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van Beers, Robert J., Patrick Haggard, and Daniel M. Wolpert.
The role of execution noise in movement variability. J Neuro-
physiol 91: 1050 –1063, 2004. First published October 15, 2003;
10.1152/jn.00652.2003. The origin of variability in goal-directed
movements is not well understood. Variability can originate from
several neural processes such as target localization, movement plan-
ning, and movement execution. Here we examine variability resulting
from noise in movement execution. In several experiments, subjects
moved their unseen hand to visual targets, under conditions which
were designed to minimize the variability expected from localization
and planning processes. We tested short movements in 32 directions
in a center-out reaching task. The variability in the movement end-
points and in the initial movement direction varied systematically with
the movement direction, with some directions having up to twice the
variability of others. In a second experiment we tested four move-
ments in the same direction but with different extents. Here, the longer
movements were systematically curved, and the endpoint ellipses
were not aligned with the straight line between starting and end
position, but they were roughly aligned with the last part of the
trajectory. We show that the variability observed in these experiments
cannot be explained by planning noise but is well explained by noise
in movement execution. A combination of both signal-dependent and
signal-independent noise in the amplitude of the motor commands and
temporal noise in their duration can explain the observed variability.
Our results suggest that, in general, execution noise accounts for at
least a large proportion of movement variability.

I N T R O D U C T I O N

A ubiquitous feature of human motor control is the variabil-
ity of our movements that limits the accuracy with which we
can perform a task. Indeed society places a premium on con-
sistent accuracy to the extent that those who can reliably hit a
ball with a club into a hole are often financially well rewarded.
However, even these skilled sportsmen and women show some
variability in movement. The origin of this variability within
the sensorimotor system is not well understood, but it may
arise from processes being corrupted by noise. The precise
characteristics of the variability could indicate where the noise
arises.

Here we focus on goal-directed arm movements. Producing
an arm movement can be thought to consist of three stages:
localization, planning, and execution. In the localization stage,
the locations of the target and the hand are derived from
sensory information. Movement planning refers to the selec-
tion of motor commands that can produce the movement from
the initial to the target position. It uses the outputs of the
localization stage, namely target and hand position, as input

and generates motor commands as the output. In the movement
execution stage, the planned motor commands are sent to the
muscles so that the movement is actually made. This process
can be under feedback control (Miall and Wolpert 1996).

The neural signals at all these stages will be noisy. The
observed movement variability will therefore reflect the noise
at each of the three stages, but it is possible that different stages
contribute to very different degrees and that these contributions
will depend on the experimental conditions. For instance, when
the target position is made highly uncertain because it has to be
memorized in the dark (McIntyre et al. 1998), the uncertainty
in target localization can be so large that this is the major
source of variability. Its contribution will however be relatively
minor when the target remains visible (Hansen and Skavenski
1977), especially when it is seen in a structured visual field
(Conti and Beaubaton 1980). The contribution of hand local-
ization will also be small when the hand is seen at movement
onset (van Beers et al. 1996), especially when the target and
hand are seen simultaneously (Rossetti et al. 1994), but can be
appreciable when the hand cannot be seen (Desmurget et al.
1995; van Beers et al. 1998).

Several studies attributed movement variability to the move-
ment planning process. For instance, Gordon et al. (1994b)
observed that endpoint ellipses (confidence ellipses on the
spatial distribution of movement endpoints) align with move-
ment direction and that ellipse shape varies with movement
extent. Their interpretation was that movements are planned as
a vector from the initial hand position to the target position and
that the direction and extent of this vector are planned inde-
pendently, each having their own, independent noise. The idea
that planning noise is the major source of movement variability
has been very influential (e.g., McIntyre et al. 1997; van den
Dobbelsteen et al. 2001; Vindras and Viviani 1998). However,
these studies fail to provide evidence that all the observed vari-
ability arises in the planning process and not at other stages.

Movement execution will inevitably give rise to movement
variability because motor output (motor commands, muscle
contractions, or muscle torques) is inherently variable. This is
evident in the noise in the force produced during isometric
muscle contraction (Jones et al. 2002; Schmidt et al. 1979;
Slifkin and Newell 1999). Several authors (Harris and Wolpert
1998; Meyer et al. 1988; Schmidt et al. 1979; van Galen and de
Jong 1995) have proposed that noise arising in the motor
output stage gives rise to substantial movement variability,
which could explain the speed-accuracy trade-off known as
Fitts’ law (Fitts 1954). However, the assumption that motor
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execution processes produce considerable movement variabil-
ity has never been verified. The aim of this study was to
determine the magnitude of movement variability that is
caused by noise in movement execution and therefore to assess
the importance of this noise.

Our approach is to analyze the variability of pointing move-
ments made in conditions in which the effects of localization
and planning noise are minimized. To investigate whether the
observed noise is caused by execution noise, we tested move-
ments in different directions and of different extents. The
underlying idea is that movements with different spatial paths
require very different motor commands due to the kinematics
and dynamics of the arm (Koshland et al. 1999). Therefore
movement variability that is caused by execution noise will
vary in a systematic and predictable way with movement
direction. In contrast, variability caused by localization and
planning noise will, if expressed as a component in the move-
ment direction and a component in movement extent, not vary
with direction or will do so in a way that is independent of the
arm’s kinematics and dynamics and will therefore be quite
different from the variability due to execution noise.

M E T H O D S

Subjects

After providing informed consent, 15 subjects (11 female, 4 male),
18–34 yr old, participated in this study. A local ethics committee
approved the experimental protocols. None of the subjects reported
any sensory or motor deficits, and all had normal or corrected-to-
normal vision. Ten subjects participated in experiment 1, seven were
tested in experiment 2 (6 of which participated also in experiment 1),
and four new subjects participated in experiment 3. All but one subject
reported being right-handed. The left-handed subject participated only
in experiment 1; her results were not systematically different from
those of the right-handed subjects.

Apparatus

Subjects pointed with the tip of their right index finger to visual
targets on a horizontal table slightly below shoulder level. They sat on
a chair with their head resting on a chin rest (see Fig. 1A). The setting
allowed only little movement of the trunk; therefore the shoulder
position was approximately fixed. Two splints immobilized the wrist
and index finger so that arm movements could only be made by
shoulder and elbow rotation. The subjects looked down in a horizontal
mirror placed midway between the tabletop and a rear-projection
screen on which visual objects could be projected. This allowed
(virtual) vision of the table and visual objects while the arm could not
be seen. The room was illuminated to produce a structured visual field
in which localization of visual targets is optimal (Conti and Beaubaton
1980).

In experiments 1 and 2, a receiver of a Fastrak motion tracker
(Polhemus, Colchester, VT) was attached to the subject’s fingertip to
record its position at 120 Hz (accuracy: better than 1 mm). The visual
objects were displayed by a Pioneer RVD-XG10ED LCD projector
(Pioneer, Tokyo, Japan). The projector displayed images generated by
a PC at 90 Hz with a resolution of 1024 � 768 pixels on an area of
about 68 � 84 cm on the projection screen. Three different objects
could be shown: the starting position (a 4.5-mm-radius green disc),
the target (a 5.5-mm-radius yellow disc), and a cursor at the current
finger position (a 3.5-mm-radius red disc). The background was black.
The output from the projector and the Fastrak was calibrated before
each session using a 6 � 4 grid of positions covering the whole
workspace. The calibration procedure was based on two-dimensional
quadratic regressions, which were used on-line during the experiment
for displaying the objects.

In experiment 3 we used a similar setup, apart from the following
differences. The subject’s right arm was supported by an air-jet
system so that the arm could move frictionless over the table, and the
fingertip never touched the tabletop. The trunk was strapped to the
chair to prevent translational movement of the shoulder. Finally,
movements were recorded with an Optotrak 3020 system (Northern
Digital, Waterloo, Ontario, Canada; accuracy: 0.5 mm).

FIG. 1. Experimental setup. A: side view. Subjects moved their hand to targets on the tabletop. The mirror occluded the subject’s
arm from vision and made visual objects displayed on the projection screen by an LCD projector appear as if they were located
on the tabletop. In this way, the subject could see visual targets, and at certain phases within the experiment, a cursor at the fingertip
position, whereas the arm could never be seen. B: top view with starting and target positions used in experiments 1 and 2 and
definition of joint angles q1 and q2 and x and y directions.
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Procedure

Subjects pointed at visual targets without visual feedback about
their movements. Each trial started with a presentation of the starting
position. The finger position cursor was shown simultaneously to help
the subject to bring the finger quickly and accurately to this location.
The target appeared when the finger had been kept for 500 ms within
5 mm from the center of the starting position. The task was to make
a quick, uncorrected movement toward the target. No other instruc-
tions about the speed were given, so that subjects made fairly quick,
natural movements. In experiments 1 and 2, subjects touched the table
on the starting position, they lifted their hand at movement onset, and
touched the table again at the end of the movement. The elbow or
other parts or the arm never touched the table. In experiment 3, no part
of the hand or arm ever touched the table. In all experiments, the
finger and starting position discs were extinguished when the speed
first exceeded 5 cm/s (at that time, the finger usually had moved
approximately 1 mm). The target circle was extinguished when the
speed first fell below 5 cm/s while the finger was closer to the target
than to the starting position. At this moment, the starting position
appeared again, after which subjects moved their finger back to that
location. The finger position cursor was shown from the moment the
fingertip was closer to the starting than to the target position. In this
way, subjects never had any feedback about their movement endpoints
or about the finger position during the reaching movement. All data
were saved for off-line analysis.

EXPERIMENT 1. Movements from a central starting position, 20 cm
to the left and 43 cm in front of the right shoulder, toward 32 equally
spaced targets were tested (see Fig. 1B). Target distance was 9.6 cm.
We used a blocked design in which a block consisted of 30 move-
ments to a single target. The order of blocks was random, and
successive blocks were separated by 1-min breaks. We chose a
blocked design to minimize the variability caused during movement
planning. It allowed subjects to refine their choice of motor commands
for each target so that the variability due to this selection of motor
commands was minimized. The observed variability must therefore be
mainly due to variability in movement execution (Schmidt et al.
1979). In contrast, a randomized design such as the one used by
Gordon et al. (1994b) in which a target was never presented twice in
succession might represent an additional computational load for the
planning process and would therefore contain a relatively greater
contribution of planning variability.

EXPERIMENT 2. Movements from a single starting position toward
four targets in the same direction but at different distances (10.5, 21.0,
36.7, and 52.5 cm, see Fig. 1B) were tested. Subjects made each
movement 60 times in a separate block for each target. Blocks were
ordered with increasing distance, and they were separated by breaks of
1 min.

EXPERIMENT 3. This was a replication of experiment 1 with some
important methodological changes. The shoulder was restrained, and
the subject’s arm was fixed to a frictionless sled; therefore the hand
moved in the horizontal plane only and did not touch the table. In
addition, the starting position was defined by shoulder and elbow
angles of 40 and 95°, respectively. The position relative to the right
shoulder therefore differed across subjects; on average, it was 19 cm
to the right and 12 cm in front of the starting position of experiment
1. Therefore comparable results between experiments 1 and 3 would
confirm some generalization across different postures, movement
conditions, and subjects.

Prior to each experiment, subjects made one movement to each
target to get accustomed to the procedure and the setup.

Kinematic analysis

We filtered the positional data of each individual movement with a
second-order, zero phase-lag Butterworth filter with a 7 Hz cutoff

frequency. Velocities were determined by numerical differentiation.
The start of a movement was defined as the time the tangential
velocity first exceeded 5 cm/s and remained above that until peak
velocity. Movement end was defined as the first time after peak
velocity the tangential velocity fell below 5 cm/s.

We used the same sets of recorded trajectories for the kinematic
analysis and for the model simulations. To avoid sensitivity to occa-
sional outliers within a set of trajectories, we rejected movements
whose duration or start or end position differed by more than 3 SD
from the mean of that set. We also rejected movements that exhibited
multiple velocity peaks. In total, 2.7% of the trials were rejected.

To analyze the endpoint distributions, we determined for each
subject and each target the covariance matrix of all the (nonrejected)
two-dimensional end positions. These were visualized by 95% con-
fidence ellipses. We calculated three parameters to fully describe each
ellipse. First, the aspect ratio, calculated as the square root of the ratio
of the two eigenvalues (the larger divided by the smaller) of the
covariance matrix, is a measure of the shape of the ellipse. Second, we
calculated the ellipse orientation as the orientation of the eigenvector
corresponding to the largest eigenvalue. Finally, the total variance,
the trace of the covariance matrix, expresses the mean squared dis-
tance from the mean. It equals the sum of the variances in (any) two
orthogonal directions.

Because we were interested in the orientation relative to the move-
ment direction, we calculated the orientation deviation as the differ-
ence between the ellipse orientation and the overall movement direc-
tion, defined as the orientation of the vector from the initial to the final
position of a trajectory. Since this measure has a low reliability for
distributions that are approximately circular, we multiplied it by
(aspect ratio –1). This is equivalent to weighting each data value by
its reliability. We also analyzed the variability in movement direction
at the initial phase of movement. Initial movement direction was
defined as the orientation of the vector between the positions at the 1st
and 12th frame of a movement (i.e., 92 ms into the movement, at
which moment approximately 1 cm had been traveled). The variability
herein was quantified by calculating the circular SD (Fisher 1993).

Estimation of motor commands

Our aim was to verify whether the observed movement variability
could have been caused by execution noise. We therefore determined
the expected variability for observed movements by adding noise to
their motor commands (see Noise model). As a first step, we needed
to estimate the motor commands that had produced the observed
movements before they had been corrupted by execution noise (see
Fig. 2). To do this, we first derived mean trajectories for the move-
ments toward each target for each subject in the following way. We
used all 30 (experiments 1 and 3) or 60 (experiment 2) trajectories
toward a target, apart from those that had been rejected because they
deviated too much from the others (see Kinematic analysis). To avoid
the possibility that the mean trajectory would be influenced by tra-
jectories that deviated spatially from the others, i.e., because they
were more curved, we selected the 50% most representative trajecto-
ries. This was done by choosing the median 50% movements in terms
of their intersection with the perpendicular bisector of the starting and
target positions. Next, the remaining trajectories were temporally
rescaled to the mean duration, and their starting positions were aligned
with the mean starting position. Finally, the trajectories were tempo-
rally resampled at 10 ms using linear interpolation. The means of
these temporally resampled trajectories defined the mean trajectories.

The next step was to derive the motor commands from these mean
trajectories. We followed the method used by Harris and Wolpert
(1998); all the equations used are given in the APPENDIX. First, finger
positions were transformed into joint angles (inverse kinematics),
using the measured lengths of each subject’s forearm and upper arm
and assuming only movement at the shoulder and elbow joints. Joint
angles were then transformed into joint torques using the inverse
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dynamics equations for a two-link arm in the horizontal plane (e.g.,
Uno et al. 1989). The values for the mass, moment of inertia, and
center of mass of each arm segment were taken from Kawato (1995)
and scaled according to the actual lengths. The viscosity coefficient of
both joints was set to 0.8 kg m2/s (Nakano et al. 1999). Motor
commands were calculated from joint torques assuming two second-
order linear muscles acting on the shoulder and elbow joint with time
constants of 30 and 40 ms, representing excitation and activation (van
der Helm and Rozendaal 2000).

Noise model

We assume that the motor commands actually sent at a particular
movement correspond to those derived above, corrupted by noise. We
also assume that noise is added throughout the entire movement time.
This corresponds to an open-loop control scheme. The role of feed-
back that could be used to reduce variability will be discussed in the
RESULTS and DISCUSSION. Noise will cause the actual trajectory to
deviate from the intended trajectory. To estimate the movement vari-
ability resulting from this noise, we simulated large numbers of noisy
motor commands and calculated the corresponding trajectories by
feeding them through the forward equations shown at the right side of
Fig. 2.

There are many different types of noise that could be added to the
motor commands. Since the motor commands have a time varying
magnitude, we can add noise vertically, i.e., to the magnitude of the
signal, as well as horizontally, i.e., in how the signal evolves over
time. From the many types of noise possible, we included three types
that have been proposed in the literature.

First, Harris and Wolpert (1998) proposed signal-dependent noise
(SDN). This is white noise in the magnitude of the signal with zero
mean and a SD proportional to the absolute value of the signal. Such
a relation has been observed for both the firing of motor neurons
(Pastor et al. 1991) and for force production during isometric con-
traction (Jones et al. 2002; Schmidt et al. 1979; Slifkin and Newell
1999). We modeled SDN by adding Gaussian white noise to the motor
command at each time-step in the simulations. The SD �SDN of this
noise was defined as �SDN

2 � kSDN
2 u2, where u is the motor command

and kSDN defines the level of the noise. Noise in the shoulder and
elbow commands was assumed to be independent.

Second, noise could have a constant level independent of the signal
(Wolpert et al. 1995). Constant noise could result from background
activity of the motoneurons, but it could also represent the effects of

other processes such as co-contraction (see DISCUSSION). We modeled
constant noise (CN) in the same way as SDN, but with a SD inde-
pendent of the motor command: �CN

2 � kCN
2 . Constant and signal-

dependent noise were assumed to be independent, so that the SD of
the total amount of noise added to the magnitude of the motor
commands was �u � ��SDN

2 � �CN
2 � �kSDN

2 u2 � kCN
2 .

Finally, we added temporal noise (TN) to the motor commands to
account for variability in movement time (M). The level of temporal
noise was defined by the coefficient of variation of movement time,
kTN. Movement time was varied by changing the time-step in the
forward calculations. All time-steps within a single simulated move-
ment were scaled by the same factor, but this factor was varied across
simulated movements to obtain a coefficient of variation of movement
time of kTN. Our data (see RESULTS) showed that movements with a
longer duration tended to have a lower peak velocity. To account for
this, we also scaled the magnitude of the motor command. Within a
single simulated movement, movement time M and motor command
u were scaled simultaneously such that when M was scaled by a factor
c, u was scaled by a factor 1/c2 (Hollerbach and Flash 1982). This
ensured that movements with a longer duration on average had a
lower peak velocity (see RESULTS). The same scaling was applied
simultaneously to the shoulder and elbow commands.

Fitting the model

We generated 150 sets of noisy motor commands for each target for
each subject and calculated the resulting movement trajectories. The
endpoint of a simulated movement was defined as the position imme-
diately after the last motor commands had been sent (other methods,
such as using a velocity threshold produced very similar results).

The simulations had three free parameters: the levels of the three
types of noise (kSDN, kCN, kTN). To estimate these noise levels, we
fitted the model to the data of experiment 1 by optimizing the log
likelihood of the observed endpoints (Eliason 1993). This involved
several steps. First, for a given set of noise levels, we simulated 150
movements for each target and each subject. We then fitted each set
of 150 simulated endpoints to two-dimensional Gaussian distribu-
tions. These distributions defined the model predictions. We next
computed the log likelihood for each observed endpoint given the
corresponding predicted distribution, and we added these log likeli-
hood scores together. This sum quantifies how good the observed
endpoints match the predictions. The sum was optimized using an
unconstrained nonlinear optimization algorithm (fminsearch in Mat-
lab; The Mathworks, Natick, MA) that determined the three noise
levels that produced the highest likelihood score. The same set of
three parameters was used for all subjects and targets.

R E S U L T S

Experiment 1

CONSTANT ERRORS. Figure 3 shows the movement endpoints
and the mean trajectories for a representative subject. This
subject showed considerable overshoots for most movements
in the 90–180° directions. This was not observed for other
subjects. Subjects showed idiosyncratic constant errors, and no
general pattern emerged. We therefore did not analyze the
constant errors further but focused on the variability only.

ENDPOINT VARIABILITY. Figure 3 shows that the endpoint el-
lipses generally align with the movement direction. It is strik-
ing, however, that the ellipse shape varies with direction. For
targets in the 22.5–45° directions (Fig. 3, bottom left), the
ellipses are quite elongated. From 45 to 225°, they tend to be
rounder, but between 225 and 270°, they are again more
elongated. In the remaining directions, they are again rounder.

To see how general this effect is, we show in Fig. 4A the

FIG. 2. Schematic representation of the execution noise model. Left: how
motor commands are derived from the observed mean finger trajectory. Noise
is added to 150 sets of these motor commands. Right: how the resulting finger
trajectories are calculated from the sets of noisy motor commands.
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aspect ratio averaged over all subjects as a function of target
direction. This plot confirms that the aspect ratio varies with
direction. It has maxima near the 56 and 247.5° directions,
where it reaches values around 3. The value in most other
directions is about one-half this peak value. We used Moore’s
modification of Rayleigh’s test (Moore 1980) to verify whether
the aspect ratio (and other quantities as well) varies signifi-
cantly with direction. This test evaluates whether directional
data could have been drawn from a uniform circular distribu-
tion. This test, here assuming a bimodal circular distribution as
the alternative for uniformity, confirmed that the aspect ratio
varies with direction (R*

(320) � 1.536; P � 0.001).
Figure 4B plots the mean orientation deviation (the ellipse

orientation relative to the overall movement direction). This
figure shows that the ellipses are approximately aligned with
the movement direction, in accordance with the findings of
Gordon et al. (1994b). However, the orientation deviation
varies weakly but significantly with direction (R*

(320) � 1.182;
P � 0.025). The mean total variance is plotted in Fig. 4C. The
total variance does not significantly (R*

(320) � 0.527; P � 0.4)
vary with direction, and its mean is 68 mm2.

VARIABILITY IN INITIAL MOVEMENT DIRECTION. Figure 4D
shows the mean of the reciprocal of the circular SD in the
initial movement direction. Clearly, this variability early in the
movement varies with movement direction (R*

(320) � 2.114;
P � 0.001) in a similar way as the aspect ratio does. This
suggests that these measures could be related and that an
indication of the endpoint variability may already be visible in
the earliest parts of the movements. To test for this possibility
we tested whether, within a block of movements to the same
target, the initial and overall movement direction are corre-

lated. Since these are both directional data, we calculated the
angular-angular correlation (the analogue of the correlation
coefficient, see Zar 1999). The mean angular-angular correla-
tion was 0.34, and the correlation was significantly greater than
zero in 285 of 320 (10 subjects � 32 targets) cases (89.0%).
We also tested whether a similar relation exists between the
distance traveled within the first 12 frames and the final move-
ment extent. Here the mean correlation coefficient was 0.20,
and it was significantly greater than zero in 110 of 320 cases
(34.4%). This confirms that some aspects of the endpoint
variability, mainly the directional variability, are already
present in the earliest part of movement (see also Messier and
Kalaska 1999). The correlations are, however, rather weak,
which suggests that a substantial part of the endpoint variabil-
ity is due to noise that is added after the initial movement phase
and/or that there is compensation for the variability in the
beginning of the movement.

TEMPORAL VARIABILITY. Movement times were variable. Fig-
ure 5A shows the mean movement time as a function of
movement direction. Mean movement time varied in a system-
atic way with direction, with extremes of 374 and 487 ms. Such
an effect has previously been reported by Gordon et al.
(1994a). These authors attributed this effect to the nonuniform
inertia experienced when moving the hand in different direc-
tions. To verify this, we also plotted the inertia (derived from
the inverse of the mobility tensor, see Hogan 1985) averaged
across subjects (the dashed line in Fig. 5A). Movement time
clearly increases with inertia. Tangential velocity profiles
showed the well-known bell-shaped pattern, and did (after
normalization in magnitude and time) not vary with direction

FIG. 4. Polar plots of observed endpoint variability in experiment 1. In each
plot, the black curve shows the mean of all subjects as a function of target
direction, and gray areas around it represent intersubject variability (1.96 times
the SE, i.e., the 95% CI). A: aspect ratio of endpoint ellipses. B: orientation
deviation of endpoint ellipses: scaled difference between the ellipse orientation
and overall movement direction. C: total variance in movement endpoints. D:
reciprocal of the circular SD (CSD) in initial movement direction.

FIG. 3. Example of raw data of a representative subject (VL) in experiment

1. Large filled circles represent the 32 targets. Starting position (not shown)
was in the center of the circle of targets. Curves emanating from this center
represent the mean finger trajectories toward each target. Little dots around the
end of the trajectories denote the endpoints of individual movements. Ellipses
are 95% confidence ellipses of the endpoint distributions. Bottom left: target
directions (in °) are defined.
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[data not shown, but see Gordon et al. (1994a) and Messier and
Kalaska (1999) for similar data].

Figure 5B shows the coefficient of variation (the SD divided
by the mean) in movement time. This coefficient does not vary
with direction (R*

(320) � 0.520; P � 0.4) and has a mean value
of 0.084. The key question about the variability in movement
time is whether it is related to spatial variability. Do faster
movements follow the same path as slower movements or are
their paths different? Since the normalized velocity profile is
approximately constant, we can address this question by ana-
lyzing the relation between movement time and peak velocity
vp. To get the idea behind this analysis, consider the schematics
plotted in Fig. 5C. These diagrams represent three possible
relations between peak velocity and movement time for three
movements to the same target with different movement times.
In the first, peak velocity increases with movement time. This
would result from producing torques of the same magnitude for
all durations by only scaling the torque profile in time. As a
result, movement amplitude, which is proportional to the prod-
uct of peak velocity and movement time, will be proportional
to the square of movement time. A second possibility, shown
in the middle, is that peak velocity is independent of movement
time. This could be accomplished by appropriate scaling of the
torque magnitude. In this case, amplitude is proportional to
movement time. A third possibility, shown at the bottom, is
that peak velocity is inversely proportional to movement time
so that the amplitude is independent of movement time. This
means that the spatial path is the same for all movement times,
only the speed is varied. Of course, these three possibilities are

just three points on a continuum of possible relationships. The
continuum can be described by the relation vp � M�p, where
power p defines the relationship.

We determined p by performing linear regressions of log(vp)
as a function of log(M) for each target and subject. Figure 5D

shows the mean value of p as a function of direction. The mean
value is 0.80, and it does not vary with direction (R*

(320) �
0.144; P � 0.9). This implies that movements with a longer
duration tend to have a lower peak velocity. Since the value of
p is slightly smaller than 1, however, the effects of duration and
velocity do not cancel completely; therefore, on average,
movement extent increases slightly with movement time.

This result forms the basis for how we modeled temporal
noise. The observed relation between movement time and peak
velocity suggests that motor commands are scaled down with
increasing movement time. Hollerbach and Flash (1982)
showed that a scaling of movement time M by a factor c is
accomplished by scaling the joint torques by a factor 1/c2.
However, the dynamics of the arm considered by these authors
contained inertial terms only and not the viscous terms we
incorporated in our arm model. Also, our model adds noise to
motor commands, not to torques. Since these differences are
not expected to have large effects and since the observed
exponent p was quite close to 1, we modeled the temporal
variability by a simultaneous scaling of movement time and
motor command magnitude according to the relationship de-
rived by Hollerbach and Flash (1982) (see METHODS).

MODEL PREDICTIONS. The analysis of the variability in move-
ment endpoints and in initial movement direction showed that
movement variability varies systematically with movement
direction. We next examined whether these results can be
explained by noise in movement execution. Our execution
noise model contains three types of noise. We will now dem-
onstrate the effect of each of these types of noise.

The top row of Fig. 6 shows the effects of signal-dependent
noise. Figure 6A shows the predicted endpoint ellipses for the
subject whose data are shown in Fig. 3, and Fig. 6B shows the
aspect ratio averaged across all subjects. The predicted aspect
ratios are, in general, too large. However, it is interesting to
note that the predicted and the observed aspect ratios reach
their maxima for approximately the same movement direc-
tions. The maxima correspond to directions for which the
torques and motor commands at one of the joints are small
compared with those at the other. The noise at one of the joints
will therefore be much larger than at the other, which leads to
highly elongated ellipses. The ellipse orientation, however, is
not well predicted. In the 90–180° directions, for instance, the
predicted ellipses are approximately orthogonal to the observed
ones. In these directions, torques have to be generated at both
joints. These torques work in different directions, so that their
effects cancel partially. Their noises, however, add. The result
is a larger variability orthogonal to than along the movement
direction.

The predictions for constant noise are shown in the middle
row of Fig. 6. Here, the ellipse orientation does not vary much
with direction, and the aspect ratio is approximately constant.
Since this noise is independent of the motor commands, the
ellipses are hardly influenced by the movement made. They
resemble the ellipse that would be found when constant noise
is added to a stationary arm. Only the ellipse size varies with

FIG. 5. Temporal variability. The format of the polar plots is the same as in
Fig. 4. A: mean movement time. The dashed line indicates inertia as a function
of movement direction (in arbitrary units). B: coefficient of variation in
movement time. C: 3 examples of possible relations between movement time
M and peak velocity vp for 3 movements to the same target with different
movement times. D: polar plot of the observed exponent p in vp � M�p.
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direction. This is because the movement time, and therefore the
amount of noise added, depends on direction (Fig. 5A).

Temporal noise (Fig. 6, bottom row) leads to much more
variability in the movement direction than orthogonal to that.
The predicted aspect ratio is therefore orders of magnitude too
large. Temporal noise alone thus leads to variation of move-
ment extent with movement time, as we found experimentally.

None of the three types of noise in isolation can account for
the observed endpoint variability. We next examined whether
a combination of the three types of noise can explain the data.
We fitted the model containing all three types of noise to the
data (see METHODS). The only free parameters were the three
noise levels, and these were assumed to be the same for all
subjects and targets. The best fitting parameters were kSDN �
0.103, kCN � 0.185, and kTN � 0.083.

Figure 7 shows the predicted endpoint variability for the
subject whose data are shown in Figs. 3 and 6. This model
captures the observed endpoint variability much better than the
models including only one type of noise. To determine whether
the improvement is better than that expected from the increase

of degrees of freedom from one to three, we determined
Akaike’s information criterion (AIC; Akaike 1973) for each
model using the data from all subjects. The AIC is a measure
for the quality of the model fit, based on the likelihood, that
includes the model’s degrees of freedom. This measure thus
allows an objective comparison of models with different de-
grees of freedom; the lower the AIC, the better the model.
Table 1 shows the AIC for all versions of the model, i.e., all
possibilities including one, two, or three types of noise. The
AIC for the model with three types of noise is the lowest. This
suggests that all three types of noise are essential to include in
the model. Therefore our further analyses focused on the three
component model only.

Figure 8 compares the predicted and observed variability
averaged across all subjects. The variation of the aspect ratio
with movement direction is predicted very well (Fig. 8A). The
location and magnitude of the predicted maxima agree with the
observed ones. These predictions are significantly better than
those of any model predicting a constant aspect ratio (paired
t-test on squared differences between observed and predicted

FIG. 6. Endpoint variability resulting from each
type of noise included in model. Left: endpoint ellipses
for the subject whose data are shown in Fig. 3. Pre-
dictions are shown as thick black ellipses. Right: ob-
served and predicted aspect ratio averaged across all
subjects. The format is the same as in Fig. 4, apart
from the thick black line that represents the prediction.
A and B: only signal-dependent noise (kSDN � 0.2). C

and D: only constant noise (kCN � 0.2). E and F: only
temporal noise (kTN � 0.08).
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aspect ratio: P � 0.05). The ellipse orientation (Fig. 8B) is also
predicted reasonably well. Although the predicted magnitude
of especially negative orientation deviations is slightly too
large, the sign of the deviation is usually predicted correctly.
Finally, the model prediction for the total variance (Fig. 8C) is
not as good. Although the prediction is correct in about one-
half the directions, it is too large in the 90–180° and especially
in the 270–360° directions. This is also evident in the example
in Fig. 7.

A possible explanation for the poor prediction of the vari-
ance is that there is compensation for variability that occurred
early in the movement. Such corrections are not included in the
model but will naturally reduce variability. Corrections must
have been based on proprioceptive feedback because subjects
could not see their arm. The mean movement time of 420 ms
is sufficiently long to allow for such corrections (see DISCUS-
SION). However, movement time varied with direction (Fig.
5A). The directions in which the predicted variance is too large
correspond to those with a long movement time (compare Figs.
8C and 5A). The mean movement time varied between 374 and
487 ms; any such difference of over 100 ms could certainly be
important in determining to what extent feedback-driven cor-
rections might occur. This suggests that the poor prediction of
the variance could indeed be caused by compensation for

variability earlier in the movement. If this were the case, the
model predictions should still be correct earlier in the move-
ment. Figure 8D shows the observed and predicted variability
in initial movement direction. This figure confirms that the
variability in the initial part of the movement is predicted very
well. We next investigated how far into the course of the
movement the predictions agree with the observations. Figure
9 plots the observed and predicted total variance at 200, 250,
300, and 350 ms into the movement. Observed and predicted
variance agree very well until 250 ms into the movement. At
300 ms they begin to differ, and at 350 ms they differ strongly,
almost to the extent that the variances in the endpoints differ
(cf. Fig. 8C). Thus although we fitted the model to the observed
endpoints only, it makes an excellent prediction for the vari-
ability in the initial part of the movement. The model is less
successful at fitting the variability at later times in the move-
ment; total variance increases less rapidly than the model
predicts after 250 ms. This suggests an additional control
process comes into operation beyond 250 ms to reduce vari-
ability. Our data are consistent with the possibility that feed-
back-driven corrections become effective around 250 ms after
movement onset.

Experiment 2

Experiment 1 showed that movement variability varies with
movement direction. We showed that noise in movement ex-
ecution can explain these results. In our execution noise model,
variability in movement extent is to a large extent caused by
temporal noise. The results of experiment 1, however, do not
provide evidence that variability in movement extent is actu-
ally caused by temporal noise and not by noise in planning of

TABLE 1. AIC values for the model including different types

of noise

Noise Included AIC

SDN �133477
CN �135684
TN �23899
SDN � CN �137829
SDN � TN �135792
CN � TN �142024
SDN � CN � TN �142108

The AIC values for each version of the model were determined by optimiz-
ing the likelihood by varying the levels of the included types of noise. The
levels of the types of noise that were not included were set to zero. AIC,
Akaike’s information criterion; SDN, signal-dependent noise; CN, constant
noise; TN, temporal noise.

FIG. 7. Example of predicted endpoint variability for a representative subject
(VL) in experiment 1. The model including all 3 types of noise (see RESULTS) is
used to predict the endpoint variability for the subject whose data are shown in Fig. 3.

FIG. 8. Polar plots of observed and predicted variability in experiment 1.
Observed values are plotted in the format of Fig. 4. Model predictions, with the
3 noise levels optimized (see RESULTS), averaged across all subjects, are
indicated by thick black curves. A: aspect ratio. B: orientation deviation of
endpoint ellipses. C: total variance. D: reciprocal of the circular SD in initial
movement direction.
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movement extent. We performed experiment 2 to distinguish
between these possibilities. Subjects again made arm move-
ments toward visual targets, but this time we used longer
movements in a direction where it is known that finger trajec-
tories are curved (Desmurget et al. 1997; Haggard and Rich-
ardson 1996). Curved trajectories can distinguish between the
two possibilities. According to the movement planning vector
hypothesis (Gordon et al. 1994b), the movement’s endpoint is
chosen before the trajectory or motor commands are deter-
mined. Variability in the planned extent will thus result in
variability along the (straight) vector from starting to end
position. After that, the trajectory and motor commands will be
determined that will bring the hand to the selected movement
endpoint. Whether or not the trajectory is curved is not relevant
for the endpoint variability since the endpoint variability is
fully determined during planning of the movement vector,
according to this hypothesis. The movement planning model
thus predicts variability along the straight line from starting to
end position, regardless of trajectory curvature. In contrast, the
effect of noise in movement execution will depend on the
trajectory, so that the endpoint variability is likely to vary with
trajectory curvature. Jaric et al. (1999) earlier reported that
highly curved movement trajectories, induced by placing an
obstacle between starting and target position, influenced the
orientation of the endpoint ellipses. Their study, however, did
not make clear whether this effect was caused by the curved
trajectories per se, or to the fact that their subjects produced a
series of submovements, each of which was planned indepen-
dently.

ENDPOINT VARIABILITY AND TRAJECTORY CURVATURE. Figure
10 shows the mean trajectories and movement endpoints for a
representative subject. The movements toward the near targets

were approximately straight, but those to the two furthest
targets were clearly curved away from the body. We quantified
the curvature by determining the linearity index (Atkeson and
Hollerbach 1985): the maximum distance of the finger trajec-
tory from the straight line between start and end position,
divided by the length of this straight line. Curvature away from
the body was positive, curvature toward the body was negative.
Across all subjects, movements toward all but the nearest
target had a significantly positive linearity index (2-tailed t-
test, all P � 0.02). In addition, curvature increased with move-
ment distance (mean correlation coefficient: 0.90, significant
for 6 of 7 subjects). In contrast to the study of Jaric et al.
(1999), these movements were “naturally” curved and planned
as single movements, as is evident from their single-peaked
velocity profiles (data not shown).

For the nearest target, which was at a similar distance as the
targets in experiment 1, the ellipse in Fig. 10 is approximately
aligned with the overall movement direction. This is, however, not
true for the further targets. Here, the ellipse orientation deviates
from the orientation of the straight line between initial and final
position. The deviation is in the direction of movement curvature.
Figure 11A plots the ellipse orientation deviation as a function of
target distance. The orientation deviation is significantly greater
than zero for the two furthest targets (1-tailed t-test, both P �
0.025) but not for the two nearest targets. The aspect ratio (Fig.
11B) decreases slightly with target distance, in agreement with
findings of Gordon et al. (1994b). The total variance (Fig. 11C)
increases with target distance.

MODEL PREDICTIONS. The finding that the ellipse orientation
deviates from the overall movement direction for curved tra-
jectories suggests that the variability in movement amplitude is
not due to variability in the planned length of the vector from
initial to final position. Note that also a planning model that
plans straight trajectories, but that produces curved movements
because of inaccuracies in the planning process, cannot explain
this result. Desmurget et al. (1997) tested movements very
similar to ours, and found that these were naturally curved.
However, when instructed to make the same movement fol-
lowing a straight-line path, subjects produced much straighter
trajectories. This suggests that the movements in our experi-
ment were planned to be curved and that the orientation of the
endpoint ellipses does not result from inaccuracies in planning
that adds curvature to movements that are intended to be
straight. Does our model of execution noise predict these
ellipse orientations correctly? We used the same model as in
experiment 1, including the optimal noise levels determined
there, to predict the movement variability in these movements.
We made two modifications. Numerous studies on temporal
variability (e.g., Ivry and Hazeltine 1995; Wing and Kristof-
ferson 1973) have found that the coefficient of variation in the

FIG. 9. Polar plots of observed
and predicted total variance in the
finger position during the move-
ments in experiment 1. The format
is the same as in Fig. 8. Times
above plots indicate at which mo-
ment after movement onset the
variance is shown.

FIG. 10. Example of raw data of a representative subject (SY) in experi-

ment 2. Large filled circles represent targets. Curves represent mean finger
trajectories toward each target. Endpoints of individual movements are shown
as little dots. Thin ellipses are 95% confidence ellipses of endpoint distribu-
tions. Thick ellipses represent predictions of the execution noise model.
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duration of tapping intervals decreases with the length of the
interval. Since the movement time in this experiment varied,
we allowed this coefficient of variation in the model (kTN) to
decrease with movement time. We fixed kTN at the mean
movement time of experiment 1 (420 ms) at the value used
there (0.083) and let it linearly decrease with movement time to
0.05 at the mean movement time at the furthest target (750 ms).
In addition, the furthest targets were much further in front of
the subject than the targets in experiment 1. Because visual
localization uncertainty increases with distance from the ob-
server (van Beers et al. 1998), it was no longer legitimate to
neglect the uncertainty in target localization. We translated the
reported estimate of visual localization precision of 0.5° arc
(Hansen and Skavenski 1977; van Beers et al. 1998) into
uncertainty on the tabletop and added this to the variability
resulting from execution noise.

The predictions of this model are shown in Figs. 10 and 11.
Most importantly, the predicted orientation deviation (Fig.
11A) increases with target distance and thus with trajectory
curvature, just as the observed orientation deviation does. The
predicted aspect ratio (Fig. 11B) differs somewhat from that
observed but the differences are relatively small. The total
variance (Fig. 11C) is predicted reasonably well. Only for the
furthest target are the predicted values somewhat too large. The
discrepancies for this target are presumably due to compensa-
tion for variability early in the movement, as in experiment 1.
If this were the case, the correlation between initial and overall
movement direction would be expected to be lower for this
target than for the nearer targets. This was indeed the case:
whereas the mean angular-angular correlation was between
0.25 and 0.27 for the three nearest targets, it was only 0.03 for
the furthest target. This confirms that the discrepancies be-
tween observed and predicted variability for the furthest target
could have arisen from corrections for variability early in the
movement.

Experiment 3

Experiment 3 was a replication of experiment 1 with some
methodological changes. First, air-sleds were used to allow
subjects to move without any friction. This makes especially
the end of the movement different from in experiment 1, where
the movement endpoints could have been influenced by the
friction encountered when the finger made contact with the
table. Second, the shoulder was securely fixed to allow us to
control for the effect of possible small shoulder movements.
Third, movements were made in a different part of the work-
space, and finally, different subjects were tested. These differ-
ences allowed us to test the generalization of the model across
different postures, movement conditions and subjects.

Figure 12 shows the variability observed in this experiment.
As expected, the peaks for the aspect ratio (Fig. 12A) and the
variability in initial movement direction (Fig. 12D) occur for
different target directions than in experiment 1. The figure also
shows the values predicted by the execution noise model with
the noise levels determined in experiment 1. Most importantly,
the locations of the peaks are predicted correctly. The ellipse
orientation (Fig. 12B) is also predicted accurately. In contrast
to experiment 1, the predicted total variance (Fig. 12C) is
smaller than the observed variance. This is due to two subjects
who showed much larger variability than the subjects in ex-
periment 1, possibly because they had no experience with the
somewhat unnatural conditions with air-sleds. The other two
subjects, who had been tested in this setup before, showed a
variability comparable to that found in experiment 1. This can
explain the large observed total variance and inter-subject
variability therein. The patterns of observed and predicted total
variance as a function of movement direction, however, are
similar as in experiment 1: the observed total variance does not
vary much with direction, whereas the predicted variance is
larger in directions where movements had a longer duration.

FIG. 11. Observed and predicted end-
point distributions in experiment 2. Mean
values represent the mean across all subjects.
Error bars denote SE reflecting inter-subject
variability. A: orientation deviation of end-
point ellipses: difference between the ellipse
orientation and overall movement direction.
B: aspect ratio. C: total variance.

FIG. 12. Results of experiment 3. Mean observed and predicted values are
shown in the format of Fig. 8. A: aspect ratio. B: orientation deviation of
endpoint ellipses. C: total variance. D: reciprocal of circular SD in initial
movement direction.
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Taken together, the results of this experiment are in good
agreement with the model predictions. This suggests that pos-
sible small movements of the shoulder and friction at the end
of the movements in experiment 1 had little or no influence on
the observed variability. In addition, the fact that the model
works equally well in a different part of the workspace and for
different subjects illustrates its predictive power.

D I S C U S S I O N

We have investigated the role of execution noise in move-
ment variability by analyzing the variability in arm movements
to visual targets without visual feedback of the arm. The
experimental conditions minimized the variability caused by
movement planning and by uncertainty in hand and target
localization. Our experiments produced two novel findings.
The first and third experiment showed that the variability in
movement endpoints and in initial movement direction varies
systematically with movement direction. The second experi-
ment showed that the endpoint distributions of movements
with curved finger trajectories are not aligned with the straight
line between initial and final finger position, but they are
rotated in the direction in which the trajectory is curved. These
results are well accounted for by a model that assumes that the
variability is due to noise in movement execution, which is a
combination of signal-dependent and signal-independent noise
in the magnitude of motor commands and temporal noise in
their duration. The model has a large predictive power, because
it was only fit to the movement endpoints in one experiment,
but it also captures the variability at earlier times in these
movements as well as the variability in movements of different
extents and in other parts of the workspace. The execution
noise model is a parsimonious model because it does not make
any ad hoc assumptions; it only assumes noise in the magni-
tude and duration of motor output, the existence of which is
beyond doubt.

It has been shown previously that the variability in arm
movements of deafferented patients varies with direction
(Ghez et al. 1990). Buneo et al. (1995) suggested that this
effect might be the result of random variability in the magni-
tude of joint torques. We went one step further by showing that
the movement variability in healthy humans also varies with
direction. Furthermore, using a more realistic model for noise
in movement execution than Buneo et al. (1995) used, we
showed that this noise can explain the observed movement
variability in healthy humans. Earlier models for one-dimen-
sional movements (Meyer et al. 1988; Schmidt et al. 1979) also
attributed movement variability in healthy humans to noise in
both the amplitude and the duration of motor output. However,
whereas the motor system in these earlier models was modeled
as a black box with input-output relations based on empirical
relationships between task parameters and observed variability,
our model has a “mechanistic” base that models the torques
and neural signals that are actually present and in which it is
made explicit where the noise arises. Our model is therefore
more realistic, makes stronger quantitative predictions, and has
a larger generality than these earlier models.

Possible other sources of variability in our data

Although the observed variability is well explained by noise
in movement execution, we have not yet shown that it does not

include substantial variability arising at the localization and
planning stages. It is impossible to completely exclude any
such contributions, but we have several reasons to assume that
these are unlikely to be large.

First, the experimental conditions minimized the localization
and planning contributions. The localization contribution was
minimized because the targets were well visible during point-
ing in a structured visual field (Conti and Beaubaton 1980) and
subjects could simultaneously see their hand (Desmurget et al.
1995) and the target (Rossetti et al. 1994) before each move-
ment. Visual localization precision has been estimated to be
better than 0.5° arc (Hansen and Skavenski 1977; van Beers et
al. 1998). For the target positions used in experiments 1 and 3,
this corresponds to a variance smaller than 20 mm2. This is
small compared with the mean endpoint variance of 68 mm2 in
experiment 1. The effect of hand localization will be much
smaller because both vision and proprioception provided in-
formation (van Beers et al. 1996, 1999). The contribution of
movement planning was minimized because a blocked design
was used in which subjects pointed to the same target many
times in succession. This allowed subjects to refine their move-
ments and thus the motor commands they sent to their muscles.
In this situation, noise in motor output is likely to be the major
source of variability (Schmidt et al. 1979).

The second reason why the contributions of localization and
planning must be small is that they cannot explain the direc-
tion-dependent variability we found in the center-out experi-
ments. Localization of a visual target is limited by how precise
the orientation of the eyes is sensed (Hansen and Skavenski
1977). Translated into uncertainty on the tabletop, this results
in ellipses whose major axes point toward the eyes. The el-
lipses we found clearly had a different orientation. The effect
of hand localization on ellipse orientation will be smaller
because the variance in localization of a seen hand is smaller
than that of a visual target (van Beers et al. 1996). Variability
due to planning is also unlikely to vary with direction in the
way our data do. The expected variability depends on the
model for movement planning that is supposed. The model of
Gordon et al. (1994b) assumes independent variability in the
planned direction and extent, and both are not assumed to vary
with direction. This model thus does not predict the aspect ratio
to vary with direction. An alternative planning model in which
movements are not planned in external but in joint space might
be able to produce direction-dependent variability. However,
the combination of noise in the amplitude and in the duration
of motor output, which we have shown to be necessary to
explain the results and which makes sense for an execution
noise model, does not seem a logical assumption for a planning
model. We conclude that most of the variability we observed is
caused by noise in movement execution.

Noise in movement execution

We will now discuss some important aspects of the execu-
tion noise model in more detail. In the model we added noise
to motor commands, i.e., to the input to the muscle. However,
previous data show that noise in muscle output arises from a
combination of renewal process noise on the motoneurons and
the recruitment properties of motor units (Jones et al. 2002).
We therefore examined whether adding noise to the output of
the muscles, i.e., to torques, instead of to their input, would
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produce different results. The results (data not shown) were
virtually unchanged, which suggests that the observed variabil-
ity comes from the elements of the motor hierarchy (as shown
in Fig. 2) common to both these simulations, namely the
dynamics and kinematics of the arm. Thus movement variabil-
ity varies with direction and trajectory curvature because the
motor commands and torques do so, due to the kinematics and
dynamics of the motor apparatus.

We next discuss the relative importance of the three types of
noise (signal dependent, constant, and temporal noise) we
found by fitting the model to the endpoints of experiment 1.
The level of temporal noise is directly related to the observed
variability in movement time. The fact that the optimal level of
temporal noise (0.083) is almost identical to the observed
coefficient of variation in movement time (0.084) confirms that
this noise is modeled correctly. The exact levels of the noise in
the magnitude of the motor commands are not so easy to
interpret because they depend on the time-step used in the
simulations (they scale with the reciprocal of the square root of
the time-step). We can however interpret their relative values.
The coefficient of constant noise (0.185) is larger than that of
signal-dependent noise (0.103). Moreover, the average motor
command level is of the order of 0.5 (in arbitrary units), with
a mean peak of 1.25. Therefore multiplying even the peak
motor command by the signal-dependent noise coefficient pro-
duces a noise level below that of constant noise. This suggests
that the contribution of signal-dependent noise to overall vari-
ability is lower than that of constant noise. This is somewhat
surprising, but it does not necessarily mean that actual motor
commands have so much constant noise. One possibility is that
the noise increases with the signal, but not as strongly as we
assumed in our definition of signal-dependent noise. It seems
likely that our model would approximate such noise by a
combination of constant and signal-dependent noise. Another
possibility is that the high level of constant noise is the effect
of co-contraction. Our model contains highly simplified linear
muscles that, to simulate agonist–antagonist pairs of muscles,
can pull in two directions. Actual torques are produced by
combinations of mono- and multi-articular muscles, each hav-
ing their own noise. Coactivation of antagonistic muscles re-
sults in a partial canceling of their torques but at the same time
their noises add up. Even if the noise in two co-contracting
muscles is fully signal-dependent, the noise in the produced
torque will be larger than when a single muscle produces the
same net torque. Co-contraction thus raises the noise level so
that the overall noise can be considered as a combination of
signal-dependent and constant noise. Since co-contraction oc-
curs naturally during movements from the first instants of
muscle activation (Suzuki et al. 2001), at least a part of the
constant noise appearing in our model will in fact be due to
signal-dependent noise in co-contracting muscles. It is unclear,
however, how large a part of the constant noise this is, because
the level of cocontraction during movement is not known and
because the increase of limb stiffness induced by cocontraction
can also act to reduce positional variability (Gribble et al.
2003).

It is often instructive to identify what aspects of behavior a
model fails to capture. Since our model is an open-loop model
only, describing the failures of our model may have the posi-
tive role of isolating the contribution of sensory feedback in the
control of aimed movement. Sensory feedback can be used to

compensate for undesired deviations from an intended trajec-
tory, thus reducing variability (Todorov and Jordan 2002;
Woodworth 1899). Our subjects could not see their hand;
therefore any corrections in their movements must have been
based on proprioceptive feedback. Earlier estimates of the time
for proprioceptive feedback to be effective are between 100
and 200 ms (Chernikoff and Taylor 1952; Cordo 1990; Cordo
et al. 1994; Newell and Houk 1983; Vince 1948). Our model
captures the variability until approximately 250 ms into the
movement (Fig. 9). Thereafter the predicted variance exceeds
the observed variability. This suggests that it takes about 250
ms before proprioceptive signals can induce corrections of the
movement trajectory. The actual delay, however, may be short-
er; the trigger signal for a correction would presumably be
some deviation from the desired trajectory, which would occur
at some unknown time after movement onset. Thus our data are
not incompatible with the lower estimates of feedback delay
measured by others.

General role of execution noise

We created experimental conditions in which the effects of
localization and planning on movement variability were min-
imized. In other, more natural conditions, however, localiza-
tion and planning could cause more variability. To judge the
importance of execution noise, we must compare the variabil-
ity due to execution noise to the variance that could be ex-
pected from the other sources.

As mentioned before, the variance expected from target
localization uncertainty in our experiments is small compared
with the variance due to execution noise. However, in general,
this depends on the location of the target; the effect will be
larger for targets further away. For the furthest target in exper-
iment 2, for instance, an uncertainty of eye orientation of 0.5°
arc (Hansen and Skavenski 1977) corresponds to a variance
�150 mm2. This is why it was included in the model for this
experiment. The effect of uncertainty in hand localization
depends on whether the hand can be seen. When it is seen, both
vision and proprioception are used, so that its localization
variance is much smaller than that of the target (van Beers et
al. 1996, 1999). When the hand is not seen its position has to
be derived from proprioception only, which is not so precise
(van Beers et al. 1998). This explains why movement variabil-
ity is larger when the hand is not seen before the movement
than when it is (Desmurget et al. 1995).

The variance due to movement planning can be estimated by
comparing the variance in our study to the variance found in a
similar experiment in which the effect of planning was not
minimized, i.e., an experiment in which the targets were pre-
sented in a random order. Most suitable for this comparison is
task 1 in the study by Messier and Kalaska (1997). We derived
the endpoint variance from the absolute variable errors they
reported (their Fig. 4, A and B) at the target distance in our
experiment 1. A conservative estimate reveals that the variance
in the study of Messier and Kalaska was at most 90 mm2. This
is only marginally larger than the 68 mm2 we found in exper-
iment 1. This shows that the variability due to movement
planning is small compared with the variability caused by
execution noise. It further suggests that much of the variability
that was in several studies attributed to movement planning
may in fact be caused by noise in movement execution.
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All the above suggests that, in most common conditions, the
effects of localization and planning on movement variability
are much smaller than those of movement execution. However,
there are many reports of endpoint variability that cannot be
explained by noise in movement execution. We will now
discuss these studies. Most of these studies employed experi-
mental manipulations that produced a large localization vari-
ance. A common manipulation is to turn the targets off and ask
subjects to point at their remembered location. This increases
the localization variance, as is shown by the rapid increase of
variance with memory delay (McIntyre et al. 1997). When the
delay is short (0.5 s), the axis of maximum variability has an
orientation that could well be expected from a combination of
variability due to localization and to execution of about equal
magnitude (Carrozzo et al. 1999). For longer delays (several
seconds), the localization variance will be much larger than the
execution variance, so the latter can be neglected. The shape of
the endpoint distribution is therefore almost exclusively deter-
mined by how precisely the target location can be memorized,
which leads to endpoint distributions whose axis of maximum
variability points toward the eyes (McIntyre et al. 1997). This
also explains why, in such conditions, the endpoint variability
is practically insensitive to manipulations that change the vari-
ability due to movement execution, such as changing the
movement direction (McIntyre et al. 1997), movement distance
(Lemay and Proteau 2001), movement speed (Adamovich et al.
1994), or allowing subjects to see their hand during pointing
(Carrozzo et al. 1999; McIntyre et al. 1998). The fact that, in
these conditions, the endpoint variability reflects the precision
of the memorized target location is very evident when the
various targets are placed in an easy to remember geometrical
configuration, such as on a straight line. Subjects then build up
a representation of the line that allows them to remember the
target position relative to the line rather than relative to them-
selves. The axis of maximum variability therefore tends to
align with the target configuration line rather than with the line
toward the eyes (Carrozzo et al. 2002; Rossetti 1998).

We conclude that in most common conditions variability in
goal-directed arm movements is mainly due to noise in move-
ment execution. This is a combination of noise in the magni-
tude and noise in the duration of the motor output. As a result,
the variability in movement endpoints, and therefore the suc-
cess rate of reaching the target, depends on the chosen move-
ment trajectory. Given these effects of execution noise on the
actual trajectory that we make, we suggest that an important
goal of movement control may be to plan movements in such
a way that the expected likelihood of missing the target is
minimal (Harris and Wolpert 1998).

A P P E N D I X

Here we present the equations used in the transformation between
finger trajectories and motor commands (see also Fig. 2). Indices 1
and 2 refer to the shoulder and elbow joint, respectively.

Kinematics

The finger position (x, y) relative to the shoulder (as defined in Fig.
1B) follows from the joint angles (forward kinematics)

x � l1 cos q1 � l2 cos 	q1 � q2


y � l1 sin q1 � l2 sin 	q1 � q2
 (A1)

where l1 and l2 denote the lengths of the upper arm (the distance from
shoulder to elbow) and forearm (the distance from the elbow to the tip
of the index finger), and q1 and q2 are the shoulder and elbow angles,
respectively, as defined in Fig. 1B. The arm lengths were measured for
all subjects.

These equations can be inverted to obtain the joint angles expressed
as a function of finger position (inverse kinematics)

q2 � arccos �x2
� y2

� l 1
2

� l 2
2

2l1l2

�

q1 � arctan �y

x
�� arctan � l2 sin q2

l1 � l2 cos q2

� (A2)

Dynamics

The torques �� � (�1, �2)T at the two joints were calculated from the
joint angles q� � (q1, q2)T using the dynamics equations of a two-link
manipulator (e.g., Uno et al. 1989)

�� � H q�̈ � a� (A3)

with

H � � I1 � I2 � 2m2l1c2 cos q2 � m2l 1
2 I2 � m2l1c2 cos q2

I2 � m2l1c2 cos q2 I2
� (A4)

a� � ��m2l1c2	2q̇1 � q̇2
q̇2 sin q2 � b1q̇1

m2l1c2q̇1
2 sin q2 � b2q̇2

� (A5)

Here, mi, ci, bi, and Ii represent the mass, the distance of the arm
segment’s center of mass from the joint, the viscosity coefficient, and
moment of inertia of arm segment i (�1, 2) around the joint, respec-
tively. The values for the mass, moment of inertia, and center of mass
of each arm segment were taken from Kawato (1995) and scaled
according to the actual lengths. The viscosity coefficient of both joints
was set to 0.8 kg m2/s (Nakano et al. 1999).

These equations were used to calculate the joint torques from the
observed joint angles (inverse dynamics). To calculate joint angles
from torques (forward dynamics), we inverted Eq. A3

q�̈ � H�1	�� � a�
 (A6)

and integrated this numerically to determine the joint angles from the
torque profiles.

Muscle model

We used a muscle model to estimate the motor commands u from
the joint torques. The shoulder and elbow muscles were modeled as
two second-order linear muscles with time constants te and ta of 30
and 40 ms, representing excitation and activation (van der Helm and
Rozendaal 2000)

ui � teta�̈i � 	te � ta
�̇i � �i (A7)
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