expression, and the 
expression level of MMP-2/9 in drug-resistant cancer cells 
is higher than that of drug-sensitive cancer cells (Wattana-
wongdon et al. 2015). A study on MMP-2/9 expression and 
drug resistance conducted with epirubicin revealed that the 
expression of MMP-2/9 has been significantly higher in 
epirubicin-resistant cancer cells than non-resistant cancer 
cells (Zhang et al. 2015).

As described above, cancer resistance and the EMT pro-
cess are closely linked to each other. The signaling mol-
ecules involved in EMT mediate the resistance to drugs in 
various types of cancer. The effects of EMT-TFs on cancer 
drug resistance are not limited to the function of EMT-TFs 
but may occur by the regulation of related signaling factors 
involved. Thus, the close association between EMT-related 
signaling factors and drug resistance suggests that EMT-TFs 
may be correlated with drug resistance.

Drug resistance: Snail

Snail (Snail1) and Slug (Snail2) are reported to be associ-
ated with the EMT process during development of can-
cer, whereas functions of Smug (Snail3) are not revealed 
clearly. The Snail family shares a common C-terminal 
domain and various N-terminal regions (Barrallo-Gimeno 
and Nieto 2009). Snail proteins have multiple serine and 
proline residues near the middle region (Sefton et  al. 
1998). The C-terminal region of Snail is constructed 
with a DNA-binding domain that consists of zinc fin-
gers (ZnFs) recognizing a common E2-box type element 
(CAG​GTG​) (Grimes et al. 1996; Hemavathy et al. 2000; 

Barrallo-Gimeno and Nieto 2009). The expression of Snail 
is associated with chemo- and radio-resistance through 
reduction of apoptosis and an increase in cell stemness 
(Smith and Bhowmick 2016).

Activation of P-glycoprotein (P-gp) mediates drug efflux 
transport, which then associates with multi-drug resistance 
(MDR). This activation is involved in cancer progression 
and is found in Snail-overexpressing NSCLC cells (Tomono 
et al. 2017). Overexpression of Snail influences the expres-
sion of P-gp (Tomono et al. 2017). Snail overexpression 
also leads to breast cancer resistance protein-mediated the 
MDR in MCF-7 breast cancer cell line (da Fonseca et al. 
2016). Snail overexpression induces doxorubicin resistance, 
which subsequently causes EMT, and cells undergoing EMT 
show MDR through enhancing P-gp expression (Li et al. 
2011). The EMT program and the induction of Snail play an 
acceptable role in gaining resistance to doxorubicin (Li et al. 
2009). Snail-mediated upregulation of Poly [ADP-Ribose] 
Polymerase 1 has also been reported to contribute to doxoru-
bicin resistance in human MDA-MB-231 breast cancer cells 
(Mariano et al. 2015).

Cisplatin is one of the broad and effective anti-cancer 
drugs (Shen et al. 2012). Co-expression of Snail and exci-
sion repair cross-complementing group 1 (ERCC1) in head 
and neck squamous cell carcinoma (HNSCC) patients cor-
related with cisplatin resistance and poor prognosis (Hsu 
et al. 2010). Snail knockdown induced inhibition of ERCC1 
expression and attenuation of cisplatin resistance (Hsu 
et al. 2010). All Snail members contain a conserved SNAG 
domain at the N-terminus (1–9 amino acids), which is essen-
tial to repress transcription of target genes (Grimes et al. 
1996; Batlle et al. 2000; Hemavathy et al. 2000; Peinado 
et al. 2004; Molina-Ortiz et al. 2012). The SNAG domain 
of Snail is a crucial mediator of ERCC1 transcription, and 
Snail improves sensitivity to cisplatin through inhibition 
of ERCC1 in HNSCC cells overexpressing Snail protein 
(Hsu et al. 2010). In addition, the mesenchymal phenotype 
is reversed and decreases resistance to cisplatin by reduc-
ing the expression of Snail in cisplatin sensitive (A2780) 
and resistant (A2780CR) ovarian adenocarcinoma cell lines 
(Haslehurst et al. 2012). These studies suggest that EMT-
related transcription factors may play an essential role in 
cisplatin resistance in cancer. When Snail is knocked-out 
in cisplatin-resistant A2780CR cells, the drug sensitivity of 
these cells is restored, followed by reversing EMT pheno-
types (Haslehurst et al. 2012).

Snail is also involved in 5-fluorouracil (5-FU) resistance. 
When Snail is knocked-down in MCF-7 breast cancer cells 
resistant to 5-FU, cell invasion is decreased through revers-
ing EMT, and sensitivity to 5-FU is improved (Zhang et al. 
2012). Considering the numerous reports regarding Snail 
and the correlation with chemoresistance, targeting Snail to 
overcome cancer resistance is an attractive approach (Fig. 4).
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Drug resistance: Twist1

Twist1 was discovered originally in Drosophila as a basic 
helix-loop-helix family transcription factor (Simpson 1983; 
Thisse et al. 1987, 1988). Twist1 is reported to function as an 
essential transcription factor that regulates the EMT process, 
and eventually contributes to cancer metastasis. Twist1 is 
known to induce tumorigenesis in breast and prostate carci-
nomas, which is the result of EMT induction, invasion, and 
metastasis (Yang et al. 2004, 2008; Cheng et al. 2007, 2008; 
Pham et al. 2007; Ansieau et al. 2008; Zhuo et al. 2008). 
Twist1 expression induces a morphological change associ-
ated with EMT and significantly elevates cancer stem cell-
like traits in MCF-7 and cervical cancer HeLa cells. Twist1 
is also implicated in playing an essential role in the expan-
sion of cancer stem cells and resistance to chemotherapy 
(Qin et al. 2012). Twist1 may be involved in other tumor-
promoting effects, such as chemical resistance to metastasis 
and invasiveness associated with common chemotherapy (Li 
and Zhou 2011; Owens and Naylor 2013). Twist1 is not only 
involved in the development of acquired drug resistance in 
human cancer cells but is also associated with chemotherapy 
resistance when overexpressed, leading to a poorer prognosis 
(Lu et al. 2014; Deng et al. 2016; Liu et al. 2017). Interest-
ingly, β-catenin and Akt pathways are activated in Twist1-
overexpressing cells (Li and Zhou 2011).

Twist1-overexpressing breast cancer cells up-regulated 
Akt2 transcription, which promotes resistance to paclitaxel 
(Cheng et al. 2007). Similarly, resistance to paclitaxel by 
Twist1 overexpression occurs in human nasopharyngeal 
carcinoma cells, bladder, and ovarian cancer cells (Wang 
et al. 2004).

Erlotinib is an ATP-competitive tyrosine kinase inhibi-
tor specific to EGFR, which is approved by the Food and 
Drug Administration for targeting NSCLC (Kosaka et al. 
2011). Twist1 overexpression causes resistance to erlotinib 
in NSCLC models both in vitro and in vivo (Yochum et al. 

2019). The erlotinib resistance mediated by Twist1 is due 
partially to the suppression of transcription of BCL2L11, a 
pro-apoptotic gene, by Twist1 (Yochum et al. 2019). Inhib-
iting Twist1 by genetic silencing or a chemical inhibitor is 
sufficient to overcome resistance to erlotinib (Yochum et al. 
2019).

Twist1 is also suggested to be a useful biomarker for 
predicting resistance to doxorubicin (Li et al. 2009), used 
widely for adjuvant chemotherapy of breast cancer (Demir 
et al. 2019). TWIST1 expression level is higher in the dox-
orubicin-resistant samples than the doxorubicin-sensitive 
samples collected from breast cancer patients (Demir et al. 
2019). When Twist1 is overexpressed in cisplatin and dox-
orubicin-resistant cancer cells, it modulates Y-box-binding 
protein-1 as a downstream target (Shiota et al. 2011). This 
correlation increases cell growth, invasion, and drug resist-
ance (Shiota et al. 2011). Interestingly, silencing TWIST1 
restores doxorubicin sensitivity in HepG2 liver cancer cells 
(Li et al. 2018). The positive correlation of Twist1 and 
multi-drug resistance protein 1 (MDR1) is observed in can-
cerous liver tissues, which are associated with EMT mark-
ers (Li et al. 2018). The down-regulation of Twist1 leads 
cancer cells to be sensitive to doxorubicin by suppression of 
MDR1 and EMT (Li et al. 2018). Chemotherapy increases 
the expression of Twist1 and several ATP-binding cassette 
transporters in invasive cancer cells, but not in non-invasive 
cells (Saxena et al. 2011). Chen et al. have shown that the 
expression of Twist1 causes resistance to an anthracycline, 
a class of drugs including doxorubicin and epirubicin, by 
regulating the expression of P-gp in the bladder cancer cell 
line (Chen et al. 2012).

In vivo tumorigenic assays show that Twist1-overex-
pressing cells, which are resistant to cisplatin, result in the 
widespread dissemination of tumors lining the peritoneal 
cavity walls (Roberts et al. 2016). Twist1 is believed to drive 
cisplatin resistance via upregulation of L1CAM, GAS6, and 
Akt signaling pathways in an ovarian cancer model (Roberts 

Fig. 4   EMT-TFs-related resist-
ant drugs and cancer types. 
The drugs are listed in relation 
to EMT-TF with the type of 
cancer for which drug resistance 
is reported. HNSCC head and 
neck squamous cell carcinoma, 
NSCLC non-small cell lung 
cancer
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et al. 2016). Suppression of Twist1 expression by introduc-
ing miR-186 renders the ovarian cancer cells to overcome 
cisplatin resistance (Zhu et al. 2016).

Because the high expression level of Twist1 affects the 
responses to various chemotherapies in different types of 
cancer, the proper modulation or genetic ablation of Twist1 
needs to be studied for the further possibility to restore sen-
sitivity to the cancer drugs.

Drug resistance: ZEB1

The ZEB transcription factor family consists of ZEB1 (also 
named TCF8) and ZEB2 (also known as SIPI) (Anose 
and Sanders 2011). ZEB family proteins contain two ZnF 
domains, N-terminal ZnF and C-terminal ZnF. The helix-
loop-helix motif of ZEB allows for binding to the E-box 
within the E-cadherin promoter region with high specificity 
(Peinado et al. 2007). Phosphorylation within C-terminal 
ZnF inhibits the binding of ZEB to DNA and its transcrip-
tional activity (Llorens et al. 2016).

ZEB1 is correlated with resistance to various drugs in 
many types of cancer (Witta et al. 2006; Arumugam et al. 
2009; Tryndyak et al. 2010; Chang et al. 2011). MDR1 
reduces the intracellular accumulation of drugs such as 
cisplatin, 5-FU, and doxorubicin, by functioning as an 
ATP-dependent drug outflow pump (Janigro et al. 2006; 
McCormick et al. 2015). Yoshida et al. demonstrated that 
ZEB1 overexpression acquires the resistance of EGFR-TKI 
in human NSCLC samples and cells (Yoshida et al. 2016).

Pancreatic cancer cells show different sensitivity to mul-
tiple chemotherapeutic drugs, such as gemcitabine, 5-FU, 
and cisplatin; MIAPaCa-2, PANC-1, Hs766T, AsPC-1, and 
Mpanc96 cell lines are resistant, whereas CFPAC-1, L3.6pl, 
BxPC-3, and SU86.86 are sensitive to the drugs (Arumugam 
et al. 2009). The two distinct groups of cell lines differ in 
the expression pattern of EMT-related genes, mainly ZEB1. 
Knockdown of ZEB1 restores drug sensitivity and increases 
the expression of epithelial markers in cancer cells showing 
mesenchymal characteristics (Arumugam et al. 2009).

A colon cancer cell line with oxaliplatin (OXA) resist-
ance, HCT116/OXA, shows a high expression level 
of ZEB1 along with mesenchymal markers, including 
vimentin, MMP-2, and MMP-9 (Guo et al. 2017). Silenc-
ing of ZEB1 restores sensitivity to OXA in HCT116/
OXA, and the inverse correlation between ZEB1 expres-
sion level and OXA sensitivity occurs both in vitro and 
in vivo (Guo et al. 2017). In addition, ZEB1 expression 
level is higher in histone deacetylase inhibitor (HDACi) 
butyrate-resistant colorectal cancer cells (Lazarova and 
Bordonaro 2017). These cancer cells lack the expression 
of histone acetyltransferase p300, which associates with 
β-catenin and mediates the transcriptional activity of the 

Wnt signaling pathway (Lazarova and Bordonaro 2017). 
Interestingly, mutations in the Wnt signaling pathway are 
a major initiating event in colorectal cancer and regulate 
ZEB1 expression (Sanchez-Tillo et al. 2013). Therefore, 
ZEB1 expression is correlated with both cancer aggres-
siveness and with the responses of cancer to butyrate.

Axl as a receptor tyrosine kinase is activated by vita-
min K‐dependent protein, namely growth arrest-specific 
protein 6 (GAS6) (Zhu et al. 2019). GAS6/Axl signaling 
pathway drives the survival, proliferation and invasion of 
cancer cells (Zhu et al. 2019). Moreover, Axl overexpres-
sion has been reported to be associated with poor progno-
sis in a wide range of cancers and to play an essential role 
in metastasis (Dunne et al. 2014; Lee et al. 2014; Reichl 
et al. 2015; Brand et al. 2015; Hattori et al. 2016). Accord-
ing to the study, Axl has a correlation with the downstream 
targets of breast cancer specimens, and breast cancer prog-
nosis is not good (Wang et al. 2016). Wang et al. showed 
that the Akt/GSK-3β/β-catenin cascade induced transcrip-
tion of ZEB1, which resulted in doxorubicin resistance.

Ataxia-telangiectasia mutated (ATM) kinase plays a key 
role in the homologous recombination repair of damaged 
DNA (So et al. 2009). Zhang et al. reported that ZEB1 
induces resistance to epirubicin with increasing expression 
of ATM kinase (Zhang et al. 2018). They also found that 
the expression of ZEB1 in chemo-resistant breast cancer is 
significantly higher than in chemo-sensitive breast cancer 
(Zhang et al. 2018). Interestingly, their report shows that 
increased expression of ATM kinase by ZEB1 enhances 
DNA repair in response to the epirubicin-induced DNA 
breakage and thus confers resistance to epirubicin (Zhang 
et al. 2018).

The other resistant mechanism related to ZEB1 includes 
long non-coding RNA of ZEB1, ZEB1-antisense 1 (ZEB1-
AS1). ZEB1-AS1 is expressed from the promoter region of 
ZEB1 and regulates ZEB1 expression positively (Su et al. 
2017). The dysregulation of ZEB1-AS1 plays a pivotal 
function in tumorigenesis and tumor development (Zhao 
et al. 2019). Li et al. have shown that ZEB1-AS1 is upreg-
ulated in hepatocellular carcinoma and breast cancer cells 
and promotes metastasis (Li et al. 2016). ZEB1-AS1 regu-
lates ZEB1 expression by binding to miR-129-5p competi-
tively. Silenced ZEB1-AS1 inhibits resistance to cisplatin 
and promotes apoptosis in MCF-7 cells via upregulation of 
miR-129-5p and downregulation of ZEB1, Bcl-2, MDR1, 
and P-gp (Gao et al. 2020). The implication that ZEB1 
plays a critical role in drug resistance is growing as more 
cases are proposed. For restoring sensitivity to cancer 
therapies, the appropriate approaches regulating EMT-TFs, 
including Snail, Twist1, and ZEB1, are required. The fol-
lowing section describes several strategies targeting these 
EMT-TFs.
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Targeting EMT‑TFs to suppress cancer development 
and overcome drug resistance

Because the EMT process and its transcription factors drive 
drug resistance, the inhibitors of the process and factors will 
be beneficial for chemotherapy or targeted therapy (Du and 
Shim 2016).

In mutant K-RAS-driven cancer cells, Snail binds to the 
DNA-binding domain of p53 and prevents p53 from DNA 
binding and further apoptosis or senescence induced by 
p53 activity (Lee et al. 2009). Although a few inhibitors 
are developed to bind and inhibit Snail directly, GN25 and 
GN29 bind Snail and inhibit this interaction between Snail 
and p53 (Lee et al. 2010). The K-RAS mutated-cancer cells 
treated with the compounds show reduced proliferation and 
tumor progression. Unfortunately, these compounds have a 
limitation in that they are only effective in K-RAS-driven 
cancer cells harboring wild-type p53.

Recently, Hong et al. identified a small-molecule CYD19 
that binds Snail with a high affinity and inhibits the inter-
action of Snail with CREB-binding protein (CBP)/p300 
(Li and Balazsi 2018). The disrupted interaction leads to 
impairment of CBP/p300-mediated Snail acetylation and 
accelerated degradation of Snail via the proteasomal path-
way. Snail-dependent EMT, cancer stem cell expansion, 
and metastasis are inhibited in vivo as Snail degradation is 
induced by CYD19.

Given that Snail binds to the consensus E-box sequence, 
Vistain et al. utilized an amine-modified E-box oligonu-
cleotide conjugated to the cobalt(III) complex to generate 
CoIII-Ebox (Vistain et al. 2015). As CoIII-E-box is introduced 
into the cells, Snail binds to CoIII-E-box, and the endogenous 
E-cadherin gene expression is no longer repressed by Snail. 
CoIII-E-box blocks the binding of Snail to the promoter 
regions of its target genes, thus further inhibiting EMT in 
breast cancer cells.

A few direct inhibitors of Snail target the interaction 
of Snail with its binding partners as described above. The 
other approach to inhibit Snail is to modulate the regula-
tory mechanisms of Snail. For instance, the stability of Snail 
can be enhanced by Dub3, a deubiquitinase of Snail. Dub3-
mediated Snail stabilization is disrupted by a Dub3-specific 
inhibitor, WP1130, and Snail-driven metastasis is inhibited 
in breast cancer (Wu et al. 2017).

Harmine, a harmala alkaloid, is as a novel Twist1 inhibi-
tor that successfully inhibits cell dissemination, growth of 
invadopodia in 3D culture, and proliferation of NSCLC cells 
(Yochum et al. 2017; Zhang et al. 2020). Harmine induces 
the degradation of Twist1 heterodimerized with E2A pro-
tein, a dimer partner of Twist1 (Yochum et al. 2017). In 
addition, harmine shows anti-cancer activity via Twist1 sup-
pression in K-RAS mutant NSCLC mouse models (Yochum 
et al. 2017).

ABT-263 is an orally available analog that binds and 
inhibits anti-apoptotic Bcl-2/Bcl-XL. Furthermore, ZEB1 
suppresses transcription of pro-apoptotic BCL2L11, which 
results in resistance to ABT-263. However, FK228 (also 
romidepsin), known as HDACi, attenuated ZEB1-induced 
ABT263 resistance by up-regulating Bcl-2-like protein 11 
expression (Inoue-Yamauchi and Oda 2020).

The underlying mechanism of EMT-related resistance to 
doxorubicin is also highly dependent on miRNA expression 
and activity. A study by Chen et al. shows that the expres-
sion of miR-200 is reduced significantly when MCF-7 cells 
become resistant to doxorubicin (Chen et al. 2013). This 
miRNA targets the mRNA of ZEB1/2 directly (Park et al. 
2008). Ectopic expression of miR-200 induces E-cadherin 
upregulation, vimentin downregulation, and decreased 
motility.

Concluding remarks

Snail, Twist, and ZEB families not only induce EMT but also 
are correlated with drug resistance, all of which makes can-
cer therapy more challenging. We have described the cancer 
drug resistance regarding EMT-TFs and targeting strategies 
of EMT-TFs. Although the strategies targeting the EMT-TFs 
directly are not in the clinical trials yet, the relevance of the 
EMT-TFs in metastatic cancer is significant in vitro, in vivo, 
and in clinical data. Investigation into the regulatory mecha-
nisms of the EMT-TFs in correlation with cancer therapeutic 
resistance will develop novel targeting strategies towards the 
EMT-TFs. Eventually, different approaches to understanding 
the function and regulation of EMT-TFs will shed light on 
metastatic cancer therapy.
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