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Abstract

The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as

antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in

symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the

interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or

inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens,

stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants,

affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize

specifically certain products has been suggested as an avenue to improve root–rhizosphere interactions. Possible
strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour

include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of

altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of

flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil.

In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors

of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.
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Introduction

The flavonoid pathway is one of the best studied biosynthetic

pathways of specialized metabolites. Flavonoids are phenyl-

propanoid metabolites, most of which are synthesized from
p-coumaroyl-CoA and malonyl-CoA and share their precur-

sors with the biosynthetic pathway for lignin biosynthesis

(Stafford, 1990). However, some rare flavonoids are synthe-

sized from CoA esters of substrates such as cinnamic acid or

dihydro-coumaric acid, (Friederich et al., 1999). To date,

>10 000 flavonoids have been identified in plants, and their

synthesis appears to be ubiquitous in plants (Ferrer et al.,

2008). Their diversity stems from the generation of a number
of basal flavonoid structures that include flavones, flavonols,

flavan-3-ols, flavanones, isoflavonoids, isoflavans, and pter-

ocarpans (Fig. 1). The flavonoid skeleton can be modified by

glycosylation, malonylation, methylation, hydroxylation,

acylation, prenylation, or polymerization, leading to the

diversity of end-products (Winkel-Shirley, 2001). These
substitutions have important effects on flavonoid function,

solubility, mobility, and degradation.

The synthesis of flavonoids is in general well understood

and the majority of enzymes have been identified, often from

multiple species (Dixon and Steele, 1999; Winkel-Shirley,

2001; Du et al., 2010). Flavonoid synthesis starts on enzyme

complexes located on the cytosolic side of the endoplasmic

reticulum (Jorgensen et al., 2005). Some of the enzyme
complexes localize to the tonoplast where they might

channel flavonoid intermediates for subsequent glycosyla-

tion reaction and storage in the vacuole (Aoki et al., 2000;
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Winkel, 2004). Flavonoid synthesis and accumulation is
often very specific for certain cell types. For example, along

the length of a root, flavonoids are often accumulated at the

root tip and in root cap cells (Fig. 2A). Specific flavonoid

end-products are also localized to specific cell types (Fig. 2B)

where they could have functions in regulating development

(Mathesius et al., 1998a; Mathesius, 2001). Within the cell,

flavonoids also show specificity for their location. Flavo-

noids have been localized to the nucleus, the vacuole, the cell
wall, cell membranes, and the cytoplasm (Fig. 2B–D)

(Hutzler et al., 1998; Erlejman et al., 2004; Saslowsky et al.,

2005; Naoumkina and Dixon, 2008). Flavonoid localization

and synthesis in different cell types and in response to

environmental stimuli can be regulated by a number of

transcription factors, in particular of the MYB and bHLH

families (Koes et al., 2005; Quattrocchio et al., 2006). In

many cases, the regulation of cell specificity is unknown.
Flavonoids can also be transported within and between

cells and tissues. Within the cell, flavonoids are likely to

move via vesicle-mediated transport or through mem-

brane-bound transporters of the ABC (ATP binding

cassette) or MATE (multidrug and toxic extrusion com-

pound) families (Zhao and Dixon, 2009). Flavonoid

transport into vacuoles can be achieved by conjugation of
glutathione with flavonoids in the cytoplasm, followed by

ATP-driven transport via glutathione S-transferase pumps

(Marrs et al., 1995; Mueller et al., 2000; Goodman et al.,

2004). Long-distance transport of flavonoids is less well

understood but has been demonstrated in Arabidopsis,

where application of flavonoids to the root or the shoot led

to their transport towards distal tissues (Buer et al., 2007).

Application of transporter inhibitors showed that the long-
distance transport is likely to be mediated by members of

the ABC transporter families and is also altered by

glutathione, which is likely to act as a transport vehicle

for flavonoids after binding. To date, the exact mecha-

nisms of flavonoid transport out of cellular organelles and

out of the cell, as well as long-distance transport, remain

poorly understood.

Flavonoids in the rhizosphere

Flavonoids are not only found within the plant but

constitute a large part of root exudates (Cesco et al., 2010).

Flavonoid exudation into the rhizosphere is not well un-

derstood, although some progress has been made towards

Fig. 1. Major branches of the flavonoid biosynthesis pathway. Some of the critical enzymes are highlighted in bold and are abbreviated

as follows: CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; FS I/II, flavone synthase I/II; FLS, flavonol synthase; IFS,

isoflavone synthase; IFR, isoflavone reductase; LCR, leucoanthocyanidin reductase; VR, vestitone reductase. Examples of a few

structures of compounds discussed in the text are provided. Major classes of end-products are emphasized in grey boxes.
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the identification of transporters. Flavonoids are likely to be
actively exuded from roots, often in response to elicitors

(Schmidt et al., 1994; Armero et al., 2001). ABC transporter

mutants of Arabidopsis were shown to have altered root

exudate profiles, although they probably affect multiple

compounds (Badri et al., 2008). Exudation of the isoflavo-

noid genistein from soybean root plasma membrane vesicles

was ATP dependent and most probably catalysed by an

ABC-type transporter (Sugiyama et al., 2007). Several
phenylpropanoid exudates were affected in the ABC trans-

porter mutant abcg30, although it was not shown whether

this transporter directly transports the altered phenolics

(Badri et al., 2009). Altogether, most of the transporters

responsible for flavonoid exudation into the rhizosphere,

their location, or regulation are so far unknown. Flavonoids
can also be released passively from decomposing root cap

and border cells (Hawes et al., 1998; Shaw et al., 2006).

Apoplastic b-glucosidases have been found to release

isoflavones from their conjugates in soybean roots, and this

could be an important mechanism for releasing active

flavonoid aglycones during root–microbe interactions

(Suzuki et al., 2006).

Many studies have determined types and concentrations
of flavonoids in root exudates (summarized in Cesco et al.,

2010), although most of these were from plants grown

in solution. Both aglycones and glycosides of flavonoid

can be found in root exudates. Their concentrations vary

widely and depend on plant growth conditions, sampling

Fig. 2. Spatial differences in flavonoid accumulation within and between cells. (A) Flavonoid accumulation (yellow fluorescence) at the

root tip of a Medicago truncatula root. (B) Specific flavonoids (fluorescing in different colours) accumulate in different cell types of white

clover (Trifolium repens), for example pericycle (p), endodermis (e), cortex (c), and epidermis (e). Flavonoids are located in vacuoles (v) of

cortical cells. (C) Flavonoids (fluorescing orange) in the cell wall and/or membrane of a curled root hair of Medicago truncatula in

response to Sinorhizobium meliloti infection. (D) Nuclear localization of flavonoids in a cross-section through the root tip of white clover.

All photos were taken under UV excitation (365 nm) and are from vibratome sections of fresh roots stained with 0.5% diphenylboric acid-

2-aminoethyl ester. Bars represent 500 lm in A, 50 lm in B, 25 lm in C, and 75 lm in D.
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techniques, nutrient supply, and plant species (Cesco et al.,

2010). In general there is only little information on actual

flavonoid concentrations in soil and how these concentra-

tions change in space and time. In addition, there are large

differences in exudation of flavonoids along the root, with

larger amounts being reported to be exuded from the root

tip (Graham, 1991; Hawes et al., 1998); see also Fig. 2A.

During cluster root formation in lupins, isoflavonoid
exudation, together with citrate release, is spatially and

temporally regulated to coincide with maturation of the

cluster roots (Weisskopf et al., 2006; Tomasi et al., 2008).

Solid phase root zone extraction with the use of micro-tubes

that can be placed along the root could be used in future

studies to determine spatial and temporal changes in

flavonoid exudation along roots grown in soil (Mohney

et al., 2009; Weidenhamer et al., 2009).
Once in the rhizosphere, the fate of flavonoids depends

on various conditions in the soil. Flavonoids can be

absorbed to the cell wall and to soil particles with cationic

binding sites, thus becoming unavailable (Shaw and

Hooker, 2008). Depending on their modifications, flavonoid

solubility and mobility in the soil varies. While glycosyla-

tion improves their solubility in water, it is likely that

flavonoid glycosides are quickly deglycosylated by micro-
organisms and plant exoenzymes, leaving the more hydro-

phobic aglycone (Hartwig and Phillips, 1991). Flavonoid

persistence in the soil varies and can be <72 h, depending

on the structure (Shaw and Hooker, 2008). Persistence in

non-sterile soil can be much shorter than in sterile soil,

suggesting degradation by microorganisms. Some bacteria

metabolize flavonoids as a carbon source; others specifically

modify flavonoids. For example, rhizobia can modify nod

gene-inducing flavonoids by partial breakdown to produce

flavonoids more or less active as nod gene inducers (Rao

and Cooper, 1995).

Flavonoids also alter the soil by acting as antioxidants

and metal chelators. Chelation and reduction of metals can

alter nutrient concentration in the soil, and this might have

importance especially for the availability of phosphorus and

iron. For example, an isoflavonoid identified in Medicago

sativa (alfalfa) root exudates was able to dissolve ferric

phosphate, thus making both phosphate and iron available

to the plant (Masaoka et al., 1993). Flavonoids, including

genistein, quercetin, and kaempferol, can also alter iron

availability by reducing Fe(III) to Fe(II) and by chelating

iron otherwise unavailable in iron oxides (Cesco et al.,

2010).

Flavonoids can be synthesized and released specifically
in response to abiotic and biotic signals in the rhizosphere

(Dixon and Paiva, 1995). For example, flavonoid synthesis is

affected by phosphorus (Juszczuk et al., 2004) and nitrogen

supply (Coronado et al., 1995) in the soil. Flavonoids are

specifically induced by symbionts and pathogens (see below),

and also respond to purified signalling molecules of these

organisms. The following sections highlight some examples

for the diverse function of flavonoids in the rhizosphere
along with some of the opportunities for using flavonoids as

regulators of rhizosphere functions (Fig. 3).

Multiple roles for flavonoids in nodulation

Most legumes have the ability to form root nodules that

house symbiotic nitrogen-fixing bacteria or rhizobia. In

addition, members of several families of non-legumes, so-

called actinorhizal plants, form symbioses with nitrogen-

fixing actinomycetes, in particular Frankia species. The

rhizobia fix atmospheric nitrogen into a form that the plant

can use to fulfil its nitrogen requirement while the plant

provides the bacteria with a source of carbon. Nodules are

root organelles that are developed through signal exchange

between the plant roots and the bacteria. In this symbiosis,

flavonoids act as chemoattractants, inducers of nodulation

(nod) and other genes, determinants of host specificity,

developmental regulators, and regulators of phytoalexin

resistance in rhizobia (Cooper, 2004).

One well-studied role of root-exuded flavonoids is their
action as regulators of nod genes in rhizobia. A number of

nod gene products are necessary to synthesize species-

specific Nod factors, lipochitin oligosaccharides required

for nodule formation in the host (Spaink, 1995). Nod gene

transcription is regulated by NodD, a transcription factor

of the LysR family of transcriptional regulators. Binding of

an appropriate flavonoid to NodD is thought to enhance

the access of RNA polymerase and improve transcriptional

ability of the nod genes at the site in the promoter where

NodD is localized (Peck et al., 2006; Li et al., 2008). The

perception of flavonoids by rhizobia is also linked to

elevation in concentrations of intracellular calcium in

rhizobia that subsequently induces NodD proteins for Nod

factor expression (Moscatiello et al., 2010). The first

flavonoids to be discovered to act as nod gene inducers were

luteolin, isolated from M. sativa, and 7,4’ dihydroxyflavone

(DHF) from Trifolium repens (white clover) (Peters et al.,

1986; Redmond et al., 1986). Since then many other

flavonoids have been discovered to have nod gene-inducing

roles (summarized by Cooper, 2004). Most of these

flavonoids are active as nod gene inducers at nanomolar to

low micromolar concentrations. It has been suggested that

a mixture of flavonoids is more effective in inducing nod

genes as opposed to a single compound (Bolanos-Vasquez

and Warner, 1997; Begum et al., 2001). The specific

exudation of flavonoid (mixtures) from legume hosts

together with the specific perception of flavonoids by NodD

proteins of different rhizobia is partially responsible for the

host specificity of the symbiosis.

Interestingly, some flavonoids also show nod gene-

repressing activity for certain rhizobia. For example, the

isoflavonoids medicarpin and coumestrol have been shown

to control Nod factor production negatively in Sinorhi-

zobium meliloti (Zuanazzi et al., 1998). The nod gene

activators and repressors together are thought to maintain

an optimal level of Nod factor production and prevent

elicitation of defence responses by the plant (Savouré et al.,

1997; Zuanazzi et al., 1998).

Flavonoid exudation from the root changes during the

symbiosis. Altered flavonoid exudates have been found in

rhizobia-inoculated roots of several legumes. This alteration
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in flavonoid profiles could fine-tune Nod factor synthesis

during different stages of symbiosis (Dakora et al., 1993;

Schmidt et al., 1994). Altered flavonoid exudate profiles
could also be the result of flavonoid metabolism by rhizobia

themselves, causing changes in the activity of flavonoids as

nod gene inducers or repressors (Rao and Cooper, 1995).

Some flavones and flavonones that induce nod genes, such

as luteolin and apigenin, have also been shown to evoke

a strong chemoattractant response from the rhizobia, with

different flavonoids attracting different Rhizobium species

(Aguilar et al., 1988; Dharmatilake and Bauer, 1992). These
responses occur at flavonoid concentrations of 10�6 to as

little as 10�10 M, a much lower minimum concentration than

that reported for flavonoid activity as nod gene inducers.

In actinorhizal symbioses, flavonoids might also play

a role in host specificity and selection of rhizobia, even

though no canonical nod genes have been found in Frankia

(Normand et al., 2007). Flavonoids were found to accumu-

late inside actinorhizal nodules (Laplaze et al., 1999).
Flavonoids from seeds of actinorhizal plants were shown to

enhance or inhibit symbiosis, although the flavonoids were

not identified in this study (Benoit and Berry, 1997).

Flavonoids extracted from fruits of the host Myrica gale

had positive effects on growth and nitrogen fixation in

compatible, but negative effects in incompatible Frankia

strains (Popovici et al., 2010), suggesting that flavonoids

could play a role in selection of compatible rhizobia by the

host. This is similar to the situation in legumes, where it has

been shown that the phytoalexin medicarpin produced by
clover and medic species inhibits the growth of incompati-

ble but not that of compatible strains (Pankhurst and Biggs,

1980). This effect might be due to the fact that certain

(iso)flavonoids can induce resistance to phytoalexins in

rhizobia at micromolar concentrations (Parniske et al.,

1991), thus enabling host plants simultaneously to exude

phytoalexins in order to inhibit pathogens while still

allowing rhizobial infection.
Flavonoids have also been shown to regulate a number of

other Rhizobium genes, including those for exopolysacchar-

ide synthesis, which is important for regulating defence

responses in the host. For example, genistein at 1 lM
concentration altered exopolysaccharide concentration and

composition in Rhizobium fredii cultures (Dunn et al.,

1992). In addition, type III secretion systems, which play

a role in nodulation in some rhizobia, as well as the
production of exported proteins, can be induced by

flavonoid exudates (Krishnan et al., 2003). Proteome

analysis also found a number of other proteins in response

to host flavonoids, many of which await characterization

(Guerreiro et al., 1997).

Nod factors are important in inducing the initial response

of root cortical cell division and root hair curling. Certain

Fig. 3. Schematic overview of flavonoid functions in the rhizosphere. Flavonoid functions in the rhizosphere range from nod gene

inducers and chemoattractants in rhizobia, stimulators of mycorrhizal spore germination and hyphal branching, possible quorum-sensing

regulators in bacteria, repellents for parasitic nematodes, nutrient mining, and as allelochemicals in plant–plant interactions. They can

also affect root development. Examples of biologically active flavonoids mediating the different interactions are shown.
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flavonoids act as negative regulators of auxin transport and

could thus cause accumulation of auxin at the nodule

initiation site to stimulate cell division and nodule organo-

genesis (Mathesius et al., 1998b; Boot et al., 1999; Wasson

et al., 2006). Exactly how flavonoids redirect auxin trans-

port during nodule initiation is not known, but the

perception of Nod factors by the plant is thought to induce

endogenous flavonoids that could locally inhibit auxin
transport (Mathesius et al., 1998a). In Medicago truncatula,

silencing of different branches of the flavonoid pathway

showed that flavonols such as kaempferol are the most

likely candidates for auxin transport inhibitors (Zhang

et al., 2009). Whether auxin transport regulation occurs

during nodulation of legumes forming determinate nodules,

for example soybean, is still unclear, but it is likely

that other flavonoids, possibly isoflavonoids, are involved
(Subramanian et al., 2006).

Changes in auxin accumulation could also be due to

auxin breakdown by peroxidases, which can be modulated

by flavonoids. The isoflavonoid formononetin, which accu-

mulates in the nodule primordia of white clover, accelerated

auxin breakdown. In contrast, a derivative of DHF and free

DHF, which accumulate in the vacuoles of the cortical cells

that later form the nodule primordia, were shown to inhibit
auxin breakdown (Mathesius, 2001). The local changes in

auxin may be critical in regulating cell divisions during

nodule development.

One of the opportunities in nodulation research could be

the expression of appropriate flavonoid synthesis pathways

in non-legumes in future efforts to extend nodulation

beyond legumes. In addition, altered branches of the

flavonoid pathway could be engineered to extend legume
host ranges to non-specific rhizobia.

Effects of flavonoids on quorum sensing-regulated
behaviours

Many behaviours of rhizosphere bacteria are coordinated

by cell-to-cell signals called quorum-sensing signals (Fuqua

et al., 2001). Quorum-sensing signals are synthesized by

most bacteria and the so-far best studied signals belong to

the class of acyl homoserine lactones (AHLs), which are

used by many Gram-negative bacteria. Quorum-sensing

signals diffuse into and out of bacterial cells and can bind

to receptors inside the bacteria once their concentration
exceeds a certain threshold (Fuqua et al., 1994). This

activates the expression of hundreds of bacterial genes,

many of which are important in plant–microbe interactions,

including genes responsible for biofilm formation, nitrogen

fixation, synthesis of degradative enzymes, exopolysacchar-

ides, and toxins, as well as motility and conjugation

(Gonzalez and Marketon, 2003; von Bodman et al., 2003).

In the past years, a number of molecules have been
identified that interfere with quorum sensing, including

halogenated furanones produced by red algae (Manefield

et al., 1999). A number of land plants have been shown to

synthesize quorum-sensing mimics, which can both inhibit

and stimulate AHL-dependent genes in various reporter

strains, although most of these compounds remain un-

identified (Teplitski et al., 2000; Gao et al., 2003). The first

mimic signal identified from plants was lumichrome,

a riboflavin derivative (Rajamani et al., 2008). Another

potential AHL mimic is the phenolic compound p-coumaric

acid, a lignin precursor that can be exuded by roots into the

soil (Bodini et al., 2009). p-Coumaric acid can also be

produced by breaking down flavonoids from root exudates
(Rao and Cooper, 1995). In addition, p-coumaric acid can

form p-coumaroyl-homoserine lactone (HSL), a distinct

quorum-sensing signal used by some bacteria (Schaefer

et al., 2008). Thus p-coumaroyl-HSL could have two

functions, to sense the presence of a host plant and to

control density-dependent bacterial behaviors. A flavonoid

identified from the medicinal tree Combretum albiflorum,

catechin, which also occurs in many other plant species,
also showed activity as a quorum-sensing mimic, although

at rather high concentrations of between 0.125 mM and

4 mM (Vandeputte et al., 2010). Catechin can also be

present in the rhizosphere of plants, for example as an

exudate of spotted knapweed, where it acts as a potent

allelochemical (Weir et al., 2003). Another flavonoid with

inhibitory effects on quorum sensing-regulated reporters is

naringenin, which was shown to inhibit quorum sensing
in Escherichia coli and Vibrio fischeri at concentrations of

20–360 lM (Vikram et al., 2010) as well as in Pseudomonas

aeruginosa at 4 mM (Vandeputte et al., 2011). Naringenin is

exuded by some legume roots and also acts as a nod gene

inducer in rhizobia (Novak et al., 2002). Therefore, it would

be interesting to test the effect of naringenin on quorum

sensing-regulated genes in rhizobia.

Interestingly, the flavonoid pathway is activated in
legumes by exposure to quorum-sensing signals from

rhizobia, and it has also been shown that bacterial AHLs

(at 50 lM concentrations) can stimulate production of

AHL mimics by M. truncatula (Mathesius et al., 2003).

These results strongly suggest a link between AHL percep-

tion by plants, activation of the flavonoid pathway, and

possible feedback on bacteria by production of possible

AHL mimics. However, effective concentrations of poten-
tial flavonoid mimics in the rhizosphere will have to be

established. A recent study found that Nod gene-inducing

flavonoids increased AHL synthesis in three species of

rhizobia at low micromolar concentrations, concomitant

with enhanced expression of AHL synthesis genes (Perez-

Montano et al., 2011). This suggests coordination between

Nod gene induction and quorum sensing, possibly to

enhance symbiotic behaviours of rhizobia. If flavonoids
indeed act as quorum-sensing mimics and activators in

plant-associated bacteria at relevant concentrations, this

could be explored as an avenue to alter the ability of

bacteria to colonize and infect host plants.

Mycorrhizal symbioses

Mycorrhizal fungi are important symbionts of the majority

of land plants that contribute primarily to plant phosphorus

nutrition. Mycorrhizal symbioses are stimulated under
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phosphorus deficiency in the soil. Mycorrhizal fungi germi-

nate from spores and form hyphae in the soil which branch

in response to root exudates which attract the hyphae to

a host root. Hyphae then penetrate the host root tissue and

form ecto- or endomycorrhizal invasion structures (Harrison,

2005). Some of the host exudates that stimulate spore

germination, hyphal branching in the soil, and root coloniza-

tion, often in a symbiont-specific manner, have been
identified as flavonoids (Siqueira et al., 1991; Scervino

et al., 2005, 2007; Kikuchi et al., 2007; Steinkellner et al.,

2007). Most of these studies reported active flavonoid

concentrations of between 0.5 lM and 20 lM. Not

surprisingly, some of the flavonoids enhancing mycorrhizal

infection are induced under phosphorus stress (Akiyama

et al., 2002). The isoflavonoid coumestrol has been identi-

fied as a particularly active stimulator of hyphal growth
(Morandi et al., 1984), and an M. truncatula mutant

hyperaccumulating coumestrol was also found to be hyper-

infected by its mycorrhizal symbiont (Morandi et al., 2009).

Flavonoids are also likely to play a role during fungal

invasion and arbuscule formation inside the root. Infection

of roots with vesicular arbuscular mycorrhizal fungi was

shown to induce the flavonoid pathway in a number of host

species, in particular in infected cells (Harrison and Dixon,
1994).

Flavonoid accumulation starts before the onset of in-

fection and was shown to vary with different stages of

infection and in response to different symbionts (Harrison

and Dixon, 1993; Larose et al., 2002). One of the roles of

flavonoids inside the root could be to regulate defence

reactions, and it has been hypothesized that mycorrhizal

invasion triggers a temporary defence response in the root
that involves induction of flavonoid phytoalexins (Harrison

and Dixon, 1993). However, compared with the induction

of phytoalexins in response to pathogens, mycorrhizal

induction of these flavonoids is relatively low (Morandi,

1996). Flavonoids may also be responsible for an autoregu-

lation of mycorrhization at later stages of the symbiosis

(Larose et al., 2002). Split-root studies have demonstrated

that formononetin and its glycoside are down-regulated
systemically by either rhizobia or mycorrhizae, concomitant

with autoregulation of both symbioses, and that their

external application restored the symbioses (Catford et al.,

2006).

Interestingly, pyranoisoflavones produced by white lupin,

which is not a host for mycorrhizal fungi, inhibited hyphal

branching of mycorrhizal fungi, suggesting that flavonoids

could play both stimulating and inhibitory roles on fungal
symbionts in the soil (Akiyama et al., 2010). However,

inhibitory activity of flavonoids on hyphal branching was

also reported from host plants (Tsai and Phillips, 1991), and

thus it is likely that host and non-host plants can modulate

the establishment of symbiosis by altering the profile of

flavonoid exudates. While flavonoids clearly appear to

enhance mycorrhization through stimulation of spore

germination, hyphal branching, and host infection, their
presence in the host is not essential for the symbiosis.

Experiments in flavonoid-deficient carrot and maize plants

have shown that mycorrhizal infection was not abolished

(Becard et al., 1995).

Mycorrhial fungi can also protect plants from pathogens

(Whipps, 2004) and enhance symbiosis with rhizobia. One

possibility is that the flavonoids induced by mycorrhizal

fungi also stimulate Nod factor synthesis. For example,

daidzein is induced by mycorrhizal fungi in soybean

(Morandi et al., 1984), where it also acts as a nod gene
inducer for Bradyrhizobium japonicum (Kosslak et al.,

1987). On the other hand, coumestrol is induced by

mycorrhizal symbionts in M. truncatula (Harrison and

Dixon, 1994), where it could act as a nod gene inhibitor in

S. meliloti (Zuanazzi et al., 1998). It is possible that

combinations of flavonoids, rather than single compounds,

need to be tested in more detail for their combined effects

on multiple symbionts. The tripartite symbiosis between
soybean and its mycorrhizal and rhizobial symbionts was

shown to enhance nodulation compared with inoculation of

plants only with rhizobia. In the co-inoculated plants,

flavonoid profiles changed specifically in response to both

symbionts, although, interestingly, flavonoid accumulation

was largely inhibited by the symbionts, including the

flavonoids with activities as nod gene and hyphal branching

inducers (Antunes et al., 2006). Therefore, enhanced symbi-
osis in tri-partite interactions might be due to enhanced

nutrient uptake rather than, or in addition to, stimulation

of flavonoids.

The protection of the host plant from pathogens by

mycorrhizal fungi has also been partially attributed to the

enhanced synthesis of flavonoid (phytoalexins) in response to

the mycorrhizal symbiont (Morandi, 1996), although data

are still scarce and the protective effect could have multiple
causes (Borowicz, 2001). While some studies have shown

increased phenolic content of roots co-inoculated with

mycorrhizal fungi and pathogens (Dehne and Schonbeck,

1979; Cordier et al., 1998), others found decreased phyto-

alexin accumulation in co-inoculated plants compared with

plants only inoculated with mycorrhizal symbionts (Carlsen

et al., 2008).

Flavonoids are involved in defence against root
pathogens

Flavonoids and other phenolics have been found to inhibit

a range of root pathogens and pests, ranging from bacteria
to fungi and insects (Makoi and Ndakidemi, 2007). This has

been attributed to their role as antimicrobial toxins

(Cushnie and Lamb, 2011) and anti- or pro-oxidants (Jia

et al., 2010). Their role within the plant as antioxidants is

suspected to be protective, although clear evidence is

lacking (Hernández et al., 2009). Some of the major gaps in

knowledge pertain to the fact that because of their highly

oxidative nature, the transport and storage of flavonoids is
tightly regulated. Hence, the mechanism by which these

compounds may become available to prevent oxidative

stress in case of a pathogen attack is unknown.

The challenge from a pathogen can lead to de novo

synthesis of flavonoid phytoalexins that exhibit antifungal
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and antibacterial activities. These molecules can also be

stored in an inactive form to function as broad-spectrum

phytoanticipins to mount a quick defence against future

attacks (Lattanzio et al., 2006).

Isoflavonoids represent a major class of phytoalexins in

legumes. Using a promoter:GUS (b-glucuronidase) fusion,

it was shown that the expression of isoflavone synthase

(Fig. 1) was elevated when elicited with salicylic acid and
cyst nematodes (Subramanian et al., 2004), suggesting their

direct involvement in plant defence. Derivatives of isoflavo-

noids called pterocarpans such as medicarpin, pisatin, and

maackiain are known to have antimicrobial properties

(Naoumkina et al., 2010). Maackiain also inhibited the

oomycete Pythium graminicola at a concentration of 20 lg l�1

(Jimenez-Gonzalez et al., 2008). Medicarpin from alfalfa and

pea protects the plants from the pathogenic fungus Rhizocto-
nia solani (Pueppke and Vanetten, 1974; Kapulnik et al.,

2001) possibly by having inhibitory activities on the elonga-

tion of fungal germ tube and mycelial growth (Higgins, 1978;

Blount et al., 1992). There is also genetic evidence that pisatin

from pea contributes to resistance against the fungus Nectria

haematococca (VanEtten and Wu, 2004), as a knockdown of

enzymes responsible for pisatin biosynthesis reduced its

concentration from 28 lg g�1 dry weight by one-third and
increased the susceptibility of pea roots towards the fungal

infection.

The mechanism of resistance against fungal infection

through pterocarpanoid phytoalexins is suspected to be

through a hypersensitive response (HR)-mediated cell death

(Heath, 2000). The cell death through this pathway

incorporates an initial oxidative burst with an influx of

Ca2+, followed by alkalinization of the apoplast through
K+/H+ exchange leading to the depolarization of the

membrane and an extended period of the oxidative state.

Isoflavonoids are thought to be oxidized during this pro-

cess, leading to generation of toxic free radicals that may

cause cell death. Alternatively, it is also suggested that some

pterocarpans target the membrane ATPase and mitochon-

drial electron transport for degradation, leading to cell

death (Graham et al., 2007).
It is also interesting to note that in some plant–microbe

interactions the pterocarpans may not accumulate within

the roots but may be secreted instead. When chickpea

seedlings were challenged by the endogenous elicitor

glutathione, an increase in pterocarpan biosynthesis was

observed (Armero et al., 2001). It was also shown that these

compounds were released by the roots to the surroundings,

possibly to cause damage to the pathogens before they can
infect the roots.

Flavonols also contribute to resistance against pathogens.

One of the most widely distributed flavonols, quercetin, has

strong antimicrobial properties. Quercetin binds to the GyrB

subunit of E. coli DNA gyrase and inhibits the ATPase

activity. However, the promotion of DNA cleavage was

induced only at concentrations >80 lM (Plaper et al., 2003;

Naoumkina et al., 2010). Quercetin also inhibited the growth
of the fungus Neurospora crassa (Parvez et al., 2004). The

plant carnation (Dianthus caryophyllus) mounts a defence

against Fusarium attacks through increasing the concentra-

tion of the fungitoxic flavonol triglycoside of kaemferide at

concentrations as low as 50 nM (Curir et al., 2005).

Global gene expression studies have also shown that

elevation of flavonoid synthesis occurs when M. truncatula

plants were challenged by Phymatotrichopsis omnivora,

cause of cotton root rot disease (Uppalapati et al., 2009).

In order to colonize the plant successfully, virulent strains
of pathogens such as P. omnivore, N. haematococca, and

R. solani have ‘learned’ to evade many of these flavonoids

(Denny and Vanetten, 1981, 1982; Padmavati et al., 1997;

Pedras and Ahiahonu, 2005).

An appealing opportunity to enhance plant protection

would be to engineer plants with increased, or inducible

expression of effective flavonoid phytoalexins and phytoan-

ticipins; however, it might be necessary for the plant to
synthesize a range of active antimicrobial flavonoids to

avoid emergence of resistance by pathogens. In addition it

would be imperative to test whether ectopic expression of

these flavonoids would cause any harm to beneficial

rhizosphere organisms.

Flavonoids in nematode interactions

Plant parasitic nematodes, including root knot, cyst, and

root lesion nematodes, constitute some of the major root
pathogens. Many of these pathogens exhibit a wide host

range, often of thousands of plant species. Sedentary

endoparasitic nematodes cause the formation of feeding

structures that are characterized by multiple cell divisions

and endoreduplication in root tissues, leading to the

formation of galls or cyst (Goverse et al., 2000; Gheysen

and Mitchum, 2011). Invasion of roots with root knot and

cyst nematodes induces the flavonoid pathway in infection
structures (Hutangura et al., 1999; Jones et al., 2007), and it

has been hypothesized that the flavonoids could act as

regulators of auxin transport and accumulation during gall

formation (Hutangura et al., 1999; Grunewald et al., 2009).

In M. truncatula plants deficient in flavonoids, gall forma-

tion still occurred, although galls were smaller and showed

fewer cell divisions (Wasson et al., 2009). In flavonoid-

deficient Arabidopsis and tobacco mutants, reproduction of
several species of nematodes was not affected (Wuyts et al.,

2006a; Jones et al., 2007). However, flavonoids did have an

effect on nematode behaviour, for example certain flavo-

noids acted as repellents for specific nematode species and

inhibited their motility and hatching at millimolar concen-

trations (Wuyts et al., 2006b). Therefore, while flavonoids

do not seem to be essential for feeding site development in

the host plant, flavonoids exuded into the rhizosphere could
alter nematode attraction to the roots. This could be

exploited for designing nematode trap plants that could be

intercropped to reduce the infection of crop roots.

Flavonoids can cause allelopathy

Allelopathy, the inhibition of plant growth and germination

by other plants, plays an important role in parasitic and
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invading plants and can have far-reaching ecological

consequences. In some cases, flavonoids have been impli-

cated as allelochemicals in the rhizosphere. The parasitic

weed Striga constitutes one of the major problems in African

agriculture, with yield losses up to 100% in large parts of

sub-Saharan Africa, thus inhibiting its germination would be

an important achievement (Gressel et al., 2004). In a search

for intercropping plants, the forage legume Desmodium

uncinatum was found to inhibit post-germination and attach-

ment of Striga significantly, and this inhibition was mimicked

by several (iso)flavonoids identified from its root exudates

(Hooper et al., 2010; Khan et al., 2010). In addition, at least

one of the isoflavones stimulated germination, which could

be used to cause ‘suicidal’ germination of the weed. Thus

the use of Desmodium as a ‘push–pull’ intercrop plant has

been a cheap and successful strategy for smallholder farm-
ers to control Striga infestations (Khan et al., 2006; Hooper

et al., 2009).

The success of some invasive weeds has also been

attributed to flavonoid allelochemicals. For example, spot-

ted knapweed (Centaurea maculosa), which has been in-

vading large parts of North America, exudes (–)-catechin,

which can induce reactive oxygen species in susceptible

species that lead to cell death and the demise of the root
system (Bais et al., 2003). A racemic mixture of catechin can

also have detrimental effects on legume nodulation at high

(;3 mM) concentrations (Alford et al., 2009). (–)-Catechin

has also been suggested to inhibit germination and growth

of native species, but it has been questioned whether soil

concentrations of (–)-catechin would be high enough to be

effective (Blair et al., 2005; Duke et al., 2009).

Flavonoid metabolic flux engineering

The biosynthesis of flavonoids involves several branches of

pathways to which multiple strategies could be applied to

alter the metabolic flux. The production of secondary

metabolites requires the plant to invest its energy, and
therefore the pathways are tightly regulated. The initial

committed step for flavonoid biosynthesis is catalysed by

chalcone synthase (CHS). Silencing of CHS transcripts has

been demonstrated to cause a dramatic decrease in flavo-

noid accumulation within the plant (Wasson et al., 2006;

Zhang et al., 2009).

Many strategies can be adopted for engineering the flux

of metabolites through the biosynthesis pathways. Some of
those included are indicated below.

(i) Changes in enzyme specificity through changes in the

active site configuration. By studying the crystal structure of

an enzyme’s active site, novel methods to manipulate it may

be developed to affect substrate specificity. Jez et al. (2002)

demonstrated that the substrate specificity could be altered

by inducing single point mutations at the active site of CHS.

(ii) Since flavonoid biosynthesis is an energy-consuming

process, the plants utilize control points for each branch.

Knockouts or knockdowns of these critical enzymes would

direct the flux into alternative branches. Some of the

enzymes that may be directed with this strategy include

isoflavone synthase, flavone synthase II, and vestitone

reductase. Zhang et al. (2009) confirmed that knockdown of

isoflavone synthase and flavone synthase led to the genera-

tion of roots deficient in isoflavonoids and flavones,

respectively. The authors were then able to demonstrate that

plants can nodulate even in the absence of isoflavonoids that

are thought to play an essential role in the process.

(iii) Transporters. Flavonoids are synthesized in the cyto-

plasm but often have to be transported for exudation into

the rhizosphere or for storage. Similar to enzymes, the

expression of transporters would also have an impact on the

direction of the flux. This was recently demonstrated when

a MATE-type transporter was knocked down to generate
proanthocyanidin-rich plants (Zhao and Dixon, 2009; Zhao

et al., 2011).

(iv) Modification enzymes. Transport, activity, and storage

of flavonoids often require modifications of their structure.

Changes in abundance or activity of enzymes responsible

for these modifications may increase or decrease generation

of the end-product. An example of such an enzyme is
O-methyl transferase (OMT) that is responsible for

4’-O-methylation and 3’-O-methylation of isoflavonoids in

the generation of phytoalexins. Silencing of OMTs in pea

affects the flux in the biosynthetic pathway, leading to

a reduction in the phytoalexin pisatin (Liu et al., 2006).

A similar strategy may be applied to other modification

enzymes, although it may be challenging to find enzymes

that are not catalytically promiscuous, allowing control of
a single pathway.

(v) Transcription factors. Altered expression of transcrip-

tion factors regulating different parts of the flavonoid

pathway could be an approach to altering activity of more

than one enzyme. Members of the MYB, bHLH, and

WD40 transcription factors play an important role in

regulating the flavonoid pathway (Koes et al., 2005; Du
et al., 2010). For example, it has been shown that ectopic

expression of MYB transcription factors can significantly

increase anthocyanin synthesis in tomato (Butelli et al.,

2008). In soybean, isoflavonoid synthesis was increased by

a combination of ectopic expression of maize transcription

factors and inhibition of the competing anthocyanin

pathway (Yu et al., 2003).

Challenges in manipulating the flavonoid pathway

While it appears opportunistic to modify the flavonoid

pathway in order to manipulate root–rhizosphere interac-

tions, the many interactions between plants, flavonoids, and

microorganisms demand a cautionary approach. First,

while most studies on the function of flavonoids have been
done under laboratory conditions, their demonstration in

real rhizosphere conditions remains to be carried out to

determine how effective some of the flavonoid functions

remain under conditions of breakdown, adsorption, metab-

olism, and altered solubility in the soil. Secondly, there are
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likely to be unforseen effects of flavonoids on non-target

organisms. Whereas certain flavonoids could enhance

nodulation or mycorrhization of host plants, they could

also indirectly affect bacterial quorum sensing, plant–plant

interactions, and soil biochemistry. For example, catechin

could inhibit quorum sensing in host-related soil bacteria,

while it may also suppress plant growth as a potent

allelopathic signal. Similarly, naringenin, which induced
nod gene expression in several rhizobia, could have an effect

on quorum sensing regulation in non-target bacteria.

Exudation of isoflavonoids from soybean can stimulate

attraction of its symbionts Bradyrhizobium japonicum

as well as the devastating pathogen Phytophthora sojae

(Morris et al., 1998). In addition, metabolism of flavonoids

by rhizosphere bacteria could alter their activity and

availability in the soil and could affect other bacteria (Shaw
et al., 2006). Thirdly, altering concentrations or forms of

flavonoids inside the plant tissue is likely to have effects on

plant development which could be either beneficial or

detrimental for the plant host. Flavonoids, via their effect

on auxin transport (Brown et al., 2001), have been shown to

alter cell morphology, root growth, gravitropism, and light

responses (Buer and Muday, 2004; Ringli et al., 2008; Buer

and Djordjevic, 2009).
Flavonoid exudation is also likely have effects on

microbial community structure in the soil because it could

increase species that use flavonoids as a carbon source while

inhibiting the growth of others such as phytoalexins (Rao

and Cooper, 1994; Walker et al., 2003). Increased exudation

of phenolics in the Arabidopsis abcg30 mutant was shown to

have wide-ranging effects on bacterial and fungal commu-

nity structure, although this mutation also affected other
exudates (Badri et al., 2009).

Alteration of flavonoid synthesis is feasible and has been

demonstrated in many studies in various plants, and both

overexpression and inhibition of the flavonoid pathway

using RNA interference have been successful (Wang et al.,

2011). In some cases, the transfer of a single gene encoding

flavonoid enzymes might be sufficient to have an effect. For

example, transfer of stilbene synthase from grapevine to
tobacco resulted in increased resistance to Botrytis cinerea

(Hain et al., 1993). Altering glycosylation or targeting

vacuolar transporters are other options that would allow

the release of stored flavonoids from the vacuole for

subsequent export (Weisshaar and Jenkins, 1998; Zhao

et al., 2011). One aspect of the manipulation of flavonoid

synthesis or glycosylation is that it would be most efficient if

it was targeted in the appropriate tissues (Fig. 2), for
example the root epidermis for subsequent exudation. This

would require the use of epidermal-specific promoters,

which are currently not available for most crop plants.

An important drawback in the manipulation of specific

branches of the flavonoid biosynthesis pathway could be that

it alters fluxes through other branches of the flavonoid

pathway or related pathways (Liu et al., 2002; Wang et al.,

2011). This has been cited as one reason why sufficient
flavonoid accumulation for large-scale production in engi-

neered plants has not been successfully achieved (Fowler and

Koffas, 2009). For example, mutants that show changes in

the flavonoid pathway have been shown to have altered

lignin biosynthesis, and vice versa, as both pathways share

the same precursors. In the cra (compact root architecture)

mutant of M. truncatula, alterations in the flavonoid

pathway are accompanied by altered lignin biosynthesis with

effects on root growth (Laffont et al., 2010). Similarly,

silencing of lignin synthesis in transgenic Arabidopsis plants
resulted in increased flavonoid accumulation, and this

increase was hypothesized to reduce plant growth (Besseau

et al., 2007). However, this was refuted in a more recent study

that showed that a double mutant defective in p-coumaroyl

shikimate 3’-hydroxylase (showing reduced lignin biosynthesis)

and chalcone synthase (unable to synthesize flavonoids)

showed similar growth to the single p-coumaroyl shikimate

3’-hydroxylase mutant (Li et al., 2010).
The challenge of manipulating the flavonoid pathway in

order to affect rhizosphere biology will involve more

detailed information on the regulation of flavonoid trans-

port and exudation than is currently available. While some

flavonoid transporters are known, to the authors’ knowl-

edge none has definitively been demonstrated to be specific

for exudation of flavonoids into the rhizosphere. Increased

exudation of specific flavonoids into the rhizosphere would
involve (i) alteration of specific branches of the flavonoid

pathway to overexpress, newly express, or inhibit synthesis

or to alter glycosylation; (ii) up-regulation of flavonoid

exudation; and (iii) coupling of altered expression to

rhizosphere signals that would specifically induce the de-

sired pathways. The latter would require detailed knowledge

of promoters and transcription factors that are specific for

flavonoid induction by the correct trigger (Grotewold,
2008). Since flavonoid storage is compartmentalized within

the cell and between different cell types (Fig. 2), altering

flavonoid synthesis without control of their final destination

could result in storage of flavonoids in the vacuole without

release or release from the wrong region of the root where

the target microorganisms are not found. For example,

rhizobia only infect roots close to the root tip so flavonoid

exudation would be most effective in that region.
As an alternative to genetic manipulation of the flavonoid

pathway, it will be useful to exploit the huge diversity of

flavonoids synthesized in different plant species (Dakora,

1995). As described above, the selection of intercropping

plants producing Striga-inhibiting flavonoid exudates is one

example that has shown success in making actual improve-

ments to crop yields for farmers in sub-Saharan Africa.
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