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Abstract

OA is a complex disease involving mechanical, metabolic and inflammatory contributions to its aetiology.

A key risk factor, obesity, is becoming an increasing focus of research due to its multiple potential impacts

on OA incidence, progression and symptom severity. An increased load due to an increase in body mass

has been well established as a mechanical contribution to the pathophysiology of OA. However, evidence

of obesity-linked to OA in non-weight-bearing joints has implicated the biological role of adipose inflam-

mation and metabolic abnormalities in OA. The identification of inflammatory mediators such as adipo-

kines (adipose-derived molecules) in OA has further incriminated the role of adiposity. This narrative review

aims to discuss the role of adipose-derived inflammation in OA, with a focus on the contrast between

systemic and local adipose tissue, and potential treatment applications targeting the adipo-inflammatory

aspects of the disease.
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Rheumatology key messages

. Increasing obesity/adiposity results in an environment of low-grade systemic inflammation that contributes to an
increase in inflammation in OA.

. The infrapatellar fat pad behaves differently compared with other adipose tissues and stimulates local inflamma-
tion in OA.

. The emerging role of adipose-derived inflammation highlights potential therapeutic targets for OA disease modification.

Introduction

OA is a highly prevalent disease that is estimated to affect

one in every eight adults and is a leading cause of chronic

pain [1, 2]. It is one of the top contributors to global dis-

ability, with the knee being identified as one of the joints

most commonly affected by OA [3]. Adding to the individ-

ual and societal burden of OA, current treatment options

lack any approved disease-modifying solutions and are

limited to analgesic therapies to maintain joint function,

and at end stage, surgical joint replacement [4].

Traditionally defined as a result of wear and tear affecting

cartilage, OA is now better understood as a more complex

disease involving mechanical, biochemical and biological

processes that affect the whole joint [5, 6]. Specifically,

OA is defined by the Osteoarthritis Research Society

International as a joint disorder with an initial manifestation

of abnormal joint tissue metabolism followed by anatom-

ical and/or physiological changes, including cartilage deg-

radation, bone remodelling, osteophyte formation, joint

inflammation and loss of normal joint function [7].

OA has a multifactorial pathophysiology with mechan-

ical, metabolic and inflammatory contributions to its aeti-

ology and recognized risk factors such as reduced muscle

strength, joint injury and obesity, among others [8, 9]. In

particular, obesity is a prominent risk factor due to its

increasing societal prevalence and because it potentially

contributes not only to the mechanical aspect by means

of increasing joint load, but also to the metabolic and in-

flammatory facets of the disease due to the role of fat as

an endocrine organ secreting an array of pro-inflammatory

mediators [10].

Increasingly, the role of inflammation in OA has become

more clearly defined, with the identification of various

soluble inflammatory mediators, such as cytokines,

chemokines, adipokines and lipids associated with the
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pathophysiology of both the structural and symptomatic

disease [6]. Histological examination has demonstrated

complex inflammation in the synovium (synovitis) of the

osteoarthritic joint that otherwise would be a thin layer

of cells that are a source of hyaluronan and lubricin, key

components of SF [11]. There is a significant association

between the presence and severity of synovitis and asso-

ciated joint effusion with both the incidence and progres-

sion of OA pain and structural pathology [11, 12]. A recent

study demonstrated that despite being within the normal

range, increasing levels of SF white blood cells are asso-

ciated with increasing synovitis, cartilage loss and bone

marrow lesions in patients with knee OA [13]. Increased

levels of some cytokines, including IL-6 and IL-8 in serum

and SF, have similarly been found in patients with OA

[14�16]. Despite the sometimes unclear understanding

of how these cytokines affect OA progression, it is gener-

ally accepted that they induce catabolic processes and

inhibit anabolic processes in the joint [6]. Along with

these traditional cytokines, a class of adipose-derived

molecules called adipokines have also been increasingly

found to be associated with OA (Table 1) [17, 18]. The

potential role of adipocyte-derived signalling molecules,

in particular, has stimulated investigations not only on

the role of systemic adipose tissue but also to examine

local articular adipose depots such as the infrapatellar fat

pad (IFP) to further understand the role of adipose-derived

inflammation in OA [19, 20].

In light of the increasing evidence, the aim of this nar-

rative review is to discuss adipose-derived inflammation

and its potential role in OA. Specifically, the role adipose-

derived inflammation plays in the pathology of OA and the

contrast between systemic and local adipose-derived

inflammation is examined. Finally, emerging evidence sur-

rounding potential treatment applications targeting the

adipo-inflammatory aspects of OA will be considered.

Adipose tissue and its role in
inflammation

Historically characterized as an inert tissue for energy

storage, adipose tissue has since been described as the

largest endocrine organ in the body, consisting of adipo-

cytes, nerve tissue and immune cells [21]. The discovery

of leptin, an adipose-derived inflammatory molecule, was

the catalyst for the change in understanding of the inflam-

matory role played by adipose tissue [22]. Since then, sig-

nificant strides have been made to implicate a variety of

immune cells, including macrophages, T cells, B cells and

neutrophils, in adipose-associated inflammation, which

with increasing obesity results in an environment of low-

grade systemic inflammation [23, 24].

Increasing amounts of adipose tissue affect the local

and systemic populations of immune cells in terms of

both quantity and cell types towards a more pro-inflam-

matory profile [24]. Within adipose tissue, this is

characterized by the shift from alternatively activated

macrophages (M2) in lean individuals to classically acti-

vated macrophages (M1) in the presence of obesity

[25�28]. The M1 or M2 phenotypes of these adipose

tissue macrophages are broadly classified as pro-inflam-

matory and anti-inflammatory, respectively, with the

former known to produce higher levels of pro-inflamma-

tory cytokines such as IL-1, IL-6 and TNF-a, and the latter

producing anti-inflammatory/pro-anabolic molecules such

as IL-10, IGF-1 and TGF-b [25, 27, 28]. Adipose tissue

macrophages are often found surrounding necrotic adipo-

cytes, with the purpose of consuming adipocyte debris in

a process similar to foreign body tissue reaction, forming

what is known as crown-like structures that increase in

number in obesity [29, 30].

Inflammatory differences in the subtypes of brown

(mainly found at the interscapular regions and associated

with energy expenditure), white (mainly subcutaneous,

intramuscular and visceral fat associated with obesity)

and beige (brown adipocytes within white adipose

tissue; the most common type of brown tissue in adult

humans) adipose tissue are affected by increasing adi-

posity [29, 31, 32]. In obese individuals, these differences

include higher IL-6 production in brown adipose tissue

associated with lower values of body fat percentages,

and higher uncoupling protein-1 production in brown adi-

pose tissue compared with white adipose tissue, with an

association to lower values of BMI, body fat percentage

TABLE 1 Summary of adipokines and the associated effects in OA

Adipokines Associated effects in OA Levels in OA patients Association with pain

Adiponectin Increase cartilage degradation [83] Higher in plasma vs SF Increase plasma [84]

Increase in IFP vs subcutaneous fat [18, 20] Decrease SF [85]

Resistin Increase SF infiltration [18] Higher in plasma vs SF Increase SF [86]
Increase synovial hypertrophy [18]

Increase cartilage degradation [87]
Correlated with bone marrow lesions [87]

Leptin Increase IGF-1 and TGF-b [88] Higher in SF vs plasma Increase SF, serum [85, 89]
Increase MMP-2 and MMP-9 [90]

Increase cartilage degradation [91]

Visfatin Increase in the IFP vs subcutaneous fat [20] Higher in SF vs plasma Increase SF [85]
Increase cartilage degradation [91]

IFP: infrapatellar fat pad.
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and fat weight [33]. Additionally, brown adipose tissue, in

contrast to white, is thought to downregulate the inflam-

matory profile of macrophages [34]. The relation of adi-

pose tissue to inflammation is complex given the effects

of not only increasing obesity, but the distinct types of

adipose tissue. The differences in inflammatory profile be-

tween adipose tissue types have the capacity to

differentially drive systemic and local inflammation

through the accumulation and release of immune cells

and inflammatory molecules [35]. Furthermore, recent

pre-clinical studies have demonstrated crosstalk between

different adipose tissue deposits with varying sensitivities

to obesity-associated inflammation and that removal of

the most inflamed tissue can modify the response of the

remainder [36].

Adipose tissue inflammation in OA

Systemic adipose-derived inflammation in OA

The pathophysiological association between obesity and

OA may manifest through several mechanisms. While bio-

mechanical factors play a role in weight-bearing joints

through increased load, the established association of

obesity to OA in non-weight-bearing joints, such as in

the hand, implicates biochemical/biological mechanisms

as a contributory factor [37]. Pre-clinical studies using a

high-fat diet (HFD) to induce obesity have shed light on

the mechanical vs biological/inflammatory contribution to

OA risk and pathophysiology. While a HFD has been con-

sistently demonstrated to increase body weight, fat mass

and spontaneous or injury-induced OA in mice, a number

of studies have shown that OA severity is not correlated

with body weight or joint loading [38�42]. Rather, OA in-

cidence and/or severity in these and other in vivo studies

[43�46] is associated with systemic and local joint inflam-

mation and adipokine and cytokine levels. Interestingly,

however, while genetically altered leptin signalling re-

sulted in profound obesity, this was not associated with

altered serum cytokine levels or OA, suggesting increased

fat mass alone is not disease-inducing [47]. The increased

OA risk with a HFD-induced fat mass may be associated

with additional factors such as altered levels of cholesterol

[48], specific fatty acids and lipoproteins [49�51] and gut

microbiota [52]. Additionally, recent studies using combin-

ations of HFDs and unloading of the hind limbs suggest

that specific aspects of OA pathology (cartilage fibrillation

and osteophyte size) require both adiposity and joint

loading, while others (joint inflammation, chondrocyte

apoptosis) occur with obesity alone [43].

Clearly there is a complex interplay between biomech-

anical and both systemic and local biological effects of

obesity and fat mass, as well as the initiating mechanisms

of adiposity itself. The impact of these different pathways

on the effect of obesity on OA may vary between joints. In

load-bearing joints such as the knee, the association of

obesity-related metabolic syndrome in OA patients is

weakened when outcomes are adjusted for BMI, suggest-

ing increased load as a result of obesity may play a

greater role in the pathophysiology [53]. In contrast,

inflammation might be expected to play a more important

role than biomechanics in the association of obesity with

hand OA documented in numerous populations and coun-

tries [37, 54�62]. However, a number of studies have failed

to demonstrate an association between obesity and hand

OA [63, 64] and, as with knee OA, indices of metabolic

syndrome (other than hypertension) were not associated

with hand OA after adjusting for BMI in a recent cohort

study [65]. Furthermore, neither serum leptin levels, im-

paired blood glucose metabolism or type 2 diabetes

were found to be associated with increased hand OA

[66�68]. Together this may suggest a greater role for bio-

mechanics in obesity-associated hand OA risk than pre-

viously thought and/or the biological effect of obesity

locally in joint tissues is more important than the systemic

metabolic derangement in OA pathophysiology.

Adipose tissue is recognized as an endocrine organ that

secretes a large number of inflammatory mediators,

including cytokines (IL-1, IL-6, IL-8, TNF-a) and adipo-

kines (leptin, adiponectin, resistin, visfatin) [10]. In addition

to OA, adipose-derived inflammation has been implicated

in several other diseases, including RA, diabetes and IBD

[69�71]. The increase of white adipose tissue in obesity is

postulated to create a systemic environment of increased

inflammation through the release of both cytokines and

pro-inflammatory adipokines such as leptin and visfatin,

all of which have been associated with OA [72�75]. The

shift from M2 to M1 macrophage phenotypes in adiposity,

as previously discussed, is also significant, as it would

enhance M1 cytokine-driven cartilage degeneration and

reduce the capacity for tissue repair and angiogenesis

by M2 macrophage-derived factors [25, 76]. The role of

macrophages and their differential activation in OA is

complex, however, and while the loss of M2 activation

has been associated with enhanced systemic inflamma-

tion following pan-macrophage depletion [77], M2 macro-

phages do not directly attenuate M1-driven cartilage

catabolism [78], and TGF-b produced by M2 macro-

phages can shift from being anabolic to pro-catabolic

with ageing and OA [79, 80].

Adipokines are soluble molecules that predominantly

originate from adipocytes and have been associated

with obesity-related and metabolically induced inflamma-

tion, both of which have also been implicated in OA

(Table 1) [81, 82]. While there is some contradictory

evidence, leptin has generally been accepted as a major

mediator in the construct of obesity and OA. It has been

suggested that leptin mediates anabolic processes by the

induction of insulin-like growth factor-1 and TGF-b, but

also the expression of catabolic factors such as MMP-2

and MMP-9 [88, 92]. Leptin also stimulates the expression

of IL-6 and IL-8 in synovial fibroblasts, alters the secretion

of TGF-b, osteocalcin and collagen type I in subchondral

osteoblasts and decreases chondrogenesis while increas-

ing osteogenesis in cartilage progenitor cells [90, 93�95].

In addition to leptin, increased adiponectin and resistin

have been associated with OA. Adiponectin is postulated

to correlate to cartilage matrix degradation due to a posi-

tive association with circulating cartilage oligomeric matrix
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protein and increased MMP-3 [83]. However, adiponectin

was found to be negatively associated with hand OA, with

significantly lower levels in those with progression com-

pared with those without [96]. Resistin, an adipokine that

is variably reported to be increased in obese patients, was

found to exacerbate adipose tissue inflammation and in-

sulin resistance in mice and induce an arthritic-like condi-

tion with synovial leucocyte infiltration and synovial

hypertrophy after intra-articular administration [18, 81,

97, 98]. Serum levels of resistin have been positively asso-

ciated with cartilage defects and bone marrow lesions in

clinical studies [87].

Localized joint inflammation and adipose tissue

While the preceding evidence creates a construct for adi-

posity, systemic inflammation, adipokines and OA patho-

physiology, studies have also shown elevated resistin,

adiponectin and leptin occurring in knee SF compared

with serum, which suggests a local adipogenic driver of

pathology closer to the joint as opposed to just low-grade

systemic inflammation [99, 100]. The IFP is a local adipose

depot adjacent to the synovium in the knee joint. The IFP

has been previously described as having a biomechanical

role that contributes to load bearing, but emerging evi-

dence also suggests a biochemical/biological contribution

to the aetiology of knee OA [19, 101, 102]. The IFP is

suggested to be the patellar tendons’ source of blood

supply, contributing to a potential pain mechanism in the

knee or perhaps specifically patella-femoral OA [19]. The

role of obesity as a risk factor and the implication of adi-

pokines as well as synovitis in the pathophysiology of OA

discussed above, coupled with the intrasynovial location

of the IFP, has created a potential knee OA pathophysio-

logical construct that has become an increasing focus of

research [20, 103] that is now also being investigated in

other joints with an intra-articular fat deposit, such as the

hip [104]. In recent years, various clinical and pre-clinical

approaches have been used to investigate the relationship

between inflammatory properties in the IFP and the signs,

symptoms and structure of OA.

While it is a white adipose tissue, the IFP has been

found to behave differently and demonstrate different

characteristics compared with other adipose tissues in

response to a HFD in the mouse [45, 105�107]. In addition

to the development of OA features in these HFD models,

an increase in total volume, adipocyte size and blood

vessels was found within the IFP [45, 105] as occurs in

systemic fat deposits [106]. The increased IFP volume

was found in one study to be positively associated with

osteophyte area [45]. While some studies have shown that

a HFD increases the production of inflammatory cyto-

kines, growth factors and adipokines in the IFP similar

to systemic fat deposits [43, 45, 106], others have sug-

gested the IFP is protected from obesity-driven inflamma-

tion despite concurrent OA induction [105]. Some of these

changes observed in mice were also replicated clinically in

end-stage knee OA patients, where the IFP differed sig-

nificantly from other perisynovial adipose tissue with

increased macrophages, toll-like receptor 4 expression

and fibrosis in the latter, while both adipose tissues

were influenced by BMI and showed an increase in adi-

pocyte size and increased haematopoietic and

M2 macrophage cell infiltration [108]. A recent clinical

study in patients without OA found IFP volume to be posi-

tively associated with BMI [109]. This demonstrates sen-

sitivity to diet/obesity-associated change in the IFP, but

whether it is predictive of subsequent joint disease or is

protective as previously suggested [110] remains to be

determined.

While the role and effect of obesity on the IFP remains

to be completely defined, IFP inflammation as identified

by a change in MRI signal intensity has been linked to an

increase in pain and correlated to radiographic abnormal-

ities such as bone marrow lesions and cartilage defects in

knee OA patients [111�114]. On a cellular level, the IFP,

similar to surrounding synovial tissues in OA joints, has an

increase in inflammatory cell types and markers indicative

of a localized role in inflammation [115]. Within the IFP,

pro-inflammatory phenotypes of T cells and macrophages

were found to be the most abundant immune cells, and

compared with subcutaneous adipose tissue, higher per-

centages of mast cells and lower percentages of T cells

were detected in the IFP of OA joints [20]. Inflammatory

molecules including IL-6, visfatin and adiponectin were

also found in increased amounts in the IFP compared

with subcutaneous fat [20, 103]. Additionally, new adipo-

kines including serpin peptidase inhibitor clade E member

2, WNT1-inducible-signalling protein 2 and glycoprotein

(transmembrane) NMB have been found to be produced

by the IFP, with WNT1-inducible-signaling protein

2 increased in the OA IFP [116].

The increase in inflammatory cells and synthesis and

secretion of pro-inflammatory factors by the IFP can not

only directly drive pathological change in joint tissues

such as cartilage, but may modify the phenotype of

other cells in the joint, such as synovial fibroblasts [91,

117, 118]. The precise nature of the interaction between

the IFP and surrounding tissues is not well defined. In in

vitro studies using conditioned media and IFP and

synovial fibroblast co-cultures have suggested the IFP

contributes to synovial fibrosis through the release of

one or more soluble factors [119], with IL-6 but not

leptin or adiponectin implicated [120, 121]. In OA patients,

adipokines involved in cartilage degradation, including

leptin, chemerin and visfatin, are produced in both the

synovial membrane and IFP [91]. Synovial fibroblasts

produce an array of pro-inflammatory and pro-catabolic

mediators when incubated with IFP, such as IL-8, IL-6,

MMP-1 and MMP-3, and notably, these molecules were

not produced in equivalent co-incubations with subcuta-

neous fat [117]. More recently, a similar composition of

immune cell populations in the synovial membrane and

IFP have been characterized, providing further evidence

for an interactive environment involving the IFP in knee OA

[122].

While the relationship between obesity and the IFP has

been extensively investigated, as discussed earlier, the

impact of the other well-recognized OA risk factors on
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the IFP, such as ageing and joint injury/trauma, has

received less attention. In the rat, ageing has been asso-

ciated with a decrease in IFP volume, increased IFP se-

cretion of TNF-a and IL-13 and decreased expression of

M2 macrophage genes [123]. Clinically, however, ageing

has been linked to increasing IFP volume in OA but not

normal joints [124], with increased IFP cross-sectional

area beneficially associated with both radiographic and

symptomatic OA [110, 125]. Trauma and injury have also

been linked to abnormalities in the IFP, with evidence of

fibrous changes with strenuous exercise, anterior cruciate

ligament injury and after arthroscopy [126�128]. How the

OA risk factors of ageing, injury and obesity interact to

modify the IFP and its effects on joint homeostasis and

pathology requires further investigation.

Adipo-derived inflammation and pain

The preceding discussion has largely focused on the re-

lationship between adipose tissue/adiposity/obesity and

OA structural pathology, but there are also potentially

direct links with pain. The association between inflamma-

tion and OA pain is well established through the role of

cytokines in the initiation and persistence of pain by dir-

ectly activating nociceptive receptors in the joint

[129�132]. Additionally, significant evidence implicates

several pro-inflammatory molecules in peripheral and

central sensitization [129�132]. More recently, studies

investigating adipose-derived inflammation and pain

have emerged. In upper extremity soft tissue disorders,

visfatin and abdominal adiposity are associated with

pain [133]. Furthermore, leptin and BMI were found to

be positively associated with self-reported generalized

body pain in otherwise healthy post-menopausal women

as well as musculoskeletal pain in patients with FM [134].

Only a small number of studies have explored the asso-

ciation of adipokines to OA pain. Systemic adipokine levels

(leptin and adiponectin) were associated with having an

increased number of painful joints in women and positively

correlated with pain [84, 89, 135]. Within the joint, levels of

leptin, adiponectin and resistin in the SF were weakly cor-

related to patient-reported pain [86, 136]. However, a more

recent and larger study showed pain was associated with

intra-articular concentrations of various adipokines with

joint-specific differences: high levels of visfatin and leptin

in the hip and high levels of leptin and low levels of adipo-

nectin in the knee [85]. Early data have also suggested no

association between IFP-derived CD4+ cells and pain

[122]. While the inflammation and pain construct propose

a natural role for adipokines/adipo-inflammation, the lim-

ited studies and conflicting evidence suggest a strong

need for more well-designed studies.

FIG. 1 A summary of the interaction between risk factors, systemic and local adipo-inflammatory pathways and

biomechanics and the structural and clinical features of OA

IFP: infrapatellar fat pad.
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Targeting adipose tissue in OA
management

The above review clearly implicates the potential involve-

ment of a number of systemic and local adipo-inflammatory

pathways in OA structural and symptomatic disease, which

are summarized in Fig. 1. While the precise role of different

adipose tissues, specific adipose-derived mediators and

biological versus mechanical effects of obesity and adipos-

ity in OA onset and progression has yet to be fully resolved,

therapeutic avenues have already begun to emerge.

Numerous studies have established that weight reduction

is beneficial to reducing OA symptoms [137�140], with per-

sistent effects 1 year later even in the absence of weight

loss maintenance [141], and reducing levels of inflammatory

biomarkers with effects sustained at 24 months [142, 143].

Exercise and/or physical therapy even in the absence of

significant weight loss has been shown to improve clinical

outcome measures in OA patients [144, 145] and both

symptoms and structure in pre-clinical animal models

[40, 146, 147]. However, when directly compared, weight

loss through diet or diet plus exercise results in superior

clinical benefit compared with exercise alone [139], and

conservative methods to target adiposity/obesity have

therefore been incorporated into clinical guidelines for OA

treatment [148].

The mechanism whereby weight loss improves OA symp-

toms is less clear. Some studies have demonstrated a dose-

dependent reduction in cartilage damage/loss with weight

loss [149, 150] while others have not [151], which may be

associated with the larger absolute mass change in the

former studies. Weight loss is associated with reduced joint

loading, implicating biomechanics in the clinical improvement

[152, 153]. However, patients in these studies also experi-

enced reduced serum IL-6 and CRP in association with

reduced fat mass but independent of body mass, indicating

reduced inflammation may play a role [139, 154]. In a pre-

clinical mouse study, reduced OA structural damage in exer-

cised animals was not associated with changes in body

mass, fat mass or serum cytokines, suggesting other mech-

anisms may be more important [40]. A recent study demon-

strated that changes in adiposity and weight as a result of

diet and exercise in patients were correlated to reduced IFP

volume [155], potentially implicating this local joint tissue

effect in the clinical improvement.

The unique inflammatory characteristics of different adi-

pose tissues, their response to obesity and how these can

be modified may provide distinct therapeutic targets for

OA. There are a number of studies using genetically mod-

ified mice that have identified molecular pathways that

regulate both obesity and its inflammatory/metabolic con-

sequences. Ablation of micro-RNA (miR)-34a [156], MMP-

19 [157], lecithin�cholesterol acyltransferase (Lcat) [51]

and transient receptor potential vanilloid 4 (TRPV4) [158]

all increased susceptibility to diet-induced obesity in

mice. Evaluation of OA was only done in mice deficient

in Lcat and TRPV4 and showed concurrently increased

obesity and structural pathology, while mice deficient in

apolipoprotein A-I had similar HFD-induced obesity to

wild-type animals but significantly worse OA, suggesting

a more direct role for high-density lipoprotein in the

joint [51]. Decreased diet-induced obesity has been

observed in mice with a deficiency in mast cells [159],

ablation of steroid receptor RNA activator-1 [160] and

overexpression of C1q/TNF-related protein-3 [161].

While none of these studies evaluated effects on OA, all

reported decreased HFD-induced inflammatory cytokines

such as IL-5, IL-6 and TNF. There is accumulating evi-

dence from pre-clinical animal models, especially using

genetically modified mice, that targeting specific inflam-

matory pathways can modify both post-traumatic and

spontaneous age-associated OA (reviewed in [162�164]),

but how this relates to changes in systemic or local adi-

pose-inflammation has not been well explored. One study

has demonstrated a key role for macrophage migration

inhibitory factor in obesity-related white adipose tissue

inflammation and metabolic syndrome despite no effect

on adiposity itself [165]. An early pre-clinical study used

dexamethasone to intervene in models of induced knee

injury prior to the onset of OA, with results showing early

improvements in the inflammation of the IFP that was not

sustained at later time points and did not modify OA pro-

gression [166]. Mice deficient in sirtuin (Sirt)-6 were not

more susceptible to HFD-induced obesity but did have

worse OA associated with increased synovitis and IFP

inflammatory cytokine expression [167]. Resveratrol,

which activates Sirt-1, has been shown to significantly

reduce HFD-induced OA pathology in mice in association

with reducing serum leptin and IL-1b levels [168, 169].

There is great scope to therapeutically target the adipo-

kines and inflammatory pathways that drive inflammation

in the joint capsule, but to date there has been limited

translation of the specific targets identified in pre-clinical

studies to patients. Adiponectin and leptin have been pos-

tulated to be potential therapeutic targets, with sugges-

tions of therapies likened to the anti-TNF-a treatments

[170]. The use of a peroxisome proliferator-activated re-

ceptor gamma agonist has recently been suggested as a

potential novel treatment in response to the finding that

peroxisome proliferator-activated receptor gamma ex-

pression was lower in the IFP of obese OA patients

[108]. Similarly increased activated macrophages and

increased IL-1b associated with IFP activation and OA

could be targeted by existing therapeutics in obesity-

associated OA [118, 171�174]. With the emerging role of

the IFP in knee OA, stratification of patients by MRI for

locally applied intra-articular or even direct IFP injection of

therapies may become a possibility.

Research gaps and future directions

While a great deal has been learned in recent years re-

garding the involvement of systemic and local adipose

tissues in OA, there is still significant work to be done

before therapeutics will be introduced into clinical prac-

tice. With regard to obesity itself, understanding the spe-

cific biomechanical, cellular and molecular pathways that

link diet to adiposity and metabolic abnormalities and

these to particular diseases such as OA is in its infancy.
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In terms of systemic low-grade inflammation derived from

adiposity, there is a need to define the key soluble sig-

nalling molecules (adipokines, cytokines, chemokines and

growth factors), their specific joint targets and appropriate

therapeutic approaches to target symptomatic and struc-

tural improvements in OA. Local to the knee joint, while

existing research has implicated inflammation of the IFP in

OA pathophysiology and symptoms, the detailed cellular

and molecular mechanisms involved, the association be-

tween inflammation in the IFP and other synovial tissues,

how these relate to clinical symptoms in patients and

whether these can be measured by MRI or other non-in-

vasive tools have not been well defined. The relationships

between different risk factors for OA and the IFP and its

role in structural and symptomatic disease have not been

elucidated. While obesity and the IFP have been increas-

ingly investigated, very few studies have explored the role

of ageing and joint injury, and we found no studies have

looked at the impact of hormones or genetics on the IFP.

Furthermore, no studies, to our knowledge, have investi-

gated OA in the novel concept of metabolically healthy

obesity, where there is an absence of metabolic disorders

in obese subjects, and such studies would be crucial

when targeting obesity as a treatment. Finally, no studies

to date have linked incident and progressive OA clinical

symptoms or structural pathology in patients to the cellu-

lar and cytokine inflammatory profile of the IFP. This big-

picture view of the inflammatory interaction between the

IFP and the rest of the joint is needed to develop appro-

priate and patient and OA phenotype-specific diagnostic,

prognostic and therapeutic approaches [30]. Continued

research and well-designed studies are required in both

the pre-clinical and clinical sectors before the existing

knowledge described in this review can be applied in

the clinical environment.
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