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The role of ferroptosis in esophageal cancer
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Abstract 

Esophageal cancer is one of the most common cancers with high mortality rate around the world. Although the treat-
ment strategy of this disease has made great progress, the prognosis of advanced patients is not ideal. Ferroptosis, a 
novel regulatory cell death model, that is different from traditional apoptosis and characterized by increased Fenton 
reaction mediated by intracellular free iron and lipid peroxidation of cell membrane. Ferroptosis has been proved to 
be closely linked to a variety of diseases, especially cancer. This review aims to summarize the core mechanism of fer-
roptosis in esophageal cancer, the regulation of ferroptosis signaling pathway and its current application. At the same 
time, we emphasize the potential and prospect of ferroptosis in the treatment of esophageal cancer. Collectively, 
targeting ferroptosis pathway may provide new insights into the diagnosis, treatment and prognosis of esophageal 
cancer.
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Introduction
Esophageal cancer (EC), a heterogeneous disease, can 
be broadly divided into esophageal squamous cell carci-
noma (ESCC) and esophageal adenocarcinoma (EAC) 
[1]. According to statistics, the global incidence of EC in 
2020 was about 604,000 cases, accompanied by 544,000 
deaths [2]. At present, the effective means for treatment 
of EC mainly includes surgery, preoperative radiother-
apy and chemotherapy or perioperative chemotherapy, 
immunotherapy and so on [3]. In recent years, great pro-
gress has been made in the immunotherapy of EC, but 
it is still not ideal for patients with advanced metastasis 
of EC. Unfortunately, many patients are diagnosed with 
EC when it is already diagnosed at advanced stage with 
distant metastases. Importantly, ESCC patients first diag-
nosed with distant organ metastases in a retrospective 
study had a particularly low survival rate, with a 6-month 

median survival [4]. Therefore, there is a critical need for 
alternative strategies for more effective treatment of EC.

Ferroptosis is a novel form of cell death and becomes 
the research hotspot in recent years [5]. It is a kind of 
non-apoptotic cell death characterized by accumula-
tion of intracellular iron and reactive oxygen species 
(ROS). Ferroptotic cells display some special morpho-
logical changes, such as smaller mitochondria than 
normal cells, contraction of mitochondrial membrane, 
reduction or disappearance of mitochondrial crest, 
and rupture of outer membrane [6]. A vital pathway in 
ferroptosis is ROS-mediated lipid peroxidation. Sev-
eral key ROS-related proteins such as glutathione per-
oxidase 4(GPX4) [7], cystine/glutamate transporter 
(system XC

−) [5], lipoxygenase (LOX) [8], and nitro-
gen oxides (NOX) [9] regulate ferroptosis by influenc-
ing lipid ROS pathway. Induction of ferroptosis with 
chemical modulators, radiotherapy and immunother-
apy has emerged as a promising anti-neoplastic ther-
apy [10]. Encouragingly, emerging preclinical evidence 
suggests that inducing ferroptosis may have consider-
able potential for the treatment of ESCC. For instance, 
the level of DnaJ/Hsp40 homolog, subfamily B, mem-
ber 6 (DNAJB6) in patients with EC is negatively cor-
related with lymph node metastasis [11]. Meanwhile, 
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the overexpression of DNAJB6a can promote ferrop-
tosis in ESCC through mechanisms that remain poorly 
defined [11]. Moreover, oridonin, a tetracyclic diter-
penoid extracted from Rabdosia rubescens (a Chinese 
herbal medicine), could induce ferroptosis by inhibit-
ing γ-glutamyl circulation in YE1 EC cell in vitro [12]. 
Although research on tumor ferroptosis has been pro-
lific, research on the association between ferroptosis 
and EC with limited progress made thus far. In this 
review, we try to summarize important clues about the 
role of ferroptosis in EC have been found and discuss 
the future direction of ferroptosis in EC.

The regulation of ferroptosis
The regulatory mechanism of ferroptosis is correlated 
with several pathways, including iron metabolism, lipid 
peroxidation, and glutathione (GSH)-dependent or 
-independent antioxidant pathways (Fig. 1).

Iron metabolism
Iron is one of the essential nutrients for living organisms. 
In general, intracellular iron balance is the regulated 
through several aspects of iron metabolism, including 
iron absorption, utilization, output and storage. When 
ferroptosis occurs, large amounts of free Fe2+ are accu-
mulated in the cells. Free Fe2+ is highly oxidized and 

Fig. 1  The regulatory mechanism of ferroptosis. Ferroptosis is related to several pathways, including iron metabolism, lipid peroxidation, and 
GSH-dependent or -independent antioxidant pathways. ACSL4, acyl-CoA synthase long-chain family member 4; BH4, tetrahydrobiopterin; 
CoQ10, coenzyme Q10; CoQ10H2, reduced form of coenzyme Q10; Cys, cysteine; Cys2, cystine; FSP1, ferroptosis-suppressor-protein 1; GCH1, GTP 
cyclohydrolase-1; Glu, glutamate; GPX4, glutathione peroxidase-4; GSH, glutathione; GSSG, oxidized glutathione; LOXs, lipoxygenases; LPCAT3, 
lysophosphatidylcholine acyltransferase 3; NADPH, nicotinamide adenine dinucleotide phosphate; NCOA4, nuclear receptor coactivator 4; PEBP1, 
phosphatidylethanolamine-binding protein 1; PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; SLC3A2, solute carrier family 3 
member 2; SLC7A11, solute carrier family 7 member 11; System Xc−, cysteine/glutamate transport protein system; TF, transferrin; TFR, transferrin 
receptor
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prone to Fenton reaction with hydrogen peroxide (H2O2), 
generating hydroxyl radicals which can cause oxidative 
damage to proteins, DNA and membrane lipids. The 
reaction between hydroxyl radicals and membrane lipids 
(especially polyunsaturated fatty acids) leads to lipid per-
oxidation [13]. The occurrence of lipid peroxidation reac-
tion induce the damage of cell membrane and lead to 
ferroptotic cell death [14].

Intracellular free iron participates in the biosynthesis 
of iron sulfur clusters and heme [15]. As an important 
cofactor in the tricarboxylic acid cycle and mitochondrial 
respiratory chain, iron is indispensable in many key life 
processes [16]. Intracellular Fe2+ directly participates in 
Fenton reaction, drives oxygen and redox metabolism 
and the production of ROS, improves the level of intra-
cellular oxidative stress and promotes the occurrence of 
ferroptosis. There are two major sources of Fe2+: (i) the 
transferrin (TF) carrying Fe3+ binds to the transferrin 
receptor (TFR) on the plasma membrane and is absorbed 
into the cells. The hydrogen ion concentration (pH) dif-
ference inside and outside the cells makes the bound iron 
release in the form of Fe2+, or combines with ferritin in 
the form of Fe3+ [17, 18]; and (ii) Iron can combine with 
ferritin. The ferritin in the iron pool can be encapsulated 
by autolysosome under the mediation of nuclear recep-
tor coactivator 4 (NCOA4) [19], and then degrade and 
release a large amount of Fe2+.

Lipid peroxidation
Hydrogen atoms in lipids are lost by free radicals or lipid 
peroxidase in a reaction called lipid peroxidation, result-
ing in the oxidation, fracture and shortening of lipid car-
bon chain, and the production of, lipid hydroperoxides 
and active aldehydes (e.g., malondialdehyde, 4-hydrox-
ynonenal). Polyunsaturated fatty acid (PUFA) has a 
high affinity with free radicals, and the hydrogen atoms 
between its double bonds are easily oxidized by free radi-
cals. During the ferroptosis, lipid peroxidation may lead 
to the oxidation degradation of lipids, such as PUFAs-
containing phosphatidylethanolamines (PE). The oxida-
tive degradation of lipids ultimately leads to cell damage 
[20]. In addition, lipid peroxidation may change the 
molecular configuration of PUFA, destroy the cell mem-
brane structure, resulting in reduced fluidity and stability, 
and resulting in increased permeability of cell membrane 
and ultimately cell death [7].

Studies have shown that lysophosphatidylcholine 
acyltransferase 3 (LPCAT3) and Acyl-CoA synthase 
long-chain family member 4(ACSL4) are vital driv-
ers of ferroptosis [8]. ASCL4 plays a key role in ligating 
long-chain PUFAs with coenzyme A. Then, these prod-
ucts can be re-esterified into phospholipids by some 
LPCAT enzymes (e.g., LPCAT3) to increase the cellular 

incorporation of long-chain PUFAs into membranes [8, 
21, 22]. Meanwhile, some studies have found that lipoxy-
genases (LOXs) (especially LOX-15) play the vital role 
in ferroptosis [23, 24]. Overexpression of LOXs can lead 
cells more prone to ferroptosis, and the direct oxidation 
of PUFAs catalyzed by LOXs promotes to the occur-
rence of ferroptosis [25]. Surprisingly, high expression 
of 5-lipoxygenase (5-LO) was found in human ESCC tis-
sues and was significantly associated with advanced dis-
ease and lymph node metastasis, and 5-LO expression 
was found to induce cancer cell proliferation in vitro [26]. 
LOXs inhibitors, such as zileuton, baicalein, AA-861, 
and CDC, protect cells from GPX4 inhibitor RSL3, dem-
onstrating the critical role of LOXs in cell ferroptosis 
[23, 27]. Phosphatidylethanolamine-binding protein 1 
(PEBP1) prevents the peroxidation of PUFAs by increas-
ing LOX-15 localization at the plasma, thus preventing 
ferroptosis [28].

GSH‑dependent antioxidant pathway
GSH, a water-soluble tripeptide, is composed of amino 
acid residues of glutamate, cysteine, and glycine. There 
are two types of glutathione in the human body, one 
is reduced GSH and the other is oxidized glutathione 
(GSSG). GSH is a vital antioxidant in human body. It not 
only reduces H2O2 to H2O, scavenges free radicals and 
maintains the equilibrium state of intracellular free radi-
cals, but also serves as a key cofactor of GPX4. GPX4, an 
antioxidative enzyme, participates in eliminating intra-
cellular lipid ROS, thus preventing the occurrence of fer-
roptosis. GSH can cooperate with GPX4 to terminates 
lipid peroxidation reaction, promotes the reduction reac-
tion of lipid peroxides of cell membrane, and antagonizes 
the induction of ferroptosis. The inactivation of GPX4 
caused by GSH depletion which increases intracellular 
lipid peroxidation, leading to ferroptosis [29].

Ferroptosis inducers RSL3 [29] and ML210 [30] 
induce ferroptosis by irreversibly binding to, an active 
selenocysteine site of GPX4. Drugs that are able to 
downregulate the expression of GPX4 protein can also 
induce ferroptosis. For example, FIN56 [31] and PdPT 
[32] induces ferroptosis by promoting the degradation 
of GPX4 protein or reducing its intracellular protein 
abundance.

The solute carrier family 3 member 2 (SLC3A2) and 
solute carrier family 7 member 11 (SLC7A11) constitutes 
the cysteine/glutamate transport protein system (system 
XC

−). System XC
− function depends upon the uptake of 

cystine and the exchange of intracellular cystine and glu-
tamate at a ratio of 1:1. The light chain subunit SLC7A11 
is highly specific to cystine and glutamate and is respon-
sible for the basic transport activity of the system XC

−, 
while the heavy chain subunit SLC3A2 mainly acts as 
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a companion protein and regulates the transport of 
SLC7A11 to the plasma membrane [33, 34]. After enter-
ing the cell, cystine is rapidly reduced to cystine and used 
to synthesize GSH [35]. The inhibition of the activity of 
system XC

− subunit induces, the insufficient cell intake of 
cysteine, thus imped the synthesis of GSH. The remain-
ing intracellular GSH is rapidly consumed by H2O2 or 
lipid peroxide, and oxidative stress provokes damage to 
macromolecules, including lipids [36]. At the same time, 
the decrease of intracellular GSH concentration causes a 
loss of the activity of GPX4, resulting in a sharp decline 
in cell survival under lipid peroxidation and ferroptosis.

For example, experimental agent erastin can reduce 
the entry of extracellular cystine and affect GSH synthe-
sis through targeting inhibition of system XC

− on the cell 
surface. GSH depletion leads to inhibition of GPX4 activ-
ity and accumulation of lipid ROS, which induces cell 
ferroptosis [37]. Clinical drugs, such as sorafenib (a Raf 
inhibitor) and sulfasalazine (an anti-inflammatory drug) 
can also induce ferroptosis through this mechanism [38].

GSH‑independent pathway
It is worth mentioning that Doll et al. [39] and Bersuker 
et al. [40] found that apoptosis inducing factor mitochon-
dria-associated 2 (AIFM2) was later renamed ferropto-
sis-suppressor-protein 1 (FSP1), which can inhibit cell 
ferroptosis. Also, FSP1 and coenzyme Q10 (CoQ10) are 
synergistic in the scavenger of lipid peroxidation. FSP1/
CoQ10 acts as a parallel system independent of GSH, 
synergistically inhibiting phospholipid peroxidation and 
ferroptosis with GPX4 and GSH [41]. Inhibitors of FSP1 
and GPX4 can play a synergistic effect to induce ferrop-
tosis in many cancers [39].

Another important mechanism that FSP1 fights lipid 
peroxidation is through ESCRT-III dependent membrane 
repair mechanisms, thereby preventing the occurrence 
of cell ferroptosis [42]. Further, it is speculated that tar-
geting the FSP1-ESCRT-III pathway may enhance the 
effect of ferroptosis activators in tumor cells, including 
EC [43]. In EC, the expression of FSP1 was observably 
increased and significantly associated with the infiltra-
tion of CD4+T cells. FSP1 may influence the progression 
of EC by regulating the way ferroptosis occurs in different 
immune cells [44].

Coincidentally, two independent teams have discov-
ered GTP cyclohydrolase-1 (GCH1)- tetrahydrobiopterin 
(BH4) pathway protects cancer cells from ferroptosis 
independent of GSH [45, 46]. GCH1, as a key enzyme 
for intracellular synthesis of BH4 [47], is a coenzyme 
of nitric oxide synthase and has a powerful antioxidant 
effect. GCH1 overexpression protects GPX4-knockout 
cells from ferroptosis, demonstrating that GCH1 is a 
completely GPX4-independent pathway [45]. The using 

of BH2 or BH4 saves cells treated with ferroptosis induc-
ers [46]. In addition, AUF1 (an RNA-binding protein) 
was positively associated with the expression of GCH1. 
The inhibition of AUF1 obviously increases the apoptosis 
of ECA-109 cells, while inhibition of GCH1 inhibits the 
proliferation of ESCC cells [48]. Thus, it is possible that 
inhibition of GCH1 leads to a decrease in BH4, which 
leads to ferroptosis in EC cells. Of course, this hypothesis 
remains to be verified in future studies, and the regula-
tory pathway of ferroptosis, GCH1-BH2/BH4, also needs 
further research.

Influence of ferroptosis related pathway 
on esophageal cancer
Prediction of prognosis of ferroptosis related genes in EAC 
and ESCC
Zhu et  al. [49] examined genes related to ferroptosis in 
patients with EAC using The Cancer Genome Atlas 
(TCGA) database, and they found the ferroptosis-related 
genes were mainly associated with lipid metabolism, 
iron metabolism, energy metabolism and anti-oxidative 
metabolism. Cox regression analysis was used to iden-
tify four ferroptosis-related genes (CARS1, GCLM, GLS2 
and EMC2) and these genes had predictive value for 
overall survival (OS) of EC. The team further validated 
these genes in EAC patient tissues and found that GCLM 
and GLS2 were significantly associated with CD8+T cells, 
suggesting a complex relationship between ferroptosis 
and immunity.

To provide more comprehensive understanding of 
immunotherapy for ESCC, Lu et al. [50] screened 45 fer-
roptosis-related genes based on abnormal gene expres-
sion in ESCC, and established a prediction model of 
ferroptosis-related genes based on the results of Cox 
regression analysis. They found that patients who got a 
lower risk score had a higher proportion of CD4+ mem-
ory active T cells, CD8+T cells, and macrophages. They 
also confirmed that ferroptosis-linked ESCC immune 
microenvironment influenced patient outcomes to some 
extent. It is worth noting that SCP2, MAPK, PRKAA1 
and other genes screened in this study have been proven 
to play various roles in the process of cell ferroptosis 
[51–53].

Liu et  al. [54] obtained 18 pairs of differen-
tially expressed ferroptosis-related long non-coding 
RNAs(DEfalncRNAs)by analyzing tumor samples and 
normal tissues, and established prognostic characteristic 
models. Through statistical analysis, they believed that it 
was possible to predict the survival expectation, immu-
notherapy effect and drug sensitivity of EC patients, 
which could contribute to individualized treatment and 
clinical prediction. At the same time, the function of 
long-chain noncoding RNA (IncRNA) in ferroptosis and 
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cancer has been elucidated in a growing number of lit-
eratures. Seven-IncRNA signature was shown to be a 
better predictor of patient survival in ESCC than tumor 
node metastasis classification (TNM) staging alone [55]. 
The survival time of patients in the low-risk group was 
obviously higher than that of the high-risk group, which 
was the same result as Liu’s study. In other cancers, 
LINC00336 can inhibit ferroptosis and promotes lung 
cancer cell growth [56], and contribute to ferroptosis in 
leukemia cells by increasing ROS and iron [57]. Moreo-
ver Liang et al. [58] used TCGA and ICGC databases to 
screen genes associated with ferroptosis in hepatocel-
lular carcinoma patients, and established a prediction 
model for OS. At the same time, they also observed that 
ferroptosis was closely associated with the immune pro-
cess of cancers, but the method used was different from 
Lu et al.’s [50]. Collectively, these studies have highlighted 
a potential role of ferroptosis in regulation of immune 
function. These findings may lead to improved therapeu-
tic approaches for ESCC.

Potential effects on the p53 pathway
P53, an important cancer suppressor gene, has been 
observed to be mutated or inactivated in more than half 
of cancers. P53 gene mutations are quite common in EC, 
occurring in 40–60% of EC cases, even in the early stages 
of cancer [59]. The inhibitory effect of p53 on tumor cells 
mainly depends on the induction of cell cycle stagnation, 
senescence, or apoptosis. In addition, recent studies have 
found that it can regulate ferroptosis in cancer by regu-
lating oxidation–reduction state and metabolism [60].

According to the mutation status and cell environ-
ment of p53, it has a dual effect in promoting or inhib-
iting ferroptosis. p53 promotes ferroptosis of tumor 
cells by inhibiting SLC7A11 transcription and reducing 
cystine uptake during cell stress. For example, activa-
tion of p53 by nutlin-3 triggers ROS-induced stress that 
cause ferroptosis in osteosarcoma cells [61]. A mutated 
form of p53, missense mutation, such as p53R273H 
and p53R175H, block NRF2-mediated upregulation of 
SLC7A11 and inhibit SLC7A11 expression [62, 63]. In 
addition to regulating SLC7A11, p53 also regulates fer-
roptosis sensitivity in tumors by targeting a polyamine 
metabolism-related gene, spermidine/spermine N-acetyl-
transferase 1 (SAT1) [64]. One recent study found that 
radiation-induced p53 activation inhibits the expression 
of SLC7A11, leading to lipid peroxidation and ferroptosis 
in EC cells [65].

Under certain conditions, p53 can also negatively 
regulate ferroptosis. For example, in colorectal cancer, 
deletion of p53 obstructs the accumulation of dipepti-
dyl-peptidase-4 (DPP4) in the nucleus, promotes DPP4 

and NOX1(NADPH oxidase 1) complex formation, and 
enhances lipid peroxidation and ferroptosis [66]. In con-
clusion, the effect of p53 on ferroptosis is dependent on 
gene mutation and cell type. However, the exact mecha-
nism of p53 regulating ferroptosis in EC needs to be fur-
ther elucidated.

Potential effects of the NRF2 pathway
The transcription factor nuclear factor erythroid 
2-related factor 2 (NRF2) is considered to be main reg-
ulator of antioxidant reaction [67]. The target gene of 
NRF2 involves the process of regulation of iron metab-
olism, regulation of exogenous substances and catabo-
lism of reactive aldehydes, GSH synthesis, NADPH 
regeneration, which participate in regulation of REDOX 
status in cells [68]. The negative expression of NRF2 in 
ESCC biopsy specimens was associated not only with 
good efficacy of chemoradiation therapy (CRT), but 
also with a better prognosis of ESCC [69]. In contrast, 
NRF2 was overexpressed in ESCC, which predicted 
poor prognosis of patients [70, 71]. NRF2 expression in 
ESCC tissues and cells was significantly up-regulated 
as indicated by immunohistochemical staining [72]. 
Meanwhile, NRF2 can promote autophagy by activating 
Ca2+/calmodulin‑dependent protein kinase II α (CaM-
KII α) to enhance the radiation resistance of ESCC [73]. 
Animal experiments also showed that Polygalacin D (a 
Chinese herbal medicine extract) could inhibit tumor 
growth in ESCC mouse model through miR-142-5p 
/NRF2 axis [72]. A study showed that neferine, an 
anticancer active substance extracted from Nelumbo 
Nucifera(Lotus), inhibited the growth of ESCC by 
inhibiting NRF2 expression and promoting ROS pro-
duction to induce apoptosis [74]. To summarize, these 
observations suggest a pro-tumorigenic role for NRF2 
in ESCC.

The expression level of NRF2 evidently affects the sen-
sitivity of cancer cells to ferroptosis, because the high 
expression of NRF2 can help cancer cells resist ferropto-
sis, while reducing NRF2 content can increase the sen-
sitivity of cells to ferroptosis inducers [75, 76]. ARF was 
identified as a vital regulator of NRF2 by biochemical 
purification. The research team reported that NRF2-ARF 
interactions play a vital role in the non-P53-dependent 
ferroptosis response in human cancer cells [77]. At pre-
sent, a number of relevant studies have also mentioned 
that high expression of NRF2 in other cancer cells (such 
as lung cancer) can promote cancer progression and 
metastasis, and also play a role in making tumor cells 
resistant to radiotherapy and chemotherapy [78–81]. 
NRF2-mediated SLC7A11 might enhance therapeutic 
resistance by inhibiting ferroptosis through experiments. 
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In ESCC patients, high levels of NRF2 and SLC7A11 were 
related with low progression‑free survival (PFS), OS, and 
poor treatment response [82].

NRF2 target genes are involved in broad antioxidant 
function, iron metabolism and metabolites of interme-
diate cell metabolism [83]. For example, both GPX4 and 
SLC7A11, two of the most important anti-ferroptotic 
genes, are regulated by NRF2 [84]. However, the genes 
responsible for the anti-ferroptotic role of NRF2 in ESCC 
remain to be identified.

Potential effects of the Hippo‑YAP pathway
The Hippo pathway regulates gene expression to affect 
changes in cell shape, density, and adhesion, and its 
dysfunctions are often associated with squamous cell 
carcinoma (SCC), including ESCC [85]. Yes-associated 
protein (YAP), a key downstream transcription factor 
of Hippo pathway, plays a role in regulating cell growth, 
proliferation and apoptosis [86]. Overexpression of YAP 
is often found in ESCC and it is positively correlated with 
histological stage and grade of ESCC as well as OS and 
PFS of patients [87]. Similarly, Zhao et al. reported that 
YAP1 down-regulation significantly inhibited EC cell 
invasion and in vitro and vivo [88].

Studies have confirmed that ferroptosis, to some extent, 
depends on cell density, and Hippo signaling pathway, 
which can be driven by tumor suppressor NF2 [89]. 
Activation of NF2 can down-regulate E3 ubiquitin ligase 
CRL4DCAF1 and inhibit the degradation of Lats1/2 in 
Hippo pathway [90]. This further promotes the phospho-
rylation of YAP, which limits its nuclear location. YAP-
mediated expression of transferrin receptor 1(TFRC) and 
ACSL4 are key players in determining ferroptosis sensi-
tivity [89]. The upregulation of PARK2 can promote the 
degradation of YAP in ESCC cells, and inhibit the activa-
tion of Hippo-YAP pathway and the progression of ESCC 
[91]. Therefore, regulation of Hippo-YAP pathway activ-
ity suggests potential for regulating ferroptosis in EC.

Potential effects of DNAJB6
The DnaJ (heat shock protein 40 family protein) homolog, 
subfamily B, member 6 (DNAJB6) belongs to the HSP40/
DNAJ chaperone family [92, 93]. The aggregation of 
DNAJB6 protein is commonly found in neurological dis-
eases such as Parkinson’s disease and Huntington’s dis-
ease [94]. Yu et al. observed high expression of DNAJB6 
in ovarian cancer tissues, and speculated that DNAJB6 
could be a potential target for patient prognosis [95]. 
DNAJB6a has also been found to inhibit the progression 
of breast cancer cells [96]. There are several studies on 
the role of DNAJB6 in EC.

As a major oncogene, AKT abnormal activation 
is usually mediated by AKT1 phosphorylation [97]. 

DNAJB6a in EC cells could regulate and inhibit tumor 
cell proliferation through AKT1, thus playing a role in 
cancer suppression [98]. In recent studies, Jiang et  al. 
found that GPX4 level was down-regulated in DNAJB6a 
overexpressed ESCC cells, accompanied by smaller 
mitochondria, increased membrane density, loss of 
mitochondrial structure integrity and edema of mito-
chondrial matrix, which were typical characteristics of 
ferroptosis. Therefore, they concluded that overexpres-
sion of DNAJB6a promoted ferroptosis in ESCC cells. 
At the same time, lymph node metastasis was more 
common in ESCC patients with low DNAJB6 levels 
than patients with high DNAJB6 levels [11]. However, 
relevant studies are still insufficient, and the explicit 
mechanism of how DNAJB6 causes ferroptosis in cells 
remains to be further explored.

Ferroptosis in the treatment of esophageal cancer
Potential therapeutic effect of SLC7A11 inhibitor 
on esophageal cancer
According to recent studies, SLC7A11 has considerable 
potential as a cancer therapeutic target [99]. The ideal 
therapeutic target for anticancer drugs should be spe-
cifically selective for cancer growth, with drugs that can 
produce the desired toxic killing effect in cancer cells 
with little or no unnecessary side effects on normal tis-
sue. The SLC7A11 seems to fit those criteria. Because 
high levels of oxidative stress often occur in cancer cells 
[100], which have higher antioxidant defense require-
ments. Therefore, cancer cells rely more on SLC7A11 
than normal tissue to acquire cysteine and maintain 
redox steady state, which is very similar to oncogene 
dependence in cancer development. Several studies 
have shown that SLC7A11 promotes drug resistance 
and radiotherapy resistance by inhibiting ferroptosis in 
cells [99, 101–103]. Meanwhile, in ESCC patients, high 
expression of SLC7A11 was related to low PFS, OS and 
poor treatment response [82].

At present, some compounds have been validated and 
identified as SLC7A11 inhibitors, including the most 
classic ferroptosis inducer erastin, and some other com-
pound discovered in recent years, such as sulfasalazine, 
cisplatin, sorafenib, and artesunate [104–106]. Sulfasala-
zine could inhibit the progression of EC cells in a dose-
dependent manner in  vitro, and suppress the colony 
formation of tumor cells [107]. SLC7A11 has also been 
demonstrated as a potential therapeutic target and sul-
fasalazine in various other cancer, including small-cell 
lung cancer [108], head and neck cancer [109], hepato-
cellular carcinoma [110] and urogenital cancer [111]. 
Cisplatin is universally used in the treatment of advanced 
nonoperative EC due to its remarkable anticancer activity 
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[112, 113]. According to Guo et  al. [114], combination 
of erastin and cisplatin enhanced the antitumor effect of 
cisplatin. They suggest that cisplatin induces ferroptosis 
is mainly due to direct intracellular consumption of GSH. 
This is similar to the conclusion of Roh et al. [109]. Up to 
now, there is no denying that SLC7A11 is a very potential 
target that needs to be further studied, but efficient and 
specific drugs for use in the clinic are still lacking.

Potential therapeutic effects of GPX4 inhibitors 
on esophageal cancer
Currently known inhibitors of GPX4 mainly include 
RSL3, ML210, Withaferin A, and some diverse pharma-
cological inhibitor (DPI) compounds, which have been 
shown a good anti-cancer activity in a series of cancers 
[104, 115]. These agents covalently bind to the active sele-
nocysteine site of GPX4 and inhibit its enzyme activity, 
resulting in reduced lipid repair ability, accumulation of 
lipid peroxides, and ultimately intracellular ferropto-
sis [23]. One recent study showed that 5-aminolevulinic 
acid (5-ALA) significantly inhibited GPX4 in esophageal 
cancer KYSE30 cells, resulting in ferroptosis. Therefore, 
they speculated that 5-ALA could exert anti-tumor effect 
through induction of ferroptosis [116].

When targeted therapy or chemotherapy agents are 
combined with GPX4 inhibitors, they can effectively 
reduce resistant cancer cells. However, combination 
therapy with multiple agents increases the probability of 
adverse effects, compromising patient safety and treat-
ment outcomes [115]. Unfortunately, although GPX4 
inhibitors can achieve certain therapeutic effects in vitro, 
their low solubility and poor pharmacokinetic properties 
prevent their use in  vivo. Given the current promise of 
ferroptosis in the treatment of drug-resistant tumors, it 
is imperative to develop an effective bioavailable inhibitor 
of GPX4.

Therapeutic effect of oridonin‑induced ferroptosis 
on esophageal cancer
Diterpenoids are compounds extracted from plants with 
a series of complex pharmacological effects such as anti-
inflammatory, antibacterial, antioxidant, and anticancer. 
Some of diterpenoids have been shown to have anticancer 
effects on EC in vitro [117]. As a widely used diterpenoid 
compound, oridonin has also received much attention 
for its antitumor effects [118]. Oridonin significantly 
induced hepatic stellate cells apoptosis and triggered 
GSH depletion in the hepatic stellate cells [119]. Zhang 
et  al. reported that oridonin-treated EC cells showed 
lipid peroxidation, cell proliferation inhibition, and cell 
death. And the process can be blocked by specific ferrop-
tosis inhibitors, including hepatic stellate cells [12]. They 
suggested that oridonin induced cell ferroptosis primarily 

by affecting the γ -glutamate cycle, thus achieving anti-
tumor effects [120]. Ferroptosis induced by oridonin in 
tumor cells has also been observed in vitro. However, the 
clinical effects of oridonin need to be further studied.

Potential role of ferroptosis in chemoradiotherapy
A significant number of EC patients are initially diag-
nosed as advanced stage, accompanied by local or dis-
tant metastasis. The existing main treatment methods, 
including neoadjuvant chemotherapy or radiother-
apy and chemotherapy combined with surgical treat-
ment, can bring patients better survival expectations 
than traditional surgery, but some patients still cannot 
achieve the expected treatment effect [121, 122]. The 
main factor affecting the therapeutic effect is multidrug 
resistance(MDR) of cancer [123].

It has been suggested that regulation of intracellu-
lar ROS levels can sensitize MDR cancer cells to certain 
chemotherapeutic drugs, thus promoting the death of 
MDR cancer cells [124, 125]. Cisplatin induced MDR in 
tongue squamous cell carcinoma by up-regulating the 
expression of SLC7A11 in NRF2 and ATF4-dependent 
manner, thereby interfering the expression of SLC7A11 
and promoting the anti-cancer efficacy of cisplatin [126]. 
GPX4 inhibitor RSL3 can enhance the anti-tumor effect 
of cisplatin by increasing the accumulation of ROS and 
labile iron pool (LIP) levels [127, 128]. Meanwhile, inhi-
bition of NRF2 was found to reverse resistance to RSL3-
induced ferroptosis [129]. Given that interfering the 
expression of ferroptosis-related genes or using ferropto-
sis inducers can enhance the effect of radiotherapy and 
chemotherapy, ferroptosis-based strategies may lead to 
different possibilities for the treatment of EC.

Potential role of ferroptosis in immunotherapy
Immunotherapy is a research hotspot in tumor field and 
has shown encouraging clinical efficacy. Among them, 
immune checkpoint inhibitors, as the focus of immu-
notherapy research, has had a profound impact on the 
treatment of various tumors and changed the tradi-
tional treatment of EC. Clinical trials KEYNOTE-180 
and ATTRAVTION-1 showed that immune checkpoint 
inhibitors pembrolizumab and nivolumab had good effi-
cacy in patients with metastatic EC [130, 131].

Cytotoxic T lymphocyte associated protein 4 (CTLA-
4), programmed death-1 (PD1) and programmed 
death-ligand 1 (PD-L1) are the most representative 
immune checkpoint pathways. Their role is to prevent 
autoimmune diseases caused by excessive activation of 
immune response, the combination of PD-L1 with PD-1 
on the surface of immune cells can reversibly inhibit 
the activation and proliferation of T cells and pro-
duce immunosuppression. A recent study found that 
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blocking PD-L1 and CTLA-4 can inhibit the growth 
of melanoma in animal models by inducing ferroptosis 
[132]. CD8+T cells activated by immunotherapy down-
regulate SLC3A2 and SLC7A11 by releasing interferon 
γ (IFN γ), which activates the JAK-STAT1 pathway, 
reduces cystine uptake by cancer cells, and promotes 
ferroptosis. The induction of ferroptosis in turn syner-
gically enhances the anti-cancer effect mediated by T 
cells. Ferroptosis may be the key to coordinate cancer 
immunotherapy with conventional chemoradiotherapy 
[132] (Fig. 2). Efimova et al. first reported that ferrop-
tosis can induce immunogenic cell death both in vitro 
and in vivo. The release of damage-associated molecu-
lar patterns (DAMPs), especially ATP and high-mobil-
ity group box  1 (HMGB1), inhibits cancer cell growth 
by promoting ferroptotic immunogenic cell death [133] 
(Fig. 2).

Despite extensive use of immunotherapy in other 
malignancies, the number of approved immunothera-
pies for gastrointestinal tumors remains limited [134]. 
For EC, immunotherapy only as a second- or third-line 

treatment [135, 136]. Ferroptosis immunotherapy 
for EC still has considerable development prospects. 
Immunotherapy-mediated regulation of ferroptosis in 
cancer cells has great potential, but its related mecha-
nisms are complex and there are still many uncharted 
areas that deserve further exploration. The possibil-
ity of ferroptosis immunotherapy for EC needs to be 
validated in animal models and ultimately used in the 
clinic.

Conclusion and perspective
Ferroptosis, as a non-apoptotic programmed cell death 
mediated by iron, is initiated and executed under strict 
molecular regulation mechanism. Although many studies 
have confirmed the close relationship between ferropto-
sis and various diseases, the role of ferroptosis in EC is 
still in its infancy. At present, the research of ferroptosis 
in the field of EC is still focused on using genetic data 
from the database to screen ferroptosis-related genes to 
predict the prognosis of patients with EC [49, 50, 54]. 
At the same time, these findings are helpful for patients 

Fig. 2  Potential role of ferroptosis in immunotherapy. CD8+ T cells release IFNγ, activate JAK-STAT1 pathway, down-regulate SLC3A2 and SLC7A11, 
and reduce cystine uptake by cancer cells, resulting in cell ferroptosis. Cys, cysteine; Cys2, cystine; DAMPs, damage-associated molecular patterns; 
GPX4, glutathione peroxidase-4; GSH, glutathione; ICD, immunogenic cell death; IFN γ, interferon γ; JAK, janus kinase; PD-1, programmed death-1; 
PD-L1, programmed death-ligand 1; Se, selenium; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11; STAT1, 
signal transducer and activator of transcription 1; System Xc−, cysteine/glutamate transport protein system



Page 9 of 12Wang et al. Cancer Cell International          (2022) 22:266 	

to judge immunotherapy and drug sensitivity, and indi-
cate that the immune process of EC is highly correlated 
with ferroptosis, which may be a key direction of future 
research.

As an adjuvant therapy for ferroptosis inducer, cancer 
therapy based on the molecular regulation mechanism 
of ferroptosis has great development potential. How-
ever, ferroptosis is a double-edged sword. The potential 
toxic and side effects of inhibitors or inducers of key 
pathways in ferroptosis should be fully studied to deter-
mine that they can specifically trigger Fenton reaction in 
cancer cells and avoid off-target toxicity to normal cells 
causing cancer or other diseases. Currently most of fer-
roptosis inducers currently in use are targeting SLC7A11 
or GPX4. Only a few ferroptosis inducers, such as sul-
fasalazine, altretamine [137] and sorafenib, have been 
approved for use by the Food and Drug Administration 
(FDA), but these drugs are not included in the guidelines 
for standard treatment of EC. Meanwhile, known ferrop-
tosis inducers such as RSL3 and Withaferin A cannot be 
used in clinical trials due to pharmacokinetic and non-
specific reasons, and are only used for laboratory studies 
[104]. Two studies using Oridonin and 5-ALA to treat 
EC cells found these two agents induced ferroptosis, but 
the exact mechanism remains to be further explored. In 
addition, it is worth to investigate the potential role of 
ferroptosis inducers or inhibitors that targeting GSH-
independent pathway in ESCC. For example, the recently 
reported ferroptosis-related FSP1-ESCRT-III pathway 
and GCH1-BH4 pathway may provide new targets and 
ideas for EC therapy.

Immunotherapy is the focus of anti-cancer research 
in recent years, and many studies have elaborated the 
complex relationship between immune system and fer-
roptosis. Ferroptosis may be the key to coordinate cancer 
immunotherapy with conventional chemoradiotherapy. 
Regulation of ferroptosis is of great significance for rea-
sonable and effective integration of immunotherapy and 
chemoradiotherapy. It should not be ignored that cancer 
(including EC) is a heterogeneous disease, and personal-
ized medicine will be the focus of future research. The 
basic research and clinical transformation of ferroptosis 
still have many unknown and challenges. Future research 
on inducing ferroptosis will certainly help patients with 
EC and other diseases.
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