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Abstract

The field of medical image quality has relied on the assumption that metrics of image quality for 

simple visual detection tasks are a reliable proxy for the more clinically realistic visual search 

tasks. Rank order of signal detectability across conditions often generalizes from detection to 

search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical 

imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high 

acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human 

retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of 

signals in medical images with important implications for search in 3D medical images. We 

compare visual search of two different types of signals in 2D vs. 3D images. We show that a small 

microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, 

but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing 

measurements of observer detectability as a function retinal eccentricity and observer eye fixations 

we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that 

observer performance findings with 2D search might not always generalize to 3D search; 2) 

motivate the development of a new family of model observers that take into account the 

inhomogeneous visual processing across the retina (foveated model observers).
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1. INTRODUCTION

Model observers are mathematical formulations that can be applied to images to predict 

human observer performance in clinically relevant visual tasks. The field has progressed 

from evaluation of models with simple filtered noise backgrounds to more anatomically 

realistic backgrounds, signals and tasks [1]–[4] to try to capture some of the complexities of 

the clinical task. Model observers have been extended to include signal variability [5], 

different types of internal noise [6], [7], and components of the human visual system [8].

One strong assumption has been that performance measures for simple visual detection tasks 

with a few known locations are a reliable proxy for performance with more clinically 

realistic tasks, which involve searching for the abnormality across a larger area in the image. 

Indeed, some studies have shown that signal detection methods (or extensions of such 

methods) allow to quantitatively relate performance across varying number of possible 
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locations and even free search over an entire image [9]–[13]. In addition, rank order of 

signal detectability across conditions often generalizes from detection to search tasks.

In more recent years, investigators have highlighted the limitations of some of the simpler 

detection tasks and have motivated the need to create model observers that account for the 

process of visual search [14], [15]. Furthermore, a recent study has highlighted discrepancies 

between rank ordering of imaging systems based on location known detection and search 

tasks [16].

The goal of the current paper is to demonstrate experimentally how visual search in 3D 

images introduces a new component to human observer performance which can greatly 

influence signal detectability and create dissociations with search performance in 2D 

images. This new component of 3D search relates to visual processing of the image data 

with extra foveal regions of the retina (locations on the observer’s retina away from the point 

of fixation). Because of the large volume of 3D data sets radiologists typically cannot 

exhaustively fixate and scrutinize all regions of interest with the high acuity fovea requiring 

detection of signals with extra-foveal areas of the human retina. In contrast, the lower 

volume of data in 2-D images allows the radiologist to fixate a larger portion of the image 

and have to rely less on extra-foveal processing.

Extra-foveal visual processing, also referred to as the visual periphery, is mediated by a 

diminished density of retinal photoreceptors (cones), a higher degree of convergence of 

cones outputs onto retinal ganglion cells, and fewer neurons in primary visual cortex per 

millimeter of retina. Thus, the periphery does not have access to fine spatial discriminations. 

Spatial forms surrounding the signal will also have additional detrimental effects on signal 

detectability at the visual periphery [17], [18]. Extra-foveal processing can alter the 

detectability of certain types of signals in medical images [19].

Here, we compare visual search of two different types of signals (a small microcalcification-

like signal and a larger mass-like signal) in 2D vs. 3D images. We show that a small 

microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D 

search. However, the small signal’s detectability largely decreases relative to the larger 

signal in the 3D search task. We then utilize separate measurements of observer detectability 

as a function retinal eccentricity and eye position to explain the results in the 2D and 3D 

search studies.

2. METHODS

2.1 Search Task

The experiment consisted of a yes/no task (50 % probability of signal presence). The subject 

had unlimited time to find a signal. There were two experimental conditions: 2D or 3D 

search. There were two types of signals: a small microcalcification-like signal and a larger 

mass-like signal. The signals were additive on 1/f2.8 filtered noise (with 3D filtering for the 

3D images). Observers were instructed to look for one or the other signal in separate trials. 

For the 3D search, the image was presented as a stack of 2D images and the user could scroll 

up and down in the stack of images in a similar manner to the way a clinician explores a 
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digital breast tomosynthesis case (DBT). Observer responded using an 8-scale confidence 

rating. Decision ratings of 1 through 4 corresponded to signal absent decisions. Ratings of 5 

through 8 corresponded to a signal present decision. For signal present trials, we provided 

feedback to the observers with a cue indicating the location. Five naive observers 

participated in 400 trials per condition. Observer’s eye position data was monitored during 

the experiment using an infra-red video eye tracker (Eyelink 1000, SR Research).

2.2 Forced fixation to measured d′ vs. eccentricity

A separate Yes/No experiment was conducted with the same group of observers to measure 

the detectability of the signals (MS and MC) as a function of retinal eccentricity (degrees 

away from the fovea) in a signal known exactly task. The observers were presented with a 

fixation point and a cue (highly visible fiduciary marks) indicating the potential location of 

the signal. They had to maintain their eyes fixated at that point while the stimuli were shown 

for 500ms and respond with the same 8-scale rating scale, if the signal was present or 

absent. An infrared video eye tracker was utilized to ensure that observers did not make eye 

movements. We measured detectability at eccentricities of 0, 1, 2, 3 and 4 degrees for the 

MC signal. For the MS signal, we measured detectability at eccentricities of 0, 3, 6, 9 and 12 

degrees. Steady fixation was ensured utilizing a real time eye position monitoring and 

interrupting trials in which the observer broke fixation. There were a total of 8,000 trials 

across all conditions.

2.3 Generation of the Stimuli

Two different types of signals were used in the experiment: a 2D/3D Gaussian blob 

depending on the experiment (2D/3D). The standard deviation of the Gaussian signal was 10 

pixels/voxels that resembled a mass (MS). For the microcalcification-like signal (MC) we 

used a sphere with 6 pixels/voxels of diameter, with a constant contrast equal to the 

maximum contrast of the mass (peak contrast = 0.58; (peak contrast – background mean)/

background mean). The prevalence of the signals was 50% in a random location in the 

2D/3D image, and only 50% of the stimuli had a signal present. The background of the 

stimuli was generated using a 2D/3D correlated Gaussian noise field tuned to be similar to 

the noise present in X-ray breast mammograms (Burgess et al. 2001) with 1/f2.8. In the 2D 

case the size of the image was 1024×820 pixels and in the 3D case the size was 

1024×820×100 voxels. We used a Barco MDRC 1119 display calibrated to have linear 

relationship between grey level and luminance (maximum luminance: 111 cd/m2). Figure 1 

shows an example for the MS (right) and MC (left) signals for the 2D and 3D images.

3. RESULTS

Figure 2 shows the average index of detectability d′ for the human observers. The relative 

detectability between the MS and MC signals is significantly different (p < 0.05) across 2D 

and 3D search. For the 2D search, the smaller microcalcification-like signals (MC) led to a 

four-fold higher d′ than the MS signals. In contrast, for the 3D search both similar had a 

very similar detectability with a big increase for the MS signal and a noticeably decrease for 

the MC signal. We attribute this dissociation in the relationship between signal 

detectabilities across tasks to the interactions among the signal properties, the properties of 
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visual processing in the visual periphery and the requirements of the search task for 2D and 

3D images.

The continuous lines in Figure 3 show the detectability (d′; averaged across observers) as a 

function retinal eccentricity measured in a separate study for 2D images. Results show that d

′ at the fovea is higher for the MC signal relative to the MS signal. In addition, the 

detectability falls more abruptly for the MC signals than for the MS signals.

The improvement for the detection of the masses from 2D to 3D images is related to the 

additional samples (slices) in 3D images providing more information. The finding is 

consistent with previous studies showing human detectability improvements in forced choice 

tasks with additional temporal samples [20]. Less clear is the explanation for the reduction 

in d′ for the MC signals from 2D to 3D search. It cannot be accounted by speed accuracy 

trade-offs. Response times for the MC are longer than the MS by a factor 1.16 in the 2D 

search and a factor of 1.84 in the 3D search (Figure 4).

We hypothesize that the dissociation in signal detectability is related to observer’s inability 

to fixate all regions in the 3D search and thus having to rely on peripheral processing. To 

assess the frequency of fixations on the signal in the two tasks we utilized our measurements 

from an infrared video eye tracker to generate a distribution of the closest distance of the 

observer’s fovea to the target location (for target present trials). Figure 3 shows the 

frequency distribution of minimum distances of the fovea to the signal (degrees visual angle) 

across all trials. For the 3D search, observers fixate (0–1 degrees eccentricity) the signal less 

often than they do for the 2D search. Such extra-foveal processing in 3D search 

differentially deteriorates d′ for the MC signal due to its high spatial frequency content 

relative to the MS signal (see continuous lines on Figure 3).

If our hypothesis relating search performance to peripheral processing is correct, it should be 

possible to calculate an estimated detectability for the search experiments using the 

distribution of retinal eccentricities of the closest fixations to the signal on each trial and 

detectabilities of each signal across eccentricities. The aggregate estimated detectability for a 

search task (d′search) was calculated as an average across trials of d′s for the retinal 

eccentricities of the signal for the closest fixation of each trial:

Here, d′(en) is the d′ corresponding to the retinal eccentricity of the signal, e, for the closest 

fixation to the signal for the nth trial. The eye position data was used to determine for each 

trial, the closest fixation to the signal and its associated eccentricity. Measurements for the 

detectability as a function eccentricity (Figure 3) were then used to calculate d′(en) for each 

trial. This method was used to estimate the d′search for the two signals (MS and MC) and the 

two modalities (2D and 3D). Figure 5 shows that the relative predicted performance for MC 

and MS signals for 2D and 3D modalities is in general agreement with the human 

experimental results: MC signals are more detectable in 2D images while, in 3D images, MS 

signals are more detectable.
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4. DISCUSSION AND CONCLUSION

There has been an increase interest in 3D medical imaging modalities with the increasing 

use of digital breast tomosynthesis and computed tomography. Here, we show that search in 

3D images introduces new complexities that make it distinct from 2D search. Visual 

detectability of signals in 2D images might not always be a good predictor of signal 

detectability in 3-D images. In particular, we report dissociations in the rank order of 

detectability of signals across the two imaging modalities. We hypothesized that the 

dissociation is caused by an inability of observers to exhaustively scrutinize the 3D images 

with their fovea. In 3D images, search decisions have to rely increasingly on peripheral 

retinal processing. Because of the different properties of peripheral vs. foveal visual 

processing, the increase utilization of peripheral processing for 3D imaging makes smaller 

micrcocalcification-like signal (MC) much harder to detect relative to 2D images. Larger 

mass-like signals (MS) are less affected by reduction in the frequency of foveations of the 

signal in 3D images because their detectability diminishes less abruptly with retinal 

eccentricity (Figure 3). Our hypothesis is supported by measurements of human detectability 

of the signals as a function of eccentricity and eye position data for 2D and 3D search. 

Predicted search performance utilizing information about the observer fixation patterns and 

detectability of the signals with eccentricity could predict the dissociation across 2D and 3D 

search.

The application of the findings to clinical practice rests on the assumption that radiologists 

do not exhaustively search each slice in 3D case image case. Radiologists typically 64–128 

slices for computed tomography [21], [22] and 50–90 slices for digital breast tomosynthesis 

[23]–[25]). Based on clinical reading times of 2–3 minutes per case and fixation times of 

250–350 ms per fixation, radiologist fixations could range from 4 to 14 fixations per slice 

(depending on the reading time and number of slices). This suggests that a majority of 

radiologists are relying on the visual periphery to process much of the data in 3-D images.

What are the implications of these findings? First, the results highlight that assessment of 

image quality from human observer performance studies with search with 2D images or 

detection tasks (location known) might not generalize to 3D search. Second, the findings are 

relevant to the development of model observers. Many groups are currently working the 

development of model observers for 3D image modalities [26] including digital breast 

tomosynthesis [27]–[29] and computed tomography [30], [31]. Our results suggest that 

model observers for 3D images require taking into account visual processing in the 

periphery. The findings motivate the development of a new family of foveated model 

observers for accurate assessment of image quality in 3D images (Lago, Abbey, & Eckstein, 

2017).
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Figure 1. 
Example of the microcalcification-like signal (MC; left) and mass-like signal (MS; right). 

Top: 2D (top) and 3D case (bottom) showing the central slice.
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Figure 2. 
Average detectability index d′ for human observers for small microcalcification-like signal 

(MC) and larger mass-like signal (MS) in the 2-D and 3-D search task.
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Figure 3. 
Average detectability index d′ (continuous lines) for human observers for 

microcalcification-like signal (MC) and mass-like signal (MS) as a function of retinal 

eccentricity in the 2D (left) and 3D (right) search tasks. Histograms show the frequency of 

the closest fixation across to the target location (in degrees of visual angle, dva)
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Figure 4. 
Average search time (seconds, s) for the observers in 2D and 3D for microcalcification-like 

signals (MC) and larger mass-like signals (MS).
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Figure 5. 
Predicted d′search for the micocalcification-like signal (MC) and mass-like signal (MS) 

utilizing information about the observer fixation patterns (eccentricity of closest fixation to 

the signal) and how detectability degrades as function of eccentricity.
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