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Abstract. Within a stochastic noise framework, the validation of a model yields
an ellipsoidal parameter uncertainty set, from which a corresponding uncertainty
set can be constructed in the space of transfer functions. We display the role of the
experimental conditions used for validation on the shape of this validated set, and
we connect a measure of the size of this set to the stability margin of a controller
designed from the nominal model. This allows one to check stability robustness
for the validated model set and to propose guidelines for validation design.

1 Introduction

Model validation is the exercise that consists in assessing whether a model
of some underlying system is good enough. Such quality control step cannot
be decoupled from the purpose for which the model is to be used. And just
as the research on system identification has, in the last 10 years, focused
on issues of design in order to obtain a model that suited the objective, so
must the validation experiment similarly be designed in such a way that the
model is guaranteed to deliver what the model is supposed to deliver. Thus,
one must think in terms of “goal-oriented validation”.

In this chapter we focus on the situation where a model is to be validated
with the purpose of designing a controller for the underlying system. This
is called model validation for control.

The assessment of the quality of a model can take a variety of forms,
such as a frequency-domain bound on the error between the system and
the model transfer functions, or a worst-case bound on such error over all
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frequencies, or the certification of a region in the complex plane in which
the system and the model are guaranteed to lie (set membership validation).
Depending on the application some of these quality statements can be more
useful than others.

Spurred by the strong reliance of robust control theory on specific un-
certainty descriptions, the research on model uncertainty estimation and on
model validation gathered momentum in the 1990’s. Two directions have
been pursued.

1. The first consists in estimating uncertainty regions around estimated
models. In the stochastic framework, estimates of the total mean square
transfer function error were obtained by adopting, for the bias error, a
parametrized probability distribution and by estimating the parameters
of this distribution from the data, just as is done for the noise error [4].
In the “hard-bound” framework, uncertainty models have been derived
under a variety of hard-bound assumptions on the error model and on
the noise: see e.g. [3], [5].

2. The second direction consists in reducing a prior set of admissible mod-
els by invalidating models on the basis of observed data and prior hard-
bound assumptions: see e.g. [11], [9]. The concept of model invalidation,
on the basis of an observed incompatibility between a model, prior as-
sumptions and data, was extended to controller invalidation in [10].

The validation theory presented in this chapter is inspired by recent vali-
dation results of Ljung and collaborators [6], [8], [7] that are based on signal
statistics, with essentially no prior assumptions other than some unavoid-
able invariance assumption. To paraphrase Swedish literature [7], one would
like to approach the model validation problem ‘as naked as possible’ and
strip off common covers such as prior assumptions, probabilistic framework,
worst case model properties. What we are then left with are experimental
data that we can collect on the true system and compare with simulated
data generated by the model, statistics that we can compute from these
data, and some invariance assumption that states that the future statistics
will not be different from those observed so far.

The key idea of the method proposed by Ljung for the validation of a
model Ĝ is that the residuals ε, obtained by substracting simulated outputs
from measured outputs, contain information about the model error G0− Ĝ.
The identification of an unbiased model for the dynamics connecting the
input signal u to the residuals ε delivers an estimate of the model error
G0 − Ĝ and a covariance for this estimate.

Our departure from the validation results of Ljung and collaborators,
and the new contributions of this chapter, are contained in the following
sequence of new ideas and observations whose presentation will form the
essence of this chapter.

1. The validation results of Ljung and Guo [8] allow one to define an un-
certainty region D in the frequency domain, that contains G0, and also
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Ĝ if the model is validated. Our first observation is that different ex-
perimental conditions for the collection of validation data, will produce
different uncertainty regions Di, some of which may result in a success-
ful validation and some of which may not. Thus we shall elaborate on
the role of experimental conditions in the validation of a model
and on the concept of validation design.

2. We then observe that a model Ĝ may be validated under closed loop
experimental conditions. By collecting data on the closed loop system
(G0, C) with some controller C, one can apply the validation procedure

to the closed loop transfer function model T̂ = ĜC

1+ĜC
of the true closed

loop system T0 = G0C
1+G0C

. This defines a closed loop uncertainty set

D(T̂ ), from which the corresponding open loop set D(Ĝ) can be com-
puted. Thus, we have introduced the concept of validation in closed
loop.

3. Since each validation experiment leads to a different set of validated
models Di(Ĝ) that contains G0, some of these validated regions may be
more useful than others, depending on the intended use of the model.
This suggests that one should design the validation experiment so that
the uncertainty regions are tuned towards the intended use of the model.
This leads to goal-oriented model validation and to tuned uncer-
tainty regions.

4. Vinnicombe [12] has shown that a controller C that stabilizes Ĝ with a
generalized stability margin denoted bĜ,C stabilizes all plants G for which

δν(Ĝ, G) < bĜ,C , where δν(Ĝ, G) is a metric that measures the distance

between Ĝ and G. Details will be given later in the chapter. We shall
introduce the concept of worst case gap δWC(Ĝ,D) between a model
Ĝ and all plants in a validated set D(Ĝ). This leads us to introduce
the idea of model validation for control: a validation experiment
that delivers a validated model set with a smaller worst case gap than
another one allows for a larger class of robustly stabilizing controllers.

The validated uncertainty regions constructed in this chapter are based
on ellipsoidal confidence regions obtained in parameter space from covari-
ance estimates. Thus, all statements about a system belonging to an un-
certainty set are understood to be probabilistic; note, however, that the
probability level is left to the user to decide.

2 Model and controller validation concepts

We consider that the input-output data that are used to validate a model
are generated from a “true system”:

y(t) = G0(q)u(t) + v(t), (1)
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where G0(q) is a linear time-invariant causal operator. We make no special
assumptions about the input signal u(t) and the noise v(t). We consider that
somebody has delivered to us a model Ĝ(q) for G0(q), and our task is to val-
idate that model. We are allowed to perform experiments on the true system
by applying N input data u(t) to it and by observing the corresponding N
output data y(t). Given this framework, the following particular validation
questions will be addressed.

Model validation question. On the basis of the data I collect, can I
define an uncertainty set D in which G0 is guaranteed to lie, at a certain
probability level? If Ĝ ∈ D, then Ĝ will be called validated.

Controller validation question. On the basis of the data I collect, can
I guarantee that a given controller C(q), typically computed from Ĝ(q),
stabilizes not just Ĝ but also the true G0(q)? If the answer is positive, the
controller is said to be unfalsified by the data; in the converse case, it is said
to be falsified or invalidated.

Our results provide a contribution to both of these validation questions,
in a stochastic framework. Our validation procedure will lead to the
validation of sets of transfer functions; it could appropriately be called set
membership validation. We insist that we do not a posteriori validate an a
priori given uncertainty set, but rather the validation of a nominal model Ĝ
under specific experimental conditions determines a validated uncertainty
set.

3 The model validation procedure

Consider the true system (1) and a model Ĝ that requires validation. If
we apply some input sequence UN = {u(t), t = 1, . . . , N} to the system, it
generates the noisy output sequence Y N = {y(t), t = 1, . . . , N} using (1).
The corresponding simulated outputs are given by

ŷ(t) = Ĝ(q)u(t). (2)

Consider now the model residuals ε(t) defined as the difference between
measured and simulated outputs:

ε(t) = y(t)− ŷ(t) = y(t)− Ĝ(q)u(t) (3)

Inserting the system equation (1) these residuals can then be written as

ε(t) = [G0(q)− Ĝ(q)]u(t) + v(t) = ∂G(q)u(t) + v(t). (4)

The transfer function ∂G is called the model error in [6]. Using the assump-
tion of a linear true system and the independence between v(t) and u(t),1

1 By this we mean that v(t) would not change if we were to change the input
signal u(t).
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we have thus decomposed the residual error ε(t) into the sum of two in-
dependent sources: one, ∂G(q)u(t) that is due to a model error, and one,
called disturbance, that is not due to a model error. The distinction between
these two sources of signal error is very fundamental, and has nothing to
do with a probabilistic framework. It is at the heart of all validation theories.

Observations

• The essential difference between the two sources of residual error ε(t)
is that one can be manipulated by the user by experimenting with u(t)
while the other is totally outside the range of experimentation.
• Without any assumption on the disturbance v(t), any observed error

ε(t), however large, can always be attributed to the occurrence of a very
large disturbance v(t). Thus, one cannot invalidate a model on the basis
of an observed data unless some bounded noise assumption is made.
• If an invariance assumption is made on the mechanism that generates
the disturbance v(t), then one can evaluate whether ∂G is significantly
different from zero by estimating an unbiased model for ∂G from [ε u]
data.

This last observation is at the heart of the validation procedure proposed
by Ljung [6] that we adopt here, with some modifications to account for the
added insight gained since the publication of [6].

3.1 Open loop validation

We compute an unbiased estimate G̃(θ̂, q) of ∂G(q). Thus, consider a model
setMOL = {G̃(θ, q) | θ ∈ Dθ ⊂ R

k}, for some subset Dθ, and an indepen-
dently parametrized noise model. The assumption on unbiasedness implies
that G̃(θ0, q) = ∂G(q) for some θ0 ∈ Dθ. Using experimental data [ε u]
collected in open loop (see (3)-(4)), one can then compute an unbiased es-

timate G̃(θ̂, q) of ∂G(q), as well as an estimate of the covariance matrix

Pθ of θ̂. The true parameter θ0 then lies with probability α(k, χ2ol) in the
ellipsoidal uncertainty region

UOL = {θ | (θ − θ̂)TP−1θ (θ − θ̂) < χ2ol} (5)

where α(k, χ2ol) = Pr(χ2(k) ≤ χ2ol) with χ2(k) the chi-square probability
distribution with k parameters. This parametric uncertainty region UOL
defines a corresponding uncertainty region in the space of transfer functions
which we denote DOL:

DOL = {Ĝ(q) + G̃(θ, q) | G̃(θ, q) ∈ MOL and θ ∈ UOL} (6)

We then have the following property.

Lemma 1: G0 ∈ DOL with probability α(k, χ2ol).
The proof follows directly from the properties of estimated models when
variance errors only are concerned.
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The importance of Lemma 1 is that our validation procedure has deliv-
ered a validated model set DOL, in which the true system is guaranteed to
lie, at some probability level. We now introduce the following definition for
the validation of the model Ĝ.

Definition : The model Ĝ is called validated if Ĝ ∈ DOL or, equivalently,
if there exists θ∗ ∈ UOL such that G̃(θ∗, q) = 0.

Comments

1. The estimated model G̃ is a correction to the prior model Ĝ that is
under test. Thus, one could, in the application for which the model is
to be used, replace Ĝ by the better model Ĝ+ G̃, or by a new low order
model Ĝ in the validated set DOL. In the sequel, where we focus on the
use of the model for control design, we assume that the control design
is based on Ĝ (possibly a new one), but not on Ĝ + G̃.

2. In fact, we shall see later that for control design it is not so much the
validation of the model Ĝ that matters but the fact that the valida-
tion procedure described above yields a validated region DOL, in which
the true system G0 is known to lie. Thus, even if the model Ĝ is not
validated, the controller design and controller validation procedure de-
scribed in the sequel of this chapter still apply.

3. The validation procedure just described can be applied to any model Ĝ,
whether it is a full order or reduced order model of the true G0.

3.2 Role of the experimental conditions

The validated model set DOL depends very much on the experimental con-
ditions under which the validation has been performed. This is perhaps not
so apparent in the exact definition (6) of DOL via the parameter covariance
matrix Pθ. However, let us recall that a reasonable approximation for the
covariance of the transfer function estimate G̃(θ̂, q) is given by:

cov(G̃(θ̂, ejω)) ≈
n

N

φv(ω)

φu(ω)
(7)

This shows clearly the role of the signal spectra φu(ω) and φv(ω) in
shaping the validated set DOL. Thus, two different validation data sets

[ε(1) u(1)] and [ε(2) u(2)] will yield two different validated regions D(1)OL and

D(2)OL. The model Ĝ may well be validated by one of these two experiments
and not by the other.

The role of the experimental conditions on the shape of the validated
set, and the importance of tuning the validation experiment to the objective
to which the model (or the model set) is to be used, are the central themes
of this chapter. We shall see, in particular, how the validation experiment
can be tuned when the objective is a robust model-based control design.
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3.3 Closed loop validation

On the basis of these observations, we now show that a validated set of mod-
els D = {Ĝ(q)+ G̃(θ, q)| θ ∈ U} for some parameter set U can alternatively
be computed from a closed loop validation experiment. Consider that the
feedback control law u(t) = C(q)[r(t) − y(t)] is applied to the true system
G0(q), with some stabilizing controller C(q). The closed loop system is :

y(t) =
G0C

1 + G0C
r(t) +

1

1 + G0C
v(t)

�
= T0r(t) + n(t) (8)

The closed loop model is T̂ = ĜC

1+ĜC
. We can then simulate ŷ(t) = T̂ r(t)

and define the closed loop model error

ε(t) = (T0 − T̂ )r(t) + n(t)
�
= ∂T (q)r(t) + n(t) (9)

Consider now a model setMCL = {T̃ (ξ, q) | ξ ∈ Dξ ⊂ R
f}, for some subset

Dξ defining stable models, such that T̃ (ξ0, q) = ∂T (q) for some ξ0 ∈ Dξ. Us-
ing experimental data [ε r] collected on the closed loop system, we can then

compute an unbiased estimate T̃ (ξ̂, q) of ∂T (q), together with an estimate

of the covariance matrix Pξ of the parameter vector ξ̂. The true parameter
ξ0 then lies with probability α(f, χ2cl) in the ellipsoidal uncertainty region

UCL = {ξ | (ξ − ξ̂)TP−1ξ (ξ − ξ̂) < χ2cl} (10)

where α(f, χ2cl) = Pr(χ2(f) ≤ χ2cl) with χ2(f) the chi-square probability
distribution with f parameters. This parametric uncertainty region UCL
defines a corresponding uncertainty region in the space of closed loop trans-
fer functions T (ξ, q) which we denote SCL:

SCL = {T̂ (q) + T̃ (ξ, q) | T̃ (ξ, q) ∈MCL and ξ ∈ UCL} (11)

SCL is the set of closed loop transfer functions that are validated by our
closed loop experiment. From this set (in fact from UCL) we can now define
the set DCL of transfer functions G(θ, q) that are validated by this closed
loop experiment:

DCL = {Ĝ+G̃(ξ, q) | G̃(ξ, q) =
1

C(q)
×

T̃ (ξ, q)(1 + ĜC)

1− T̂ − T̃ (ξ, q)
and ξ ∈ UCL}(12)

The notation G̃(ξ, q) used in (12) denotes the rational transfer function
model whose coefficients are uniquely determined from ξ by the inverse
mapping

G̃(ξ, q) =
1

C(q)
×

T̃ (ξ, q)(1 + ĜC)

1− T̂ − T̃ (ξ, q)
. (13)

We then have the following property.

Lemma 2: T0 ∈ SCL and G0 ∈ DCL with probability α(f, χ2cl).
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Comments
1. Following our earlier definition of a validated model, we observe that

the closed loop model T̂ is validated if T̂ ∈ SCL or, equivalently, if
there exists a ξ∗ ∈ UCL such that T̃ (ξ∗, q) = 0. Similarly, the open loop
model Ĝ is validated by this closed loop experiment if Ĝ ∈ DCL, which
is equivalent with the existence of ξ∗ ∈ UCL such that G̃(ξ∗, q) = 0,
with G̃(ξ∗, q) defined by the mapping (13).

2. However, the most useful aspect of this closed loop validation procedure,
from a control objective point of view, is not so much the validation of
the initial model Ĝ as it is the validation of the uncertainty set DCL.
Sets validated by closed loop experiments typically have properties that
allow for a larger set of stabilizing controllers than sets validated in open
loop.

4 Controller validation and model validation for
control

We now consider the situation where a controller is designed on the basis of
the nominal model Ĝ. For the theory that we develop, this model need not
necessarily be inside the validated set D, but the typical situation is where
Ĝ ∈ D. Indeed, if the model Ĝ has failed a range of validation attempts,
any sensible designer will want to replace Ĝ by a model that is contained
in the validated set. We then introduce the concept of controller validation.

Definition : Let the validation procedure of a model Ĝ(q) result in a val-
idated set D of transfer function models containing G0, and let C(q) be a
controller designed from Ĝ(q). Then C(q) is called a validated controller for
the set D if it stabilizes all models in D.

Having defined a validated controller, we turn to the question of model
validation for control. Consider first that two different validation experi-
ments, performed on the same model Ĝ, have led to two different validated
sets D(1) and D(2). The same controller C(q) may be validated for both sets,
or for one of them, or for neither. More generally, denote by C(1) the set of
controllers that are validated by the first experiment, and by C(2) the set of
controllers that are validated by the second experiment. By this we mean
that, for each C ∈ C(1), say, and for each G ∈ D(1), the closed loop made
up of (G, C) is stable. Then we shall consider that the validated set D(1) is
a better uncertainty set than D(2) for control design if the set of stabilizing
controllers C(1) is “larger than” the set C(2) in some sense. Given that the
validation results strongly depend on the experimental conditions, this will
then lead us to the concept of validation design for control. To make these
ideas precise, we introduce a metric on the size of the validated set, and we
appeal to some basic tools and results of robust control theory.
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5 The Vinnicombe gap metric and its stability result

Various measures exist to characterize the distance between two plants. We
adopt here the Vinnicombe gap metric ([12,13]) denoted δν . The Vinnicombe
gap (or distance) between a scalar plant G and a model Ĝ is defined as

δν(Ĝ, G) =

{
maxω κ

(
Ĝ(ejω), G(ejω)

)
if (16) is satisfied

1 otherwise
(14)

where

κ
(
Ĝ(ejω), G(ejω)

)
�
=

|Ĝ(ejω)−G(ejω)|√
1 + |Ĝ(ejω)|2

√
1 + |G(ejω)|2

(15)

The condition to be fulfilled in order to have δν(Ĝ, G) < 1 is :

(1 + Ĝ∗G)(ejω) �= 0 ∀ω and wno(1 + Ĝ∗G) + η(G) − η̃(Ĝ) = 0, (16)

where G∗(ejω) = G(e−jω), η(G) (resp. η̃(G)) denotes the number of poles
of G in the complement of the closed (resp. open) unit disc, while wno(G)
denotes the winding number about the origin of G(z) as z follows the unit
circle indented into the exterior of the unit disc around any unit circle pole
and zero of G(z).

If the conditions (16) are satisfied, then the distance between two plants
has a simple frequency domain interpretation (in the SISO case). Indeed, the
quantity κ(Ĝ(ejω), G(ejω)) is the chordal distance between the projections
of Ĝ(ejω) and G(ejω) onto the Riemann sphere of unit diameter [12]. The
distance δν(Ĝ, G) between Ĝ and G is therefore, according to (14), the
supremum of these chordal distances over all frequencies.

The main interest of the Vinnicombe metric is its use as a tool for the
robust stability analysis of feedback systems. Thus, consider a closed loop
system made up of the negative feedback connection of a plant G and a
controller C. For such feedback system one can define a generalized stabil-
ity margin [13].

Definition: generalized stability margin.

bGC =

{
minω κ

(
G(ejω),− 1

C(ejω)

)
if [C G] is stable

0 otherwise
(17)

where κ(G1, G2) was defined in (15). Note that 0 ≤ bGC ≤ 1.

The following is an important robust stability result based on the Vin-
nicombe metric between plants.
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Proposition 1 [12]. Consider a model Ĝ and a controller C that stabilizes
Ĝ with a stability margin bĜC . Then C stabilizes all G such that

δν(Ĝ, G) < bĜC . (18)

The condition (18) of Proposition 1 is rather conservative, since δν(Ĝ, G) =
maxω κ(Ĝ(ejω), G(ejω)) while bĜC = minω κ(Ĝ(ejω),− 1

C(ejω) ). Thus, it is

a min-max type condition. A pointwise (i.e. frequency by frequency), and
therefore less conservative condition is as follows.

Proposition 2 [12]. Consider a model Ĝ and a controller C that stabilizes
Ĝ. Then C stabilizes all G such that

κ
(
Ĝ(ejω), G(ejω)

)
< κ

(
Ĝ(ejω),−

1

C(ejω)

)
∀ ω and δν(Ĝ, G) < 1(19)

6 The worst case Vinnicombe distance for validated
model sets

In the validation context that is of interest to us here, the true system G0 is
unknown, but we have shown that it lies, with probability 0.95 say, in some
validated set D. In order to apply the robust stability results of Vinnicombe
to our validation results, we introduce the concept of worst case Vinnicombe
distance between a model Ĝ and a validated model set D : it corresponds to
the largest Vinnicombe distance between the model Ĝ and any plant inside
the set D.

Definition of the worst case Vinnicombe distance: The worst case
Vinnicombe distance δWC(Ĝ,D) between a model Ĝ and a model set D is
defined as

δWC(Ĝ,D) = max
GD∈D

δν(Ĝ, GD) (20)

Another important quantity is now defined: the worst case chordal
distance. Its computation is the result of a convex optimization problem
involving Linear Matrix Inequality (LMI) constraints [1].

Definition of the worst case chordal distance at frequency ω.
At a particular frequency ω, we define κWC(Ĝ(ejω),D) as the maximum
chordal distance between the projections on the Riemann sphere of Ĝ(ejω)
and of the frequency responses of all plants in D at the same frequency:

κWC

(
Ĝ(ejω),D

)
= max
GD∈D

κ
(
Ĝ(ejω), GD(e

jω)
)

(21)
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Having extended the distances between plants to worst case distances
between a model and a model set, we can now also extend the robust sta-
bility results of Vinnicombe to validated model sets.

Theorem 1. Let Ĝ be a model, C a stabilizing controller for Ĝ yielding a
generalized stability margin bĜC , and D a validated set of transfer functions
containing the true plant G0. Then C stabilizes all plants in the set D, and
hence also G0, if the following condition holds :

δWC(Ĝ,D) < bĜC . (22)

Proof : It follows immediately from the definitions that for any G ∈ D,
and hence for G0,

δν(Ĝ, G) ≤ δWC(Ĝ,D) < bĜC
and the stability then follows from Proposition 1.

Using the pointwise version of the robust stability result of Vinnicombe,
we can now state our main stability result for validated model sets.

Theorem 2 (main stability theorem). Let Ĝ be a model, C a stabilizing
controller for Ĝ, and D a validated set of parametrized transfer functions
containing the true plant G0. Then C stabilizes all plants in the set D, and
hence also G0, if the following condition holds :

κWC

(
Ĝ(ejω),D

)
< κ

(
Ĝ(ejω),−

1

C(ejω)

)
∀ ω ∈ [0, π] (23)

Proof : It follows from the definition of worst case chordal distance that,
at any frequency ω and for any model G ∈ D, we have

κ
(
Ĝ(ejω), G(ejω)

)
≤ κWC

(
Ĝ(ejω),D

)
< κ

(
Ĝ(ejω),−

1

C(ejω)

)
.

It follows from Proposition 2 that any G ∈ D is stabilized by C.

We shall illustrate the application of these robust stablity results for
validated model sets in Section 8.

Computational aspects
Our two stability theorems are very powerful tools to check the stability
of a designed controller C on the system G0 before it is actually applied
to that system. The only requirement is that G0 be inside the validated
region D, which region is itself derived from the covariance matrix of the
estimated parameters of the model error model. The results rely heavily
on our ability to compute the worst case chordal distance at frequency ω,
κWC(Ĝ(ejω),D), between a model Ĝ and a set D, defined in (21), and/or
the worst case Vinnicombe distance δWC(Ĝ,D) between these two objects,
defined in (20). This is by no means a trivial matter. The solution to these
problems has been obtained using LMI techniques: see [1].
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7 Design issues: model validation for control design

We have developed a complete setup from model validation to controller
validation, and the computational tools are available to check whether a
controller designed from a model stabilizes the true plant, at least at some
prespecified probability level. We have also explained the role of the experi-
mental conditions on the shape of the validated sets, and we have developed
tools to compute a measure of the size of these validated sets that is directly
related to the capability of a controller to stabilize all models in such vali-
dated set. These tools can now be used for validation design. The following
design guidelines can be proposed for the validation of a model that is to
be used for control design.

• With some model Ĝ as the starting point, the validation for control
procedure consists of the following steps:
– Using Ĝ as the model, perform a validation experiment (see Sec-

tion 3). This yields a validated set D containing the true G0 with
probability 0.95%, say. The model Ĝ may or may not lie in D. Com-
pute the worst case Vinnicombe distance δWC(Ĝ,D) and, possibly
also, the worst case chordal distance κWC(Ĝ(ejω),D) at each fre-
quency.

– Design a controller C and compute its nominal stability margin bĜ,C
or the chordal distance κ(Ĝ(ejω),− 1

C(ejω) ) at each frequency.

– Check whether δWC(Ĝ,D) < bĜ,C or, better, whether at each fre-

quency κWC(Ĝ(ejω),D) < κ(Ĝ(ejω),− 1
C(ejω) ). If so, then C sta-

blizes the true system G0.
• Given a choice between different experimental conditions for the vali-
dation procedure, one should give preference to a validation experiment
that yields an uncertainty set D with the smallest possible worst case
Vinnicombe gap.
• The projections of Nyquist plots on the Riemann sphere have maximal
resolution around the equator, i.e. where the transfer functions have an
amplitude close to one. This has important consequences for “validation
for control” design: see [2] for more details on closed loop validation.
• Given a validated set D and a corresponding worst case gap δWC(Ĝ,D),
one can compute a sequence of controllers Ci to drive up the nominal
performance of the (Ĝ, Ci) loop while keeping bĜ,Ci > δWC(Ĝ,D). This
guarantees stability of the actual closed loop system.

8 A simulation example

Consider the following true system G0 and model Ĝ, respectively,

y = G0u + H0e = z−1+0.25z−2

1−1.4z−1+0.45z−2 u + 1
1−1.4z−1+0.45z−2 e

ŷ = Ĝu = 1.0141z−1+0.2397z−2

1−1.4237z−1+0.4835z−2 u
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The actual Vinnicombe distance between Ĝ and G0 is δν(Ĝ, G0) = 0.0163.
For this model Ĝ, an open-loop and a closed-loop validation were achieved
leading to two uncertainty regions DOL and DCL correponding to a prob-
ability level of 0.95. The controller chosen for closed-loop validation is a
proportional controller C(q) = 1. The model was validated with 1000 data
collected in open-loop and closed-loop, respectively, having the following
statistics:

Open− loop : σ2u = 0.2 and σ2e = 1 =⇒ σ2y = 23.4
Closed− loop : σ2r = 10 and σ2e = 1 =⇒ σ2y = 26.9

Figure 1 presents the Nyquist plots of G0, Ĝ and Ĝ + G̃, as well as the
smallest overbounding ellipsoids of the uncertainty regions DOL and DCL
at each frequency. Observe that G0 and Ĝ lie inside both DOL and DCL for
all frequencies. Thus, Ĝ is validated by both experiments here.
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Fig. 1. Nyquist plot of G0 (solid), Ĝ (dash), and Ĝ + G̃ (dashdot), with ellip-
soidal estimates of DOL and DCL. Left: open loop validation. Right: closed loop
validation.

The worst case Vinnicombe distances are:

δWC(Ĝ,DOL) = 0.2604 > δWC(Ĝ,DCL) = 0.0572 > δν(Ĝ, G0) = 0.0163.

Note that the worst case Vinnicombe distance is much smaller with the
closed-loop validated set than with the open-loop set. Thus, the validated
set DCL should allow for less conservative control designs.

We consider a proportional controller C(q) = 1.5 which stabilizes the
nominal model Ĝ, yielding a nominal stability margin bĜC = 0.0461. This
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controller also stabilizes G0, but in practice G0 is unknown and the stabi-
lization of G0 by the controller C can only be ascertained by the use of one
of the stability theorems of Section 6. We first check whether the Min-Max
type condition of Theorem 1 is verified. We have:

bĜC = 0.0461 <

=0.0572︷ ︸︸ ︷
δWC(Ĝ,DCL) <

=0.2604︷ ︸︸ ︷
δWC(Ĝ,DOL)

Thus, the robust stability condition of Theorem 1 is violated with both
of the validated regions. We now check the less conservative condition of
Theorem 2. Figure 2 compares the worst case chordal distances (for DOL
and DCL) and the pointwise stability margin κ(Ĝ(ejω),− 1

C(ejω) ).
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Fig. 2. Frequency by frequency comparison of κWC(Ĝ(e
jω),DOL) (dashdot),

κWC(Ĝ(e
jω),DCL) (dash) and κ(Ĝ(e

jω),− 1
C(ejω )

) (solid)

It shows that, even with this less conservative condition, the stability
condition of Theorem 2 is violated when the set DOL is used. However, the
stabilization of the true G0 is guaranteed by the stability condition (23)
when the set DCL is used.

9 Conclusions

We have displayed the role of experimental conditions in the validation of
a model. We have then developed tools that allow one to connect some
measures of the “size” of a validated model set to the stability margin
of a controller designed from the nominal model. This has then led us to
propose validation design guidelines, when the validation is performed for
the purpose of designing a robust controller.
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