
OPINION PAPER

The role of exercise in the reversal of IGF-1 deficiencies
in microvascular rarefaction and hypertension

Amani M. Norling & Adam T. Gerstenecker &

Thomas W. Buford & Bilal Khan &

Suzanne Oparil & Ronald M. Lazar

Received: 29 September 2019 /Accepted: 19 November 2019 /Published online: 5 December 2019
# American Aging Association 2019

Abstract Hypertension has been linked with peripheral

and central reductions in vascular density, and with

devastating effects on brain function. However, the un-

derlying mechanisms in the relationship between blood

pressure and cognitive impairment have yet to be fully

elucidated. Here, we review compelling evidence from

two lines of inquiry: one that links microvascular rare-

faction with insulin-like growth factor 1 (IGF-1) defi-

ciencies, and another which posits that vascular dys-

function precedes hypertension. Based on the findings

from experimental and clinical studies, we propose that

these lines of evidence converge, and suggest that age-

related declines in IGF-1 concentrations precede micro-

vascular rarefaction, initiate an increase in vascular re-

sistance, and therefore are causally linked to onset of

hypertension. Physical exercise provides a relevant

model for supporting our premise, given the well-

established effects of exercise in attenuating vascular

dysfunction, hypertension, IGF-1 deficiency, and cog-

nitive decline. We highlight here the role of exercise-

induced increases in blood flow in improving vascular

integrity and enhancing angiogenesis via the actions of

IGF-1, resulting in reversal of rarefaction and hyperten-

sion, and enhancement of cerebral blood flow and

cognition.
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Introduction

Hypertension is a major public healthcare crisis in the

USA, with the American Heart Association (AHA)

estimating prevalence at more than 103 million adults

≥ 20 years of age (Muntner et al. 2018). The risk of

becoming hypertensive increases with age—75% of

adults 65 to 74 years old and 82% of those 75 years

and older have high blood pressure. Further, nearly 24%

of hypertensive adults are between 20 and 44 years of

age (Muntner et al. 2018). Even more troubling is the

fact that 16% of the nearly 41 million men and 45

million women with hypertension are unaware of their

condition (Benjamin et al. 2018). Given the high prev-

alence of hypertension and its deleterious effects on the

brain (Gorelick et al. 2011; Kilander et al. 1998), iden-

tifying underlying causal mechanisms to attenuate

hypertension-induced pathology is of critical

importance.

There is strong evidence that increasing age is highly

correlated with pathophysiological and functional alter-

ations in the cardiovascular and cerebrovascular systems

(AHA et al. 2016), and that decreased cerebral blood
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flow (CBF) (Ainslie et al. 2008; Chen et al. 2011) and

vascular disease are important contributing factors to

aging-related cognitive decline (Gorelick et al. 2011;

Kilander et al. 1998; Raz et al. 2003). Vascular dysfunc-

tion and a weakened vasomotor capacity to respond to

fluctuations in intravascular pressure during the cardiac

cycle have been linked with compromised cardiovascu-

lar function and increased risk of hypertension, stroke,

myocardial infarction, and congestive heart failure

(AHA et al. 2016).

Here, we propose a causal link between insulin-like

growth factor-1 (IGF-1) deficits and hypertension,

wherein IGF-1 deficiencies induce microvascular rare-

faction (MVR), which increases vascular resistance and

blood pressure. We also propose that exercise counter-

acts the deleterious effects of age-related growth factor

reductions, moderates vascular resistance and rarefac-

tion, and improves cerebral blood flow (CBF) in the

setting of essential hypertension. We begin with a dis-

cussion of the systemic and central effects of untreated

hypertension, and present evidence linking growth fac-

tor deficiencies with MVR and development of hyper-

tension. Last, we discuss exercise as a potential mecha-

nism by which the deleterious effects of growth factor

deficiencies might be reversed.

Essential hypertension: cause and consequence

A large percentage of individuals diagnosed with ele-

vated blood pressure have primary or essential hyper-

tension (Berglund et al. 1976; Carretero and Oparil

2000), wherein secondary causes such as renovascular

diseases are absent (Carretero and Oparil 2000). Eleva-

tions in both systolic and diastolic blood pressure are

highly correlated with ischemic and hemorrhagic

strokes, with systolic pressure conferring the greatest

cardiovascular risk (Cutler 1996). In fact, hypertensive

patients have a sevenfold higher likelihood of develop-

ing atherothrombotic brain infarcts than normotensive

patients (Kannel et al. 1976).

Cardiovascular risk factors engender endothelial dys-

function and induce ischemic diseases (Hill et al. 2003),

leading to systemic increases in vascular resistance,

which are triggered by a thickening of the walls of the

resistance vessels, a reduction in lumen diameters, and

hypertension (Phillips and Whisnant 1992). Important-

ly, the microcirculation, specifically, vasoconstriction in

small arteries, ultimately impact peripheral resistance.

The resulting wall remodeling via reductions in vessel

diameter has prompted some researchers to speculate

that endothelial dysfunctions may precede the develop-

ment of a hypertensive state (Brandes 2014; Humar

et al. 2009).

Chronic hypertension is also associated with impair-

ment in cerebral autoregulation that leads to further

escalations in blood pressure. Autoregulation is the in-

trinsic capacity of the brain to maintain blood flow to

sustain neuronal metabolism despite perfusion pressure

changes. Hyperperfusion can occur when arterial pres-

sure exceeds the autoregulatory threshold, leading to

disruption in vascular, endothelial, and blood-brain bar-

rier integrity (Paulson et al. 1990). To protect the brain

from higher arterial pressures, the autoregulatory curve

shifts to the right (Paulson et al. 1990; Pavy-Le Traon

et al. 2002; Strandgaard 1976; Strandgaard et al. 1973),

indicating progressively greater blood vessel constric-

tion, which has been linked to cerebral white matter

hyperintensities (Purkayastha et al. 2014). While this

adaptive autoregulatory mechanism protects the brain

from excessive pressure, if perfusion pressure is normal-

ized with antihypertensives, the adaptive shift toward

lower blood pressure may predispose the brain to hypo-

perfusion and depressed neuronal function (Feldstein

2012; Klabunde 2005). Chronic hypoperfusion in ro-

dents has been linked to reduced CBF, hippocampal

reactive astrogliosis, neuronal cell death, and enduring

cognitive deficits (Cechetti et al. 2012). In older adults,

the capacity of cerebral autoregulation to protect the

brain from chronic states of hypoperfusion is dimin-

ished, a limitation that often results in devastating con-

sequences, with disruptions of the neurovascular unit

contributing to beta-amyloid buildup (ElAli et al. 2013).

Chronic hypertension exerts insidious consequences

on brain structure, resulting in cognitive changes (Birns

and Kalra 2009). The deleterious effects of chronic

elevations in blood pressure on the brain include de-

creased cerebral blood flow (CBF) (Beason-Held et al.

2007) and loss of cerebral white matter integrity

(O’sullivan et al. 2002; Verhaaren et al. 2013). Elevated

blood pressure is also associated with increased risk of

vascular dementia (Lis and Gaviria 1997), Alzheimer’s

disease (Feldstein 2012) and vascular cognitive impair-

ment (Kilander et al. 1998) with more pronounced cog-

nitive effects seen in individuals with uncontrolled hy-

pertension (Brady et al. 2005). Prospective studies have

shown an association between chronicity of hyperten-

sion and cognitive deficits in later life (Elias et al. 1993;
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Qiu et al. 2005; Yaffe et al. 2014). The late-life decrease

in cognitive performance was particularly striking when

blood pressure remained untreated in middle-age

(Kilander et al. 1998; Launer et al. 1995; Qiu et al.

2005). The Systolic Blood Pressure Intervention Trial -

Memory and Cognition in Decreased Hypertension

(SPRINT-MIND) study showed that compared to stan-

dard treatment (< 140mmHg), intensive management of

systolic blood pressure (< 120 mmHg) was effective in

reducing the risk of developing mild cognitive impair-

ment (SPRINT MIND 2019).

Microvascular rarefaction and its effects

Vascular rarefaction, the reduction of the number of

perfused vessels, is mainly found in arteriolar and cap-

illary networks (Prewitt et al. 1982), which are respon-

sible for a significant proportion of total network resis-

tance in cerebral cortical vascular beds (Gould et al.

2017). Rarefaction can be functional or structural. Func-

tional rarefaction of microvessels results from vasocon-

striction, and in the setting of hypertension, the loss of

perfusion precedes structural rarefaction of the micro-

vasculature (Prewitt 1990), is considered reversible and

can result from decreased availability of nitric oxide,

increased presence of endogenous vasoconstrictors

(e.g., endothelin, prostaglandins) or sympathetic tone,

as well as reduced availability of growth factors (Lip

and Hall 2007). In contrast, structural rarefaction of the

resistance vessels, arterioles and capillaries, entails a

loss of vessels in a vascular network. This effect can

occur in response to vasoconstriction and loss of perfu-

sion, or to a decrease in the availability of endogenous

vascular growth factors (Lip and Hall 2007) that are

responsible for cellular functions, including survival,

migration and differentiation of neuronal and glial cells

(Friedman 2012).

MVR may also occur from deficient “angiogenesis”

(le Noble et al. 1998), here used as a generalized term

describing vascular development. Vascular develop-

ment can be separated into three physiologically distinct

stages: vasculogenesis, angiogenesis, and vascular re-

modeling. Vasculogenesis is the early developmental

process of blood vessel formation that arises from dif-

ferentiating endothelial cells and occurs primarily dur-

ing embryogenesis. In contrast, angiogenesis can occur

across the lifespan of the individual and is the means by

which new capillaries emanate from existing vessels

(Risau 1997). Last, vascular remodeling involves the

pruning and restructuring of existing vasculature into a

vascular network (Risau 1997).

Dysregulated vascular development appears to un-

derlie the manifestation of a number of diseases and

conditions, including rheumatoid arthritis, malignant

tumors (Folkman 1995), and hypertension (le Noble

et al. 1998; Noon et al. 1997; Struijker et al. 1992).

Early research advanced the notion that vessel rarefac-

tion is partly the result of increased total peripheral

resistance, ultimately leading to hypertension (Greene

et al. 1989), and observations from both experimental

and clinical studies reported MVR in hypertension.

Structural rarefaction of capillaries and arterioles was

detected in young spontaneously hypertensive rats prior

to elevations in blood pressure (le Noble et al. 1990).

Similarly, studies show that changes in vascular struc-

ture and capillary rarefaction may precede clinical man-

ifestations of essential hypertension in humans

(Antonios et al. 1999), and that diffuse systemic MVR

could be the dominant defect in essential hypertension

(Levy et al. 2001).

Reduced microvascular density has been reported in

patients with established hypertension (Prewitt 1990;

Struijker et al. 1992), and in those with borderline or

early essential hypertension (Struijker et al. 1992;

Sullivan et al. 1983). Compared to healthy controls,

for example, patients (52 ± 9 years of age) with untreat-

ed mild-moderate hypertension had reduced retinal mi-

crovascular density (Bosch et al. 2017). In addition,

functional impairment of pericytes, the contractile cells

responsible for capillary dilation, has been shown to

result in impaired vasodilation in the cerebral circulation

(Hall et al. 2014; Peppiatt et al. 2006). Impaired vaso-

dilation at the level of the capillaries and rarefaction of

microvessels have been associated with a familial pre-

disposition to primary hypertension (Noon et al. 1997),

with evidence suggesting that impaired angiogenesis in

early development interrupts microvascular network

formation (Noon et al. 1997; Poston 2007) predisposing

normotensive offspring of hypertensive individuals to

develop hypertension (Noon et al. 1997).

Microcirculatory rarefaction and increased vascular

resistance result in significant modifications in tissue

hemodynamics and oxygen delivery. In an extension

of their earlier work, Greene et al. applied a mathemat-

ical model of tissue oxygen transport to analyze the

effects of MVR on tissue oxygen distribution (Greene

et al. 1992). The results indicated that as metabolic rate
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increased, a 65% decrease in total available oxygen was

observed in rarefied tissues in hypertensive rats. The

authors concluded that changes in oxygen levels may

impact not only hemodynamics in the microcirculation,

but potentially the entire body (Greene et al. 1992).

Given that rarefaction impacts blood flow resistance at

the tissue level to a similar extent as vasoconstriction, a

reduction in the number of microvessels with the corre-

sponding decrease in available surface areas for gas

exchange and increased diffusion distances may ulti-

mately overwhelm the network’s capacity to regulate

blood flow. MVR in hypertension is characterized by a

decreased efficiency of tissue to regulate its own oxygen

delivery (Greene et al. 1992) and is a causal factor in the

formation of cerebral white matter lesions (Joutel et al.

2010)—a common finding in hypertensive individuals

(Iadecola and Davisson 2008). Thus, cerebral rarefac-

tion exerts profound deleterious effects on cognitive

function in individuals with hypertension (de La Torre

2012; Toth et al. 2016).

Microvascular rarefaction and altered cerebral

hemodynamics

The overall regulation of CBF is thought to be mediated

primarily by the cerebral vascular network of arteries,

arterioles, and capillaries (Cipolla 2009; Filosa et al.

2016). Studies have shown age-related decreases in

CBF (Ainslie et al. 2008; Lynch et al. 1999), with

evidence that reductions in CBF are more pronounced

in those over than under 60 years of age (Ainslie et al.

2008; Kawamura et al. 1993), and that older women

have higher CBF than age-matched men (Lu et al.

2010). Vascular loss in persons with essential hyperten-

sion leads to significant consequences for cerebral auto-

regulation and blood flow (Beason-Held et al. 2007; Li

et al. 2015).

The relationship between resting cerebral blood flow

(rCBF) and blood pressure was assessed in older hyper-

tensive individuals over a 7-year period (Beason-Held

et al. 2007). Compared with controls, those with hyper-

tension showed decreased regional rCBF across cortical

areas, including the prefrontal cortex, anterior cingulate

cortex, and occipital regions. Changes in rCBF were

associated with chronicity of hypertension, suggesting

that the deleterious effects of elevated blood pressure

may be additive. A similar study examined the associa-

tion between blood pressure, antihypertensive

medications, and changes in parenchymal CBF (pCBF).

Results of this longitudinal (mean = 3.9 years) study

showed that poorly controlled and untreated hyperten-

sion were associated with decreased pCBF (Muller et al.

2012).

Collectively, data strongly suggest that vascular pa-

thologies (Gorelick et al. 2011), including those associ-

ated with chronic hypertension (Novak and Hajjar

2010), are major contributors to loss of microvascular

density and vessel wall remodeling and suggest a po-

tential mechanism by which hypertension contributes to

the pathogenesis of vascular cognitive impairments and

dementia (Gorelick et al. 2011; O'Brien et al. 2003) in

elderly patients with hypertension. Increased cerebro-

vascular resistance has been shown to be related to

decreased cognition and AD pathology (Yew and

Nation 2017), while increased CBF and decreased arte-

rial stiffness have been correlated with better overall

cognitive function (Tarumi et al. 2013).

Microvascular density: physiology

and pathophysiology

Reduction in the availability of certain hormones and

growth factors including growth hormone (GH),

insulin-like growth factor-1 (IGF-1), and vascular endo-

thelial growth factor (VEGF) may result inMVR. IGF-1

is a known cerebral angiogenic factor with insulin-

sensitizing effects (Lopez-Lopez et al. 2004), facilitated

via endocrine and exercise-induced paracrine (local re-

lease) mechanisms (Velloso 2008) (see Fig. 1). Endo-

crine release of IGF-1 is mediated by pituitary growth

hormone (GH), which acts as the primary driver of

hepatic IGF-1 synthesis, whereas exercise studies con-

firm the anabolic effects of IGF-1 on skeletal muscles

via paracrine mechanisms (Velloso 2008). VEGF is an

equally important angiogenic factor involved in the GH/

IGF cascade. The release of VEGF is induced by IGF-1-

stimulated release of hypoxia-inducible factor (HIF-1α)

(Fukuda et al. 2002; Krock et al. 2011). In the central

nervous system (CNS), VEGF regulates microvascular

density and offers protection against CNS pathologies

(Lange et al. 2016), whereas its inhibition is implicated

in capillary rarefaction (Robinson et al. 2010). Evidence

from both animal and human studies shows that chronic

VEGF inhibition results in decreased endothelial cell

survival, reduced blood flow, and vascular loss (Inai

et al. 2004; Robinson et al. 2010; Steeghs et al. 2008).
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In the absence of VEGF, the vasodilator nitric oxide is

reduced, resulting in vasoconstriction, increased resis-

tance, and hypertension (Kamba and McDonald 2007;

Small et al. 2014).

Animal studies suggest that reductions in circulating

IGF-1 concentrations and hypertension parallel age-

related microvascular changes, including loss of myo-

genic tone, impaired neurovascular coupling (Csiszar

et al. 2017), and cerebromicrovascular autoregulation

(Toth et al. 2014). IGF-1 deficiencies induce patholog-

ical vessel wall remodeling that result in a weakening of

the cerebral arteries and are associated with functional

maladaptation to hypertension and increased risk for

m i c r o h emo r r h a g e s ( F u l o p e t a l . 2 0 1 8 ) .

Microhemorrhages weaken the vessels predisposing

them to high-pressure induced rupture resulting in loss

of immune privilege across the blood-brain barrier, neu-

roinflammation (Sweeney et al. 2018; Toth et al. 2014),

neuronal dysfunction (Sonntag et al. 1997), and cogni-

tive decline and AD onset in elderly populations

(reviewed in Csiszar et al. (2017)).

Animal models support findings from human studies

that showed increased incidence of microhemorrhages

in hypertensive adults (Romero et al. 2014). Experimen-

tal hypertension in IGF-1-deficient mice led to more

cerebral microhemorrhages and contributed to earlier

onset of neurological dysfunction (Tarantini et al.

2017). In a later study, endocrine IGF-1 deficiencies

promoted a worsening of hypertension-induced loss of

microvascular density in the hippocampus and

neocortex, and IGF-1-deficient mice had decreased gene

expression of proangiogenic factors in these brain re-

gions, while antiangiogenic factors were upregulated

(Tarantini et al. 2016)).

Pleiotropic effects of IGF-1 on longevity, DNA repair,

and malignancies

IGF-1 concentrations increase incrementally from birth,

reaching a peak during adolescence. Thereafter, a pro-

gressive decrease in IGF-1 begins in the 2nd and 3rd

decades of life, and continues throughout the lifespan

(Brabant et al. 2003). In early life, IGF-1 levels drive

growth during critical developmental periods (Sonntag

et al. 2012). However, in later life, elevated IGF-1 levels

contribute to development of age-related pathologies,

including cancer and diabetes (Ashpole et al. 2017),

whereas IGF-1 deficiencies promote apoptosis of dam-

aged cells, protect against DNA damage, and reduce

cancer risk (Guevara-Aguirre et al. 2011). These para-

doxical functions suggest that IGF-1 effects differ de-

pending on the age and sex of the organism (Ashpole

et al. 2017). Mouse models of IGF-1 deficiencies in later

life had no impact on lifespan (Ashpole et al. 2017;

Ikeno et al. 2003). However, deficiencies in early devel-

opment resulted in increased lifespan and resistance to

malignant neoplasms in females, whereas a shortened

lifespan was reported in males (Ashpole et al. 2017).

Conversely, elevated levels of IGF-1 in early life

Fig. 1 Endocrine and paracrine release of IGF-1. GH growth

hormone, IGF-1 insulin-like growth hormone, PGC1-α peroxi-

some gamma coactivator 1α, HIF-1α hypoxia-inducible factor

1α, VEGF vascular endothelial growth factor, BDNF brain-

derived neurotrophic factor (Organ images created with

BioRender.com)
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impacted an individual’s predisposition to malignancies

in adulthood (reviewed in Podlutsky et al. (2017)).

Moreover, new evidence highlights a possible syner-

gistic effect of nutrition and IGF-1 on inflammation and

life-span regulation. For example, early-life caloric re-

striction increased gene expression of transforming

growth factor-β (TGF-β), interleukin-6 (IL-6), and tu-

mor necrosis factor-α (TNF-α) in normal mice, whereas

caloric restriction reduced gene expression of these fac-

tors and reduced lifespan of GH knockout mice (IGF-1

deficient) in females (Fang et al. 2017). Relevant to this

discussion, TGF-β is an anti-inflammatory cytokine

mainly expressed in skeletal muscle and implicated in

development, tissue homeostasis, immune functions,

and control of disease pathogenesis (Guo and Wang

2009). TGF-β has bifunctional properties; elevated

levels are associated with various forms of cancer while

low levels are associated with cardiovascular diseases

(reviewed in Gordon and Blobe (2008). Therefore, the

decrease of TGF-β in female IGF-1-deficient mice

(Fang et al. 2017) emphasizes the role of IGF-1 signal-

ing in aging, disease development, and lifespan. The

disparities between early and later life GH/IGF-1 defi-

ciencies and their downstream effects have led some

investigators to infer that longevity and neoplasms in

animal models may be attributable to low GH rather

than reductions in IGF-1 levels (Aguiar-Oliveira and

Bartke 2018; Aguiar-Oliveira et al. 2010; Brown-Borg

1996; Brown-Borg and Bartke 2012).

The role of IGF-1 in rarefaction

Evidence from animal (Breese et al. 1991; Juul 2003)

and human (Goodman-Gruen and Barrett-Connor 1997;

Juul et al. 1994; Zhu et al. 2017) models demonstrate a

significant age-related decrease in the GH/IGF-1 cas-

cade. The temporal pattern of this decline has suggested

that age-related reductions in IGF-1 may be causally

linked to vascular pathologies in aging (Sonntag et al.

2000). This hypothesis is consistent with evidence from

human studies indicating that, unlike rodent models in

which a deficiency in the GH/ IGF-1 is proposed as a

conserved mechanism of aging and increased lifespan

(Ashpole et al. 2017; Brown-Borg 1996), a decline in

these factors in humans is accompanied by increased

risk for hypertension (Hunt et al. 2006; Juul et al. 2002),

loss of microvascular density (Antonios et al. 2003;

Antonios et al. 1999), and other adverse cardiometabolic

manifestations with no evidence of increased longevity

(Sonntag et al. 2012).

IGF-1 enhances endothelial cell function and vascu-

lar smooth muscle cell survival (Conti et al. 2004). In

addition, the transformation from stable to unstable

atherosclerotic plaque is, in part, attributable to low

IGF-1 levels (Bayes-Genis et al. 2000; Okura et al.

2001). Given its vasodilatory properties (Sowers

1997), IGF-1 lowers blood pressure (Hunt et al. 2006).

Thus, low circulating IGF-1 concentrations are associ-

ated with increased vasoconstriction, leading to a rise in

blood pressure in middle-aged adults (Hunt et al. 2006),

and increased cardiovascular risk (Schutte et al. 2010;

Sonntag et al. 2012; Sowers 1997).

Inhibition of IGF-1 results in endothelial dysfunc-

tion, increased vascular resistance and elevation in sys-

tolic blood pressure in rodents (Tivesten et al. 2002). In

humans, the relationship between IGF-1 levels and risk

of hypertension was examined in a follow-up study of

2046 nonhypertensive and nondiabetic women 48–61

years of age (Zhang et al. 2011). Age was inversely

correlated with IGF-1 levels and compared with those

with low IGF-1 levels at baseline, individuals with

elevated levels of IGF-1 had a 38% reduced risk of

developing hypertension at the 4-year follow-up exam-

ination. These findings corroborate other studies that

showed a reduced level of IGF-1 to be a strong predictor

of cardiovascular disease (Juul et al. 2002; Laughlin

et al. 2004). Further, a meta-analytic study with nearly

15,000 participants showed a curvilinear relationship

between IGF-1 levels and all-cause mortality (Burgers

et al. 2011).

In the CNS, IGF-1 release (Hughes et al. 1999)

indicates that IGF-1 appears to serve angiogenic and

neurotrophic functions and is implicated in stem cell

proliferation (Arsenijevic et al. 2001), in brain plas-

ticity via modification of synaptic formation (Torres-

Aleman 1999), and in neuroprotection (Carro et al.

2000; Hughes et al. 1999; Lopez-Lopez et al. 2004).

Further, age-related reductions in IGF-1 levels may

reduce resistance to stress and restrict injury repair

in the CNS (Carlson et al. 2014; Wine et al. 2009).

However, the presence of IGF-1 receptors in the

brain even in older animals suggests that despite

reductions in local release of IGF-1, peripherally

released IGF-1 plays a role in brain function across

the lifespan (Fernandez and Torres-Alemán 2012),

and supports the role of exercise-induced IGF-1

release.
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Given the inverse relationship between IGF-1 and

systemic cardiovascular disease (Juul 2003; Juul et al.

2002), it is not surprising that low IGF-1 levels have

been linked with increased stroke risk. A comparison of

IGF-1 levels in 254 stroke patients with age-matched

controls found a negative correlation between circulat-

ing IGF-1 and IGFBP-3 (an IGF-binding protein) con-

centrations, and risk of ischemic stroke (Johnsen et al.

2005), with later confirmation of IGF-1/IGFBP-3’s neu-

roprotective role in poststroke neurological outcome at

90 days (De Smedt et al. 2011; Denti et al. 2004).

Further, several animal studies showed that delivery of

exogenous GH/IGF enhances cortical capillarization

(Sonntag et al. 1997), postsynaptic density in the hippo-

campus (Shi et al. 2004), and helps restore cognitive

function (Lichtenwalner et al. 2001; Lopez-Lopez et al.

2004). Further evidence supporting the role of IGF-1 in

cerebrovascular density comes from studies demonstrat-

ing that biological aging is associated with decreased

IGF-1 levels (Breese et al. 1991; Sonntag et al. 1999).

Low circulating levels of IGF-1 were associated with

decreased capillary density in the hippocampus

(Sonntag et al. 2000; Sonntag et al. 1997; Tarantini

et al. 2016), which was reversible with IGF-1 infusion

(Sonntag et al. 1997).

In humans, IGF-1 levels are positively related to

hippocampal volume and memory (Maass et al. 2016).

Higher IGF-1 levels in elderly subjects are associated

with better cognitive function, whereas low IGF-1 levels

are associated with cognitive impairment (Doi et al.

2015; Frater et al. 2018; Landi et al. 2007; Rollero

et al. 1998), Alzheimer’s disease, and vascular dementia

(Quinlan et al. 2017; Watanabe et al. 2005).

IGF-1 deficiencies precede vascular rarefaction

and hypertension

Racial/genetic differences

The prevalence of hypertension in the African American

black population is nearly 45% higher than any other

race (Benjamin et al. 2018). A comparison between 171

white and black men (40–80 years) showed that black

men had lower IGF-1 levels than their white counter-

parts under 70 years old (McGreevy et al. 2005). More

recently, a comparison of 409 South African black and

white men showed that black men had higher blood

pressure and lower IGF-1 levels (Koegelenberg et al.

2016).

Studies show that prior to the age of 40, white and

black adults have comparable IGF-1 levels, but when

older, accelerated declines in IGF-1 levels are observed

in blacks, coincident with the increased incidence of

hypertension in this population (Schutte et al. 2010).

Similar observations linking hypertension and IGF-1

levels were recorded in middle-aged African American

males (Platz et al. 1999). Conversely, a large sample (N

= 6061) from the US National Health and Nutrition

Examination Survey III (NHANES III) reported higher

IGF-1 levels in adult males than females. White females

had lower IGF-1 levels than black women, whereas no

differences in IGF-1 levels emerged between black and

white males (Berrigan et al. 2009).

Differences in IGF-1 levels could be the result of

genetic differences in IGF-1 in different racial

groups. For example, black neonates (Rohrmann

et al. 2009) and black prepubertal children

(Higgins et al. 2005) showed lower concentrations

of IGF-1 compared to their white counterparts. Both

studies attributed IGF-1 differences to genetic fac-

tors (Rohrmann et al. 2009), and support an earlier

study in adult twin pairs between 44 and 77 years of

age that attributed 38% of the racial variance be-

tween IGF-1 levels in whites and blacks to genetic

variation (Harrela et al. 1996). More recent studies,

however, argue that obesity and anthropometric var-

iables contribute to IGF-1 racial variances rather

than genetic or ethnic differences. A recent study

concluded that maternal obesity contributed to IGF-

1 discrepancies between black and white neonates

(Vidal et al. 2013). This conclusion is supported by

a study that showed an inverse relationship between

body mass indices (BMIs) and IGF-1 levels (Faupel-

Badger et al. 2009). BMIs > 24 have been shown to

increase GH sensitivity and to stimulate IGF-1 syn-

thesis, whereas in obese individuals (BMI > 37), GH

in conjunction with IGF-1 result in a decrease and

contribute to insulin resistance, onset of metabolic

syndrome, and increased cardiovascular disease

(reviewed in Clemmons (2012)).

The role of sex steroids

On average, men under 60 years of age have higher

blood pressure than age-matched women (Benjamin

et al. 2018). After the sixth decade of life, however,
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blood pressure inwomen increases and becomes equally

prevalent in both sexes (Benjamin et al. 2018; Dubey

et al. 2002). Interestingly, blood pressure elevations in

women do not coincide with early phases of perimeno-

pause but is instead observed an average of 5–20 years

after menopause onset (Luoto et al. 2000). This delay

after menopause on blood pressure suggests that loss of

estrogen itself may not be the sole factor responsible for

elevations in blood pressure, but rather offers the possi-

bility that loss of estrogen may be a catalyst for a

biochemical cascade that ultimately causes structural

vascular changes, and in time, hypertension. Evidence

for this notion is provided by studies that emphasize the

role of sex steroids in modulating the GH/IGF-1 cascade

(Leung et al. 2004) and vascular function (Khalil 2005).

Specifically, research indicates that premenopausal

women have 20% more IGF-1 than men (Díez 1999);

in the sixth decade of life, however, the IGF-1 levels of

women drop below those of men of the same age

(Goodman-Gruen and Barrett-Connor 1997). This rela-

tionship was further illustrated in a follow-up study of

middle-aged premenopausal women showing that those

who experienced menopause at the 6-year follow-up

had a greater decline in IGF-1 levels and greater in-

creases in blood pressure compared to women who

remained premenopausal (Poehlman et al. 1997).

In summary, age-related decreases in growth fac-

tors result in decreased angiogenesis and loss of

microvascular density. The resultant increase in pe-

ripheral and central vascular resistance predisposes

individuals to increased cardiovascular risk, includ-

ing increased hypertension, a condition strongly

linked with decreased cerebral blood flow and cog-

nitive impairment (see Fig. 2).

Exercise effects

Hypertension

The effects of exercise on cardiovascular health,

specifically, resting heart rate and blood pressure

modulation, have been established as an effective

antihypertensive therapeutic modality (AHA et al.

2016; Pescatello et al. 2004). Indeed, studies high-

light a consistent inverse relationship between blood

pressure and exercise (Brown et al. 2010; Pialoux

et al. 2009). Endurance aerobic exercise (mean = 16

weeks) in adults with hypertension (mean = 45 years

of age), for instance, elicited a 5–7 mmHg reduction

in blood pressure (Pescatello et al. 2004). Further,

compared to moderate intensity exercise, a 12-week

high-intensity exercise intervention in older (mean =

52 years of age) hypertensive adults resulted in

12 mmHg versus 4.5 mmHg reductions in systolic

blood pressure, and 8 mmHg versus 3.5 mmHg re-

ductions in diastolic blood pressure (Molmen-

Hansen et al. 2012).

A meta-analysis of randomized controlled trials that

included > 2400 participants with at least 1 additional

coronary heart disease risk factor (e.g., myocardial in-

farction or stroke, type 2 diabetes, current cigarette

smoking, or other atherosclerotic cardiovascular dis-

ease) showed that exercise was inversely related with

Fig. 2 GH/IGF-1 deficiency cascade leading tomicrovascular rarefaction. GH growth hormone, IGF-1 insulin-like growth hormone, VEGF

vascular endothelial growth factor, CBF cerebral blood flow (Created with BioRender.com)
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reductions in mean systolic and diastolic blood pressure,

with the blood pressure-lowering effects of exercise

simulating those achieved by pharmaceutical antihyper-

tensive treatments (ALLHAT 2002).

Microvascular rarefaction

A decrease in microvascular density has been impli-

cated in onset of hypertension (Antonios et al.

1999), in which lower skin capillary density serves

a pathogenic role in increased peripheral resistance

and hypertension (Ciuffetti et al. 2002; Lee 2002).

This effect was illustrated in a study that examined

cardiovascular reactivity and capillary density dur-

ing exercise in 61 untreated newly diagnosed hyper-

tensive men (27–48 years old), and in 26 age-

matched normotensive healthy controls. Significant-

ly higher blood pressure and heart rate were record-

ed in hypertensive subjects (Ciuffetti et al. 2003).

Compared to healthy controls, those with hyperten-

sion showed marked decreases in capillary density,

abnormal cardiovascular reactivity to exercise stress,

a reduction in total peripheral resistance and in-

creased vasoconstriction (Ciuffetti et al. 2003). A

recent study reported in the Journal of the American

College of Cardiology (JACC) reported similar re-

sults in 50 untreated, newly diagnosed hypertensive

adults (25–40 years of age). After 12 weeks of

moderate intensity exercise, blood pressure de-

creased significantly along with corresponding in-

creases in retinal capillary density (Liang et al.

2019a). In addition, moderate intensity exercise en-

hanced endothelial function leading to decreased

MVR (Liang et al. 2019b).

Exercise-induced IGF-1 increase in blood flow

and cognition

The systemic effects of fitness initiate cellular and mo-

lecular events in the CNS that trigger improvements in

structure, cognition, and memory (Bherer et al. 2013;

Erickson et al. 2013; Erickson et al. 2011; Floel et al.

2010; Lucas et al. 2012; Ruscheweyh et al. 2011; Tsai

et al. 2015; Vaughan et al. 2014), andmitigate the effects

of age-related decline (Bherer et al. 2013). Moreover,

exercise is neuroprotective (Coelho et al. 2013; Coelho

et al. 2014; Currie et al. 2009; de Melo Coelho et al.

2013; Neeper et al. 1995; Neeper et al. 1996; Stein et al.

2018; Voss et al. 2016; Wrann et al. 2013; Zhao et al.

2016; Zoladz et al. 2008) and enhances poststroke re-

covery (Oberlin et al. 2017).

Compelling evidence indicates that improvements in

the brain are linked to a biochemical cascade stimulated

by exercise-induced increases in blood flow. Exercise

has been shown to alter cerebrovascular function by

increasing reactivity to CO2 thus increasing cerebral

perfusion (Braz and Fisher 2016), enhancing CBF

(Ainslie et al. 2008; Bailey et al. 2013; Lucas et al.

2015), and hippocampal blood volume (Pereira et al.

2007) in older individuals. Exercise-induced increase in

shear stress in blood vessels initiate the formation of

reactive oxygen species (ROS) (Radak et al. 2013b) and

vascular inflammation (Gleeson et al. 2011). Both ROS

and inflammation have damaging effects on endothelial

function (Thomas et al. 2008). However, chronic exer-

cise may function as a preparatory mechanism that

decreases oxidative damage on the vasculature via re-

lease of peroxisome proliferator-activated receptor gam-

ma coactivator 1-α (PGC1-α), a transcriptional coacti-

vator, that induces mitochondrial biogenesis and modu-

lates ROS (Austin and St-Pierre 2012; Radak et al.

2001; Radak et al. 2013a; Yokokawa et al. 2018). Fur-

ther, exercise has been shown to reduce the effects of

ischemic injuries by increasing vascular integrin expres-

sion (membrane receptor adhesion molecules involved

in growth factor regulation during angiogenesis) and

microvascular density in the brain (Ding et al. 2006b;

Eliceiri and Cheresh 2000).

Additionally, evidence from both animal and human

research indicates that exercise stimulates the synthesis

and release of growth factors (Cassilhas et al. 2007b;

Cotman et al. 2007; Fabel et al. 2003). Interactions

between IGF-1, VEGF, and BDNF facilitate the effects

of chronic exercise on cerebrovascular function

(Cotman et al. 2007; Fabel et al. 2003) and promote

and protect axonal and dendritic outgrowths, and neu-

ronal cell differentiation.

IGF-1 signaling is considered a causal mediator of

exercise-induced structural and functional brain changes

with a similar downstream cascade to BDNF, such that

inhibition of IGF-1 abolished the effects of exercise on

BDNF and memory functions in animals (Carro et al.

2000; Ding et al. 2006a). Moreover, exercise has been

shown to increase uptake of hepatically released IGF-1

into the hippocampus (Trejo et al. 2007). PGC1-α, a

VEGF stimulator (Arany et al. 2008), is released by

skeletal muscles and functions as a master regulator of

mitochondrial biogenesis (Yokokawa et al. 2018) by
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reducing insulin’s inhibitory effects on GH and IGF-1

(Ji and Kang 2015). Reducing the impact of insulin on

GH and IGF release was highlighted in a study in which

therapeutic introduction of IGF-1 contributed to reversal

of mitochondrial dysfunctions, including apoptosis and

tissue damage, hypertension, and neurological deficits

(Sádaba et al. 2016).

Specifically, exercise-induced elevations in IGF-1

levels have been linked with perfusion changes (Maass

et al. 2016; Schwarz et al. 1996; Stein et al. 2018).

Exercise has been shown to elicit a 40% increase in

IGF-1 leading to an increase in cerebral microvascular

density, whereas suppression of IGF-1 prevented angio-

genesis in adult mice (Lopez-Lopez et al. 2004). Similar

results were reported by Fernandes et al. (2012), where-

in capillary rarefaction and decreased levels of VEGF

were observed in an untreated animal model of hyper-

tension (Fernandes et al. 2012), and an exercise inter-

vention re-established VEGF levels with parallel atten-

uation of capillary rarefaction in skeletal muscles

(Fernandes et al. 2012).

Animal studies have illuminated the role of

exercise-induced growth factor release and their role

in enhanced cognition (Lazarov et al. 2010; van

Praag 2008; van Praag et al. 1999a; van Praag

et al. 2005). IGF-1-stimulated BDNF and VEGF

release have been implicated in neurogenesis, syn-

aptogenesis, angiogenesis (Ding et al. 2006a; Lopez-

Lopez et al. 2004), and capillarization (Cassilhas

et al. 2007b). IGF-1 activates a molecular cascade

associated with neuronal differentiation from stem

cells (neurogenesis) (van Praag et al. 1999b; van

Praag et al. 2005) and enhances neurite outgrowth

and synaptogenesis via the BDNF pathway (Chao

et al. 2006; Eadie et al. 2005). IGF-1 signaling is

considered a causal mediator of exercise-induced

structural and functional brain changes, and inhibi-

tion of this pathway appears to abolish the effects of

exercise on BDNF and memory functions in animals

(Carro et al. 2000; Ding et al. 2006a). Moreover, a

recent study in brain-specific IGF-1 overexpressing

mice highlights the generalized benefits of IGF-1

(Farias Quipildor et al. 2019). Compared to younger

control mice, chronic exposure to IGF-1 in aged

mice enhanced hippocampal and white matter vol-

umes, increased myelin densities and exercise toler-

ance (preferentially in male mice) but did not pre-

vent age-related cognitive decline. Follow-up deliv-

ery of intranasal IGF-1 in the same aged mice,

however, restored learning and memory and en-

hanced neurogenesis (Farias Quipildor et al. 2019).

Similarly, results from human studies have implicat-

ed a role for exercise-induced growth factor release in

cognition. A 1-year exercise intervention in healthy

young men showed elevations in serum IGF-1 levels

(Schwarz et al. 1996). The relationship between cogni-

tive function and IGF-1 was investigated in a study of

75 of elderly (65 years of age) hypertensive patients.

Serum IGF-1 was significantly correlated with cogni-

tion, such that those with cognitive impairment had

lower IGF-1 levels and more pronounced temporal lobe

and hippocampal atrophy than those with normal cog-

nitive scores (Angelini et al. 2009). In a later study, IGF-

1 levels were measured in 3582 older adults (mean age =

79 years) free of dementia at baseline, and another group

of participants (N = 2053) free of dementia or stroke

who underwent brain MRI. After a mean follow-up

period of 7.4 years, participants with the lowest IGF-1

levels had a 51% greater risk of Alzheimer’s dementia,

and those with higher levels of IGF-1 had greater brain

volumes (Westwood et al. 2014). Similar results have

been observed with resistance training. A 12-week re-

sistance training intervention in older (mean age > 60

years old) sedentary women resulted in an increase in

IGF-1 levels (Vale et al. 2017), and increased IGF-1 was

positively related with cognitive function in older adults

after a 52-week intervention (Tsai et al. 2015), and after

a 24-week intervention in 62 sedentary elderly

(Cassilhas et al. 2007a).

Conclusions

We have summarized data from diverse lines of

investigation that demonstrate age-related decreases

in GH/IGF-1 and their physiological and clinical

effects. Based on this evidence, we propose that

essential hypertension is partly mediated by IGF-1

deficits that result in MVR and increased vascular

resistance, which precede a reduction in CBF, and

may be causally related to increased blood pressure

and cognitive impairment. A convergence of find-

ings from exercise studies are consistent with our

premise and provide further support for this hypoth-

esis. Given the evidence that exercise increases en-

docrine and paracrine release of IGF-1, thereby

stimulating systemic and central angiogenesis, re-

versing vascular resistance, decreased CBF, and
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cognitive dysfunctions, we suggest that exercise-

mediated release of growth factors may be necessary

and sufficient for reversal of age-related reductions

in IGF-1, MVR, and hypertension. For instance,

exercise in animal models has been shown to elicit

a 40% increase in IGF-1 leading to an increase in

cerebral microvascular density, whereas suppression

of IGF-1 prevented angiogenesis (Lopez-Lopez

et al. 2004). Overall, our conclusion highlights pre-

vious work that linked MVR with decreased IGF-1

levels (Sonntag et al. 2000; Sonntag et al. 1997),

and others that posited that loss of microvascular

density may be a primary hypertensinogenic factor

(Antonios et al. 1999; Brandes 2014; Feihl et al.

2006; Greene et al. 1989; Humar et al. 2009; le

Noble et al. 1998; Levy et al. 2001).

Whether IGF-1 deficiencies and MVR in hyperten-

sion are causally related remains an open question.

Future studies will be needed to ascertain the extent to

which growth factors might provide an explanation for

the association between exercise and reversal of system-

icMVR, hypertension, and cognitive changes via IGF-1

release. If our hypothesis is confirmed, the ability for

exercise to prevent or reverse MVR and hypertension,

via activations of the endocrine and paracrine growth

factor pathways, would have implications for age-

related cognitive decline. This is especially meaningful

given that onset of essential hypertension often occurs in

the fourth decade of life, with nearly 44% of those

becoming hypertensive before 44, and another 47%

developing hypertension between 45 and 54 years of

age (Muntner et al. 2018). Since chronic hypertension

increases the risk for cardiovascular diseases and target-

organ damage (Cutler 1996), and chronic untreated

hypertension in middle age has harmful effects on late-

life cognitive function, prevention of early hypertensive

states is of critical importance.
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