
SpEclAL sumid

THE ROLE OF FRAME-BASED

REPRESENTATION IN REASONING

A frame-based representation facility contributes to a knowledge system’s
ability to reason and can assist the system designer in determining strategies
for controlling the system’s reasoning.

RICHARD IFIKES and TOM KEHLER

A fundamental observation arising from work in artifi-
cial intelligence (AI) has been that expertise in a task
domain requires substantial knowledge about that do-
main. The effective representation of domain knowl-
edge is therefore generally considered to be the key-
stone to the success of AI programs [15] (see Figure 1).

Domain knowledge typically has many forms, including
descriptive definitions of domain-specific terms (e.g.,
“power plant,” “pump, ” “flow,” “pressure”), descriptions
of individual domain objects and their relationships to
each other (‘e.g., “Pl is a pump whose pressure is 230
psi”), and criteria for making decisions (e.g., “If the
feedwater pump pressure exceeds 400 psi, then close
the pump’s input value”). Because of this emphasis on
representatbon and domain knowledge, systems that use
AI techniqules to achieve expertise are often referred to
as knowledge-based systems, or simply as knowledge
systems.

In order for a knowledge system to use domain-
specific knowledge, it must have a language for repre-
senting that knowledge. The basic criteria for a knowl-
edge representation language are the following:

l Expressive power-Can experts communicate their
knowledge effectively to the system?

l Understan(dability-Can experts understand what the
system knows?

. Accessibility-Can the system use the information it
has been given?

Experience has made it increasingly clear that none
of the major knowledge representation languages is by
itself able to satisfy all of these criteria. Early attempts
at building intelligent systems used the first-order pred-

@ 1985 ACM OOOl-0782/85/0900-0904 756

904 Communications of the ACM

icate calculus as their representation language (e.g.,
[lo]). The predicate calculus was appealing because of
its very general expressive power and well-defined se-.
mantics. However, because the language constructs are
very fine grained and do not provide adequate facilities
for defining more complex constructs, domain experts
have difficulty using the predicate calculus or under-
standing knowledge expressed in it. Also, the generalilty
of the predicate calculus has been a significant barrier
to the development of effective deduction facilities for
using knowledge expressed in it.

These difficulties helped motivate the development
of “semantic networks” (e.g., [ll]), and various “object-
oriented” representation languages based on frames (e.g.,
[2,4]). Frame languages provide the knowledge-base
builder with an easy means of describing the types of
domain objects that the system must model. The de-
scription of an object type can contain a prototype de-
scription of individual objects of that type; these proto-
types can be used to create a default description of an
object when its type becomes known in the model.

A frame provides a structured representation of an
object or a class of objects. For example, one frame
might represent an automobile, and another a whole
class of automobiles (see Figure 2). Constructs are avail-
able in a frame language for organizing frames that
represent classes into taxonomies. These constructs al..
low a knowledge-base designer to describe each class as
a specialization (subclass) of other more generic classes.
Thus, automobiles can be described as vehicles plus a
set of properties that distinguish autos from other kinds
of vehicles.

The advantages of frame languages are considerable:
They capture the way experts typically think about

September 1985 Volume 28 Number 9

Special Section

much of their knowledge, provide a concise structural
representation of useful relations, and support a concise
definition-by-specialization technique that is easy
for most domain experts to use. In addition, special-
purpose deduction algorithms have been developed
that exploit the structural characteristics of frames to
rapidly perform a set of inferences commonly needed
in knowledge-system applications,

In addition to encoding and storing beliefs about a
problem domain, a representation facility typically per-
forms a set of inferences that extends the explicitly
held set of beliefs to a larger, virtual set of beliefs. Thus,
the representation facility participates in the system’s
reasoning activities by providing these “automatic” in-
ferences as part of each assertion and retrieval opera-
tion. Frame languages are particularly powerful in this
regard because the taxonomic relationships among
frames enable descriptive information to be shared

Behavior
descriptions

among multiple frames (via inheritance) and because the
internal structure of frames enables semantic integrity
constraints to be automatically maintained.

One of the basic tenets of knowledge-system technol-
ogy is that domain knowledge can be more effectively
used by a system and more easily understood by a
system’s users if it is represented in declarative rather
than procedural form. Frame systems, however, pro-
vide no direct facilities for declaratively describing how
the knowledge stored in frames is to be used. Tradition-
ally, the only way of associating domain-dependent be-
havior with frames has been by attaching to them in
various ways procedures written in the underlying pro-
gramming language (e.g., LISP) (as in, for example,
KL-ONE [4] and KRL [Z]). Additional facilities are
needed in such systems for declaratively describing
domain-dependent inference rules, analysis decision
rules, actions that can be taken in the domain by

I \.

Vocabulary
definitions

Processes

Objects
and

relationships

Knowledge
base M Constraints

A A I I

I I
/1 Unce&ain]

1 1

I I

Disjunctive
facts

Expertise in a task domain usually draws on many diierent
kinds of knowledge about that domain. The representation and
reasoning facilities in Al systems must be able to integrate

different kinds of knowledge into a coherent knowledge base
that can effectively support the system’s activities.

FIGURE 1. The Kinds of Knowkdge That Can Go into a Knowledge Base

September 1985 Volume 28 Number 9 Communications of the ACM 905

Special Section

AGENTS -- PEOPLE
6

,hlEN-=:::I FE:

-0DCTDRS
\LAWYERS

BUILDINGS

PHYSICAL .DB.cECTS STATUES
JHlNGS.OWNED.BYJ'ALJL--,__

-.__

e

SEDANS------CAR2 .
AUTDMDBUmES -COUPES

PRODUCTS - VEHICLES
STATIDN.WAGGNS

TRUCKS<
HUGE .GREY .TRUCKS - - - = = - TRUCK 1
BlG.NDNJIED.TRUCKS

\ BOATS

ransportatiof~
Superclasses : WEHlCLES
Subclasses : STATIDN.WAGGNS, COUPES, SEDANS
Member of: (CLASSES in)1B GENERKXJNIJS)

iji trmsportation

j$ Member of: SEDANS II .!: -

iii OwnSlot: cam from PtwsIcM.cmscTs
::: I nher i tance : DWERRlDE.WALUES

emberslot: *COLOR from PHYSlCM.OBJECTS
Inheritanlce: DWERRlDE.WALlJES
Cardinality.Wax: 1
Values: Ulnknown

emberslot: *HEIGHT from PHYSlCAL.DBJECJS
Inheritance: DWERRlDE.WMUES
ValueClass: INTEGER
Cardinality.Min: 1
Cardinalizy.Max: 1
Conrent: ‘Height in inches.’
Values : Ul?known

SmberSlot : “LENGTH f r on PHYSICAL.DB.fECTS
Inheritance : OWERRKlE.WALlJES
ValueClass: RlTEGER
Cardinality.Yin: 1
Cardinality.Wax: 1
Cornrent: ‘Length in inches’
Values: Unknown

Values: Unknown

OwnSlot: HEIWIT fron PHYSlCM.OBJECTS
Inheritance : OWERRlDE.WALUES
ValueClass: NTEGER
Cardinality.Yin: 1
Cardinality.lOax: 1
Comment: ‘Height in inches.’
Values: Unknown

OwnSlot: LENGTH from PHYSlCM.OBJECTS
I nher i tance : OWERRKXWALUES
ValueClass: NTEGER
Cardinality.Win: 1
Cardinality.Uax: 1
Comment: ‘Length in inches’
Values: Unknown

OwnSlot: LOCATKIN fror PHYSlCM.GBJECTS
Inheritance: OWERRU3E.WMlJES

?IrberSlot: %OCATlON from PHYSIcM.UBJECTS
Inheritance: OWERRlOE.WMlJES
Cardinality.Min: 1
Cardinalizy.Max: 1
Values : Unknown

t:l
Cardinality.Min: 1

$ Cardinality.Max: 1
Values: Unknown

OwnSlot: OWNER from PHYSlCM.OBZCTS
Inheritance: DWERRlDE.WMUES
ValueClass: AGENTS

Frames provide structured representations of objects or

classes of objects. The AUTOMOBILES frame shown here

(lower left) represents the class of all automobiles. and the

CARP frame 8(lower right) represents a specific automobile that
is a member of that class. Frames allow classes to be

described as specializations of other more generic classes and

for those descriptions to be organized into taxonomies. Thus,

automobiles can be described as vehicles plus a set of

properties that distinguish autos from other kinds of vehicles.

The transportation taxonomy shown here (top) uses solid
lines to represent class-subclass relationships and dashed

lines to represent class-member relationships. For example,
VEHICLES isa subclass ofboth PHYSICAL.• BJECTS and

PRODUCTS, and TRUCK 1 is a member of both
HUGE.GREY.TRUCKSalIdTHINGS.OWNED.BY.PAUL.

906 Communications of the ACM September 1985 Volume 28 Number 9

FIGURE 2. A Frame Taxonomy

Special Section

various agents, simulations of object behavior, etc.
The most popular and effective representational form

for declarative descriptions of domain-dependent be-
havioral knowledge in knowledge systems has been
pattern/action decision rules, called production rules
(e.g., [6, 71). Production rules are, in effect, a subset of
the predicate calculus with an added prescriptive com-
ponent indicating how the information in the rules is to
be used during reasoning. Production rules can be eas-
ily understood by domain experts and have sufficient
expressive power to represent a useful range of
domain-dependent inference rules and behavior speci-
fications. By themselves, however, production rules do
not provide an effective representation facility for most
knowledge-system applications. In particular, their ex-
pressive power is inadequate for defining terms and for
describing domain objects and static relationships
among objects.

The major inadequacies of production rules are in
areas that are effectively handled by frames. A great
deal of success, in fact, has been achieved by integrat-
ing frame and production rule languages to form hybrid
representation facilities that combine the advantages of
both component representation techniques (e.g.,
LOOPS8 [18], KEE” (Knowledge Engineering Environ-
ment@) [12], and CENTAUR [l]). These systems have
shown how a frame language can serve as a powerful
foundation for a rule language. The frames provide a
rich structural language for describing the objects re-
ferred to in the rules and a supporting layer of generic
deductive capability about those objects that does not
need to be explicitly dealt with in the rules. Frame
taxonomies can also be used to partition, index, and
organize a system’s production rules. This capability
makes it easier for the domain expert to construct and
understand rules, and for the system designer to control
when and for what purpose particular collections of
rules are used by the system.

Although a primary motivation for Minsky’s intro-
duction of frames [a] was to semantically direct the
reasoning of scene-analysis systems, most of the subse-
quent work on frame-based systems (e.g., KRL [2],
UNITS [Ii’], and KL-ONE [4]) has focused on structural
representation issues rather than on the control of rea-
soning. The information stored in frames has often been
treated as the “database” of the knowledge system,
whereas the control of reasoning has been left to other
parts of the system. This focus on structural representa-
tion issues has helped to elucidate the semantics of the
common frame constructs and to demonstrate their
usefulness for organizing and storing knowledge (e.g.,
[5]). Little attention, however, has been paid to
whether and how those constructs can be useful for
controlling reasoning.

Recent experience with frame-based representation
facilities in complex application domains has shown
that frames can play an important role throughout the

LOOPS is a trademark of Xerox Corporation.
KEE and Knowledge Engineering Environment are trademarks of IntelliCorp.

system, including in the control of reasoning compo-
nents. For example, the structural features of frame
languages have proved to be very useful for organizing
and controlling the behavior of large collections of pro-
duction rules. These uses of frames are our central
theme in this article. We elaborate the various ways in
which a frame-based representation facility participates
in a knowledge system’s reasoning functionality and
can assist the system designer in determining strategies
for controlling a system’s reasoning.

COMPONENTS OF A FRAME-BASED

REPRESENTATION FACILITY
In this section we summarize the basic components of a
typical frame-based representation facility in order to
indicate the salient features of frame systems and to
provide a context for the discussions in subsequent sec-
tions. The facility described is a component of the KEE
system [12]. In order to highlight the role that a frame-
based representation facility plays in the reasoning of a
knowledge system, our description explicitly distin-
guishes between the semantic interpretation of frame
language constructs (e.g., that a MemberOf link be-
tween frames M and C denotes the proposition that the
object represented by M is a member of the class repre-
sented by C), and the reasoning services that are typi-
cally provided by a frame-based representation facility
(e.g., that when a MemberOf link is created between
frames M and C, the default description in C of mem-
bers of the class represented by C is added to M).

Structural Features

Taxonomy Descriptions. The frame-based representa-
tion language included in the KEE system provides typ-
ical frame language constructs for describing individu-
als and classes of individuals in an application domain
(see Figure 3). Each individual or class is represented
by a frame.’ Frames can be organized into taxonomies
using two constructs that represent relationships be-
tween frames: member links, representing class member-
ship, and subclass links, representing class containment
or specialization. These links provide two standard in-
terpretations of the meaning of “is-a” links, as in “A
truck is a vehicle” and "TRUCK 1 is a truck.” (See [3] for
a discussion of the variety of interpretations of “is-a” in
frame systems.)

Frames can incorporate sets of attribute descriptions
called slots. A distinguishing characteristic of frame-
based languages is that a frame representing a class can
contain prototype descriptions of members of the class
as well as descriptions of the class as a whole. In the
KEE system, prototype descriptions are distinguished
from other descriptive information by the use of two
kinds of slots, own slots and member slots. Own slots can
occur in any frame and are used to describe attributes
of the object or class represented by the frame. Member

‘Some systems use other terms for what we are calling frames. For example.
frames are called units in the KEE system and concepts in KL-ONE. We use the
single generic term “frame” in all cases here for consistency.

September 1985 Volume 28 Number 9 Communications of the ACM SO7

Special Section

Frame: TRUCKS In knowledge base TRANSPORTATION
Superclasses: VEHICLES
Subclasses : BIG.NON.RED.TRUCKS, HUGE.GREY.TRUCKS
MemberOf: CLASSES.OF.PHYSICAL.OBJECTS

MemberSlot : HEIGHT from PHYSICAL.OBJECTS
Val.ueClass: INTEGER
Cardina1ity.MI.n: 1
Cardlnality.Max: 1
Units : INCHES
Comment : *Height in inches."
Val.ues: Unknown

MemberSlot : LENGTH from PWSICAL.OBJECTS
ValueClass: NUMBER
Cardinality.Min: 1
Cardinallty.Max: 1
Units : METERS
Comment: *Length in meters*
Values: Unknown

OwnSlot: LONGEST from CLASS.OF.PHYSICAL.OBJECTS
ValueClass: TRUCKS
Cardina1ity.MI.n: 1
Cardinallty.Max: 1
Comment: "The longest known truck*
Values: Unknown

OwnSlot: TALLEST from CLASS.OF.PHYSICAL.OBJECTS
ValueClass: TRUCKS
Cardinallty.Mln: 1
Cardinali.ty.Max: 1
Comment: "The tallest known truck'
Values: Unknown

This frame describes class TRUCKS as a subclass of class
VEHICLES and as a member of class

CLASSES.• F.PHYSICAL.OUJECTS. Memberslotsinthe

TRUCKS framelike LENGTH and HEIGHT providea

prototype description of each class member. Own slots like
LONGEST and TALLEST describe attributes of the class as

a whole.

FIGURE 3. The TRUCKS Frame

908 Communications of the ACM September 1985 Volume 28 Number 9

Special Section

slots can occur in frames that represent classes and are guage data-type specification. The KEE system provides

used to describe attributes of each member of the class, a knowledge base containing class frames for standard

rather than of the class itself. For example, a frame data types (e.g., INTEGERS, STRINGS). The class
representing the TRUCKS class might have own slots for frames in that knowledge base are available for inclu-
LONGEST and HEAVIEST, and member slots for sion in value-class specifications. For example, one
LENGTH and WEIGHT. Member slots allow class frames could specify that a value must be any integer in the

to play a role in knowledge bases similar to that of range 0 to 100 except 23 or 36 with the value class
schemas in relational databases.

Frames representing classes may have slots whose
values specify collections of subclasses that form dis-
joint decompositions or exhaustive decompositions of
the class (e.g., to specify that a vehicle cannot be both a
truck and a station wagon, or that all adults are either
men or women). The semantics of these decomposition
slots is considered to be part of the definition of the
frame language. Thus, domain-independent methods
can be included in a frame system for reasoning about
decompositions.

Attribute Descriptions. An important source of the ex-
pressive power of frame-based languages is the facilities
they provide for describing object attributes. For exam-
ple, a frame representing a truck might include descrip-
tions of the truck’s height, length, and owner. These
facilities allow frames to include partial descriptions of
attribute values, and help preserve the semantic integ-
rity of a system’s knowledge base by constraining the
number and range of allowable attribute values.

Slots in most frame systems, including KEE, can have
multiple values (to provide appropriate support for at-
tributessuchas COUSIN, WHEEL, and VICEPRESI-
DENT) and a set of properties, which we are calling
facets. Several frame systems, including KEE, have
built-in facets for representing constraints on the num-
ber of possible values an attribute can have and for
indicating the classes to which each value must belong.
For example, the frame representing a person “John”
could specify that John’s SISTER slot has three values,
each of whom is a doctor, without identifying the
sisters.

In the KEE system, two facets, CardinalityMin
and CardinalityMax, have been provided for con-
straining the number of values for an attribute repre-
sented by a slot. A CardinalityMin value of m indi-
cates that the corresponding attribute has at least m
distinct values; a CardinalityMax value of n indi-
cates that the corresponding attribute has at most n
distinct values.

The ValueClass facet of a slot can be used to de-
scribe the classes to which each value of the slot be-
longs. The value of the ValueClass facet of a slot can
be a Boolean combination of class descriptions; for in-
stance,

(INTERSECTION MEN
(UNION DOCTORS LAWYERS)
(NOT.ONE.OF FRED))

(INTERSECTION INTEGERS
(INTERVAL 0 100)

(NOT:ONE.OF 23 36)).

The system’s functions for adding slot values to a
knowledge base use the slot’s value-class and cardinal-
ity specifications as constraints that must be satisfied
by any new value. Value-class and cardinality specifi-
cations also provide effective partial descriptions of un-
known slot values, including the representation of a
useful class of disjunctions and negations. For example,
the UNION and ONE. OF value-class constructs can be
used to express disjunctive information about the val-
ues of a slot, the NOT. IN and NOT. ONE. OF constructs
can be used to express negative information, and a
CardinalityMax value of 0 can be used to indicate
that the slot has no values.

Behavioral Properties
Although frame languages provide no specific facilities
for declaratively describing behavior, they do provide
various ways of attaching procedural information ex-
pressed in some other language (e.g., LISP) to frames
(see Figure 5). This procedural attachment capability
enables behavioral models of objects and expertise in
an application domain to be built. It also provides a
powerful form of object-oriented programming whereby
objects represented by frames can respond to messages.

The KEE system supports two standard forms of pro-
cedural attachment: methods and active values. Methods
are LISP procedures, attached to frames, that respond to
messages sent to the frames. Methods are stored as the
values of slots that have been identified as message re-
sponders. Messages sent to frames specify the target
message-responder slot and include any arguments
needed by the method stored at the slot. Active values
are procedures or collections of production rules at-
tached to slots that are invoked when the slot’s values
are accessed or stored. Thus, they behave like “de-
mons,” monitoring changes and uses of the values.
They can also be used to dynamically compute values
on a “when-needed” basis. Methods and active values
are typically written to apply to any member of a class
of objects and are included by the knowledge-base de-
signer in the class description as part of the prototype
description of a class member.

Reasoning Services
A frame-based representation facility extends the sys-
tem’s exnlicitlv held set of beliefs to a larger. virtual set . d Y

designates a man who is either a doctor or a lawyer, of beliefs by automatically performing a set of infer-
but is not Fred (see Figure 4). The value-class specifica- ences as part of its assertion and retrieval operations.
tion is a generalization of a standard programming lan- These inferences, based on the structural properties of

September 1985 Volume 28 Number 9 Communications of the ACM 909

Special Section

Unit: TRUCK1 in knowledge base TRANSPORTATION
Member : THINGS.OWNED.BY.PAUL, HUGE.GREY.TRUCKS

ownsl.ot : OWNER
Valueclass: MEN (UNION DOCTORS LAWYERS)

(NOT. ONE. OF FRED)
AGENTS

Cardlnallty.Max: 1
Values : PAUL

ownSl.ot : WHEELS from HUGE.GREY.TRUCKS
Cardinallty.Min: 16
Comment: ‘The vehicle’s wheels’
Values: Unknown

The facilities provided by frame languages for describing object
attributes help preserve the semantic integrity of a system’s
knowledge base by constraining the number and range of
allowable amibute values. For example, the frame shown here,
which represents a truck, specifies (by means of the

Cardinality . Min facet of the WHEEL slot) that the truck
must have at least 16 wheels and (by means of the
Valueclass facet of the OWNER slot) that its owner must
be a man who is either a doctor or a lawyer and not Fred.

FIGURE 4. The TRUCK 1 Frame

frames and taxonomies, can often play a major role in
the overall reasoning of a knowledge system. Because
they are “wired in” to the representational machinery
and have a limited scope, they are much faster than
general deduction methods, such as logic theorem prov-
ers or production rule interpreters.

Some of these inference methods perform what is
commonly known as inheritance. If the PHYSICAL.
OBJECTS frame has a subclass link to the VEHICLES
frame, for example, and the VEHICLES frame has a
subclass link to the AUTOS frame, the representation
facility will “retrieve” the belief that AUTOS is a sub-
class of PHYEIICAL. OBJECTS without recourse to
other reasoning mechanisms.

Other automatic inference methods use constraints
such as value-class and cardinality specifications to de-
termine whether a given item could be a value of a
given slot. For example, when a value is being added to
a slot, the value is rejected if the slot already contains
the maximum number of permitted values or if the
value is not a member of the slot’s value class.

Inheritance. The assertion and retrieval mechanisms
for frame-based languages use the member links, sub-

class links, and prototype descriptions of class members
to augment the descriptive information in a frame. Any
frame can have a member link to one or more class
frames (e.g., to represent that TRUCKI is a member of
both TRUCKS and THINGS.OWNED.BY.PAUL).A

frame is said to inherit the member slots of the class
frames to which it has member links. Those inherited
slots become own slots of the member frame, since they
represent attributes of the member object itself. For
example, the TRUCKS frame would acquire two own
slots, LENGTH and WEIGHT, from the frame for
TRUCKS.

Class frames (i.e., frames that represent classes) can
also have subclass links to one or more other class
frames (e.g., to represent that TRUCKS is a subclass of
both VEHICLES and PRODUCTS). Since every member
of a subclass is also a member of the superclass, a sub-
class frame inherits the member slots of its superclass
frames as additional member slots. For example, if the
PHYSICAL.OBJECTS frame has member slots LENGTH

and WEIGHT, and the VEHICLES frame has a subclass
linktothe PHYSICAL.OBJECTS frame,then LENGTH

and WEIGHT become member slots of the VEHICLES

frame as well.

910 Communications of the ACM September 1985 Volume 28 Number 9

Special Section

The KEE system also considers a class to be a describ- ing whether a slot’s value-class and cardinality specifi-
able object. Thus, the frame for a class can indicate the cations exclude a given item from being a value of the
classes to which that class itself belongs. Like any other slot. An item is excluded if the slot already has its
frame, a class frame inherits own slots from the frames maximum number of allowable values or if the item is
that represent the “classes of classes” to which the not a member of the slot’s value class. These proce-
class belongs. For example, VEHICLES might be a dures can be called directly by the user. They are
memberofclass PHYSICAL.~BJECT.TYPES. The called by the system whenever a slot’s values, value-
PHYSICAL.• BJECT.TYPES framemightincludethe class specifications, or cardinality specifications are
member slots LONGEST and HEAVIEST, which would changed. Calls by the system cause an error to be gen-
thus become own slots of the VEHICLES frame. erated if a constraint is violated.

Value Class and Cardinality Reasoning. A frame system
considers value-class and cardinality specifications as
constraints on the legal values of a slot. The system
provides constraint checking procedures for determin-

The value-class constraint checking procedures un-
derstand the semantics of basic set theory operators and
numerical intervals. The primitive test of whether a
given item is in a class represented by a frame is per-
formed by sending a message to the frame; thus each

Unit: TRUCKS in knowledge base TRANSPORTATION
Superclasses: VEHICLES
Subclasses : BIG.NON.RED.TRUCKS, HUGE.GREY.TRUCKS
Member: CLASSES.OF.PHYSICAL.OBJECTS

MemberSlot: DIAGNOSE from TRUCKS
Inheritance: METHOD
ValueClass: METHODS
Cardinality.Min: 1
Cardi.nality.Max: 1
Comment: 'A method for diagnosing electrical faults:
Values: TRUCK.DIAGNOSIS.FUNCTION

MemberSlOt : ELECTRICAL.FAULTS from TRUCKS
Comment: 'Faults found by the DIAGNOSIS method"
Values: Unknown

MemberSlot: LOCATION from PHYSICAL.OBJECTS
Cardina1ity.Ml.n: 1
Cardlnallty.Max: 1
Values: Unknown
ActiveValues: UPDATE.LOCATION

Procedural information can be attached to frames in various
ways. For example, ti value of the DIAGNOSE slot in the
TRUCKS frame is a method (i.e., function) for diagnosing
electrical faults. The slot and method are inherited by the
frames that represent individual trucks and enable each, of
them to respond to DIAGNOSE messages by calling ths
method. In addition, “demons” in ths form of functions or
collections of production rules can be attached to slots so that

they are automatically invoked when the slot’s values are
accessed or stored. For example, a demon is attached to the
LOCATION slot of the TRUCKS frame (by means of the
ActiveValues facet) t0 Updab a geOgraphiCal map being
displayed by the system whenever the slot’s value changes.
The slot and its attached demon are inherited by the frames
that represent individual trucks, so that the current location
of every truck is displayed on the map.

FIGURE 5. Procedural Information in the TRUCKS Frame

September 1985 Volume 28 Number 9 Communications of the ACM 911

Special Section

class in a knlowledge base can have its own member-
ship test (e.g., for INTEGERS). The frame can respond
yes, no, or unknown. A default method is supplied that
looks at explicit membership links and decomposition
specifications.

FRAMES A!; A FOUNDATION FOR

PRODUCTION-RULE SYSTEMS
A frame-based representation facility can serve as an
important component in the design of a production-rule
language and the reasoning facilities that interpret
rules. The frame facility supplies an expressively pow-
erful language for describing the objects being reasoned
about by the rules and automatically performs a useful
set of inferences on those descriptions. In addition,
frames can be used to represent the rules themselves.
When each rule is represented as a frame, rules can
easily be grouped into classes, and the description of
a rule can include arbitrary attributes of the rule. For
example, a frame representing a rule could have an
EXTERNAL. FORM slot containing the rule as the user
wrote it, and a PARSE method for converting the rule
into an inter:nal form consisting of lists of expressions
that are values of the slots CONDITIONS, CONCLU-
SIONS , and ACTIONS. Other slots that provide descrip-
tions, such as rationalizations for the rule, records of
usage, and goals the rule is useful for achieving, could
be included in the frame at the user’s or designer’s
discretion.

The architecture of the production-rule facility in the
KEE system illustrates many of these points. Each rule
is represented as a frame, and the facility uses a simple
predicate logic language for representing a rule’s condi-
tions and conclusions. The predicates of the language
reflect the relationships that can be represented in the
frame langualge; for instance, class membership
(IN. CLASS)!. the minimum cardinality of an own slot
(OWN. MIN. CARD), and being the value of an own slot
(OWN. VALUE:). The rule designer therefore has full ac-
cess to the frame language through these predicates. In
addition, the language allows any LISP function to be a
predicate, so that an arbitrary computation can be used
to determine the truth value of a rule condition.

Consider, for example, the KEE system production
rule shown in Figure 6. This rule states that trucks
weighing more than 10,000 pounds, having at least 10
wheels, and having a color other than red are members
of the class EIG. NON. RED. TRUCKS. The rule is rep-
resented in the KEE system as a frame and is parsed by
a method attached to the frame. The parser translates
the rule’s conditions and conclusions into the logic lan-
guage described above. The rule’s internal form corre-
sponds to

(IF (AND (IN.CLASS ?X TRUCKS)
(OWN-VALUE WEIGHT ?X ?WT)
(GREATERP ?WT 10000)

(OWN.MIN.CARD WHEELS ?X 10)

(NOT (OWN-VALUE COLOR ?X RED)))

THEN (IN-CLASS ?X BIG.NON.RED.TRUCKS).

Suppose that a knowledge base is constructed as fol-

lows:PHYSICAL.OBJECTSis definedasaclassofob-
jects each of which has a color attribute with at most
one value (Figure 7a); TRUCKS is defined as a subclass
ofphysical objects (Figure 7b); HUGE. GREY. TRUCKS is
defined as a subclass of TRUCKS the members of which
have color grey and.at least 16 wheels (Figure 712); and
TRUCK 1 is defined as a huge grey truck weighing
15,000 pounds (Figure 7d). Note that the TRUCKS frame
inherits all the member slots ofthe PHYSICAL.OBJECTS

frame, that the HUGE. GREY. TRUCKS frame inherits all
the member slots of the TRUCKS frame, and that the
TRUCK 1 frame inherits all the member slots of the
HUGE.GREY.TRUCKS frame as own slots.

Given this knowledge base, consider using the exam-
ple production rule to show that (IN. CLASS TRUCK 1
BIG.NON.RED .TRUCKS), thatis,that TRUCKI isabig
nonred truck. The rule interpreter queries the knowl-
edge base about each condition of the instantiated rule
in turn, and the queries are processed by the frame
representation facility.

Thefirstcondition, (IN.CLASS TRUCK1
TRUCKS) , is retrieved by the frame system as being
true, even though there is no explicit class membership
link between TRUCK I and TRUCKS. The second condi-
tion, (OWN.VALUE WEIGHT TRUCK1 ?WT), involves
a simple slot value lookup and bounds the variable WT
to a limit of 15,000. The third condition, (GREATERP

?WT 7 0000) , can then be evaluated by calling the
LISP function GREATERP. The fourth condition,
(OWN.MIN.CARD WHEELS TRUCK1 lO),isinferred
to be true by the frame system by means of both an
inheritance to obtain the MIN. CARD restriction on
TRUCK 1 's WHEELS slot and the deduction that if a slot
has at least 16 values then it also has at least 10 values.
Finally, the last condition of the rule, (NOT
(OWN.VALUE COLOR TRUCK1 RED)), fdows from
theinherited MAX-CARD of 1 and VALUE of GREY~~~

TRUCK'S COLOR slot. When the rule is applied,
(IN.CLASS TRUCK1 BIG.NON.RED.TRUCKS)iseS-

serted, causing a member link to be created between
TRUCK land BIG.NON.RED.TRUCKS. The creationoqf
this link causes the TRUCK I frame to inherit the values
and facets of the member slots of the BIG. NON. RED.

TRUCKS frame.
Application of this rule to conclude that TRUCK 1 is a

big nonred truck involves reasoning about subclass re-
lationships, cardinality constraints, and inherited slot
values, all of which is done by the frame system. Thus,
we see that a significant portion of the reasoning in-
volved in reaching this conclusion is done automati-
cally by the frame system in support of the one
domain-dependent rule supplied by the user.

USING FRAMES TO MANAGE
RULE-BASED REASONING
As the number of production rules in a knowledge sys
tern grows, it becomes more difficult for a system de-
signer to understand the interactions among the rules,
to debug them, and to control their behavior. Produc-
tion rules, like conventional programs, need to be
organized into small, easily managed modules. A

912 Communications of fhe ACM September 1985 Volume 28 Number 9

Special Section

Unit: BIG.NON.RED.TRUCKS.RULE in Knowledge base TRANSPORTATION

Member : TRUCK.CLASSIFICATION.RULES

OwnSlot: ACTION from RULES

Inheritance: UNION

Values: Unknown

OwnSlot: ASSERTION from BIG.NON.RED.TRUCKS.RULE

Inheritance: UNION

ActIveValues: WFFINDEX

Values: IWff:(?X IS IN CLASS BIG.NON.RED.TRUCKS)

OwnSlot: EXTERNAL.FORM from BIG.NON.RED.TRUCKS.RULE

Inheritance: SAME

ValueClass: LIST

ActIveValues : RULEPARSE

Values: (IF ((?X IS IN CLASS TRUCKS)
AND
(GREATERP (THE WEIGHT OF ?x>

10000>
AND
(?X HAS AT LEAST 10 WHEELS)
AND
(NOT ~-HE COLOR OF ?x IS RED)))
THEN
(7X IS IN CLASS BIG.NON.RED.TRUCKS))

OwnSlot: PARSE from RULES

Inheritance: METHOD

ValueClass : METHODS

Values: DEFAULT.RULE.PARSER

OwnSlot: PREMISE from BIG.NON.RED.TRUCKS.RULE

Inheritance: UNION

ActiveValues : WFFINDEX

Values: IWff:(?X IS IN CLASS TRUCKS)
IWff:(THE WEIGHT OF ?X IS ?VAR29)
jWff:(GREATERP ?VAR29 10000)
IWff:(?X HAS AT LEAST 10 WHEELS)
IWff:(NOT (THE COLOR OF ?X IS RED))

Using frames to represent production rules allows rules to be has an EXTERNAL. FORM slot that contains the rule as
grouped into classes and to include additional descriptive the user wrote it, and a PARSE method that converts the rule
information as frame slots. For example, the frame shown here into an internal form consisting of lists of expressions that are
represents a rule for identifying “big nonred trucks.” The frame Vab3SOf thePREMISE, ASSERTION,WldACTIONSlOtS.

FIGURE 6. A Predustian Rule Represented by a Frame

September 1985 Volume 28 Number 9 Communications of the ACM 913

Special Section

Frame : PHYSICA.L.OBJECTS
Superclasses: . . .
Subclasses: . . .
MemberOf: . . .

MemberSlot: COLOR
Valueclass: . . .
Cardlnallty.Hin: 1
Cardinality.Max: 1

(a) PHYSICAL OBJECTS is a class of objects having at most one color each.

Frame : TRUCKS
Superclasses : PBYSICAL.OBJECTS
Subclasses: . . .
MemberOf: . . .

MemberSlot: WHEELS
Valueclass: . . .
Cnrdinallty.Mln: 4

(b) TRUCKS isasubclassof PHYSICAL OBJECTS.

A frame-bmed representation facility extends a system’s
explicitly held set of beliefs to a larger, virtual set of beliefs by
automaticadly performing a set of inferences as part of its
assertion a& retrieval operations. These inferences, which

are based on the structural propertiis of frames and
taxonomies, can often play a major role in the overall
reasoning of a knowledge system. For example, the

914 Communicati,wzs of the ACM

FIGURE 7. A De&ctive Rebieval

September 1985 Volume 28 Number 9

Special Section

--

Frame : HUGH.GREY.TRUCKS
Superclasses: TRUCKS
Subclasses: . . .
MemberOf: . . .

MemberSlot: COLOR from PHYSICAL.OBJECTS
ValueClass: . . .
Cardlnality.Min: . . .
Cardinallty.Max: . . .
Values: GREY

MemberSlot: WHEELS from TRUCKS
ValueClass: . . .
Cardlnallty.Min: 16

(c) HUGE. GREY . TRUCKS is a subclass of TRUCKS, the members of which have color grey and at least 16 wheels.

Frame : TRUCK1
MemberOf : HUGE.GREY.TRUCKS

ownslot : WEIGHT
Values: 15,000

--

(d) TRUCK 1 is a huge grey truck weighing 15,000 pounds.

information in the four frames shown here would be used in by the frame system’s retrieval facilities during the rule appli-

applying the production rule shown in Figure 6 to conclude cation include the belief that TRUCK 1 is a truck, that it has at

that TRUCKS is a big nonred truck. The virtual beliefs derived least 10 wheels, and that its color is not red.

FIGURE 7. A Deductive Retrieval

September 1985 Volume 28 Number 9 Communications of the ACM 915

Special Section

frame-based representation facility can provide signifi-
cant help with this rule-manqement task by providing a
means of organizing and indexing modular collections
of production rules according to their intended usage.

For example, a system designer might want to specify
a collection of rules for diagnosing faults in the electri-
cal systems of trucks. The intended purpose of the rules
is well defined, and the designer wants a natural means
of grouping them together and specifying when they
are to be invoked. A frame-based system like KEE pro-
vides the desired capability by allowing designers to
group the rules together into a class and associate the
class with the frame representing the trucks class. The
rules can then be invoked as a group whenever the
system is performing a diagnostic task on a particular
truck.

The rules (could be associated with the trucks class in
several ways. TRUCKS, the frame representing the
trucks class, could have a member slot DIAGNOSE con-
taining a method that invokes the rule class. That slot
(with its method) would be inherited by all frames rep-
resenting trucks, so that the rule class would be in-
voked whenever any truck was sent a DIAGNOSE

message. Alternatively, the rule class could be at-
tached as an active value to a member slot named
ELECTRICAL. FAULTS in the TRUCKS frame. This ac-
tive value would be inherited by all frames represent-
ing trucks and would be invoked whenever the value
of the ELECTRICAL. FAULTS slot was requested for
any truck.

Let us consider the system architecture for two types
of diagnostic problems to see how frames can play an
important role in managing a system’s rule-based
reasoning.

Classification of Situations
Knowledge systems have proved to be particularly ef-
fective for performing diagnostic tasks in a variety of
domains (e.g., medicine [I, 161). Such tasks involve de-
termining a ‘description of a given situation in terms of
the types of situations the system knows about. Frame
languages have several representational features that
are particula.rly useful for designing and directing the
reasoning processes that are involved in such diagnostic
tasks.

First, the prototype descriptions included in class def-
initions provide a declarative means of specifying crite-
ria for class membership. Also, because class descrip-
tions are organized into taxonomies, each prototype
need contain only those features that distinguish mem-
bers of its class from arbitrary members of more general
superclasses. An effective way to proceed, in fact, is to
use a class-subclass taxonomy containing prototype de-
scriptions of class members as a discrimination net for
successively refining the classification of a given object

PI.
For example, a classification algorithm could use a

vehicle taxonomy to first determine that a given object
is a vehicle ias opposed to a building or a statue, then

that it is an auto as opposed to a truck or boat, then
that it is a sedan as opposed to a coup6 or station wa-
gon, etc. (see Figure 8). Each step in the classification
uses the new information in the prototypes at the next
most detailed level of the taxonomy to test for member-
ship in each subclass.*

In order for such a classification algorithm to do its
task, it must have criteria for determining membership
in each class. Although some frame languages allow
prototype descriptions that represent both necessary
and sufficient conditions for class membership (e.g.,
KL-ONE [4] and KRYPTON [5]), most such prototypes
specify only necessary conditions for class membership.
For example, the prototype for THINGS. OWNED. BY.

PAUL might indicate that the location of each of Paul’s
things is in Boston. However, this should not lead us to
believe that Paul owns everything in Boston. Moreover,
if the prototypes are considered to be only default de-
scriptions, then they do not even,specify necessary con-
ditions. This form of prototype is satisfactory only for
augmenting the description of individual class mem-
bers, which is the primary use of prototypes in most
systems.

Prototypes containing necessary but not sufficient
conditions can be used by a classifier to conclude that
an item is not a member of a class, but cannot be used
to conclude that the item is a member. Production rules
provide a natural way of augmenting class descriptions,
to include sufficient conditions for determining mem-
bership in a class (as in CENTAUR [l], for example).
When rules are used for that purpose, the class-
subclass taxonomy provides a guiding structure for de-
signing and organizing the rules so that they are suita-
ble for a successive refinement classification strategy.

A successive refinement strategy expects each class
description to include rules that indicate whether
members of some superclass can be members. The first
condition of such rules is that the item be a member of
the superclass. The succeeding conditions specify “lo-
cal” conditions for membership in the subclass. For ex-
ample, if the objective were to determine whether a
particular item is a sedan, the first condition might be
that the item must be an automobile. Successive condi-
tions would then specify the conditions that an automo-
bile must satisfy in order for it to be a sedan. The
classifier can use such rules when they are associated
with the appropriate class descriptions to successively
work its way down a taxonomy to achieve increasingly
more specific classifications.

In addition to providing a guiding structure for de-
signing and organizing the rules that specify sufficient
conditions for class membership in a diagnostic system,
a frame language also provides a means of indexing and
invoking rules that deduce or direct the acquisition of
attribute values for the situation being diagnosed. For

*Note that we are considering here only the problem of determining in which
classes a given item belongs as opposed to the mire difficult problem of
determining where a given class belongs in the class-subClass taxonomy. That
general classification problem is discussed in, for example, [13].

916 Communications of the ACh4 September 1985 Volume 28 Number 9

Special Section

Buildings

Physical
obiects

Station
wagons

\ vehicle?

An effective means of solving diagnostic tasks is to use a example, a ctassification algorithm could use the vehicle
class-subclass frame taxonomy containing prototype taxonomy shown here to first determine that a given object
descriptions of class members as a discrimination net to is a vehide as opposed to a truck or boat, then that it is a
successively refine the ctassttication of a given object. For sedan as opposed to a coupe or station wagon, etc.

FIGURE 8. Classificslion by Successive Refinemeni

example, rules that determine the value of a slot can be
associated with the slot as an active value. The rules
will then be automatically invoked when the classifier
needs to know the value of the slot.

Reasoning from Significant Events
The capacity for attaching functions or rule classes that
behave like demons to the slots of a frame has been
used to great advantage to control reasoning in many
systems (e.g., ODYSSEY [g]). The attachments that are
invoked whenever the values of a slot are changed can
serve as sensors, monitors, or alarms. For example, ac-
tive values in the KEE system have been used as the
basis for an “intelligent-alarm” facility that calls a user-
supplied function only when a value of the slot crosses
a critical boundary. The user establishes an alarm by
providing the facility with a set of critical boundaries
and the alarm function. The facility stores the bound-
aries and function as facets of the slot, and attaches a
generic active value that checks for boundary crossings
whenever a value of the slot changes.

An interesting example of this phenomenon can be
found in a knowledge system under development at
Ford Aerospace and Communication Corporation [8]
(see Figure 9). The STAR-PLAN system is intended to

serve as an intelligent aid to human satellite operators
in the diagnosis and correction of satellite malfunc-
tions. It should also be able to act alone as a simulator
for training operators and diagnostic experts. An impor-
tant aspect of this diagnostic task is that it requires
detailed analysis from a diverse set of experts. The ar-
chitecture of the prototype built by Ford using the KEE
system makes effective use of demons attached to slots,
methods that respond to messages sent to objects, and
prototypes of experts that can be instantiated and de-
leted dynamically as needed during system operation.

The designers of STAR-PLAN had several require-
ments that led them to implement an architecture
based on the integration of frames and production
rules:

l They wanted the system’s knowledge to be accessible
and comprehensible to both diagnostic experts and
satellite operators. This meant that the organization
of knowledge in the system had to correspond closely
to the organization used by experts and operators.

l The designers wanted to be able to build the system
incrementally as experts became available and de-
scriptions of additional satellite modules were ob-
tained. Thus, the system’s knowledge needed to be

September 1985 Volume 28 Number 9 Communications of the ACM 917

Special Section

ND. PnmL El ---

SD. PANn

I
ccnmouc

.

/’

1

- BATlEFw #I 0ATTERY *2 BAllERY a3

c

ELECTRICAL fWWER DiSlRlsuTloNSlHSYSlEM

SAT

EPDS

TT&C

PROP

THERMAL

ACS

signlfioant events can bejcontrollecf. The system makes ef-
fact@ ust3 of f&es, &&ding prototype expart frames that
&e instantiated aMi daletecl dynamically as naeded during

FIGURE 9. Ths STAR-PLAN 9atsllite Diagnostic System

partitioned into chunks of expertise, either about
particular satellite modules or about particular types
of malfunctions.

l The designers knew that the system would even-
tually be very large and that it would be operating in
a real-time environment. In order to meet speed re-
quirements, they wanted to use a system architecture
in which parts of the knowledge base could be
“awakened” or “put to sleep” as situations required.

The designers of STAR-PLAN began by using the
frame language to build a taxonomy describing the
parts of a typical communications satellite. Methods
and demons were then associated with the prototypes
in the taxonomy to maintain the required relationships
between the parts and to define each part’s behavior.
The result was a simulation capability specified in a

relatively simple and natural way in an object-oriented
programming style.

Two additional taxonomies were built to model the
diagnostic experts. Each class in the first of these repre-
sents experts who are responsible for “watching over” a
particular component of the satellite. tiembers of these
classes are called guardians. Each class in the second of
these represents experts who are responsible for re-
sponding to particular types of problems that occur in
the satellite. Members of these classes are called moni-
tors.

Guardians are created and initialized for each com-
ponent of the satellite when the system is started up.
When a guardian is sent an INITIALIZE message, it
typically places intelligent alarms in the system’s model
of the satellite. These alarms wake up their guardian by
sending it a message when a problem has occurred in

918 Communications of the ACM September 1985 Volume 28 Number 9

Special Section

operation of the system. These screens show portions of the to organize them so that the knowledge could be easily
system’s model of the satellite and its subsystems. The use accessible and comprehensible to both diagnostic experts
of frames to build the system’s models allowed the designers , and satellite operators.

FIGURE 9. The STAR-PLAN Satellii Diagnostic System

the satellite. Thus, the guardian is active only when the ing with the system designers to develop a guardian.
situation demands. When a guardian determines that a problem has oc-

The methods associated with a guardian respond to
messages from the demons by invoking a class of diag-
nostic rules for determining what kind of problem is
occurring. The rules are applied by a forward-chaining
rule interpreter that finds all the possible consequences
of the anomalous situation that has tripped the alarms.
The forward chainer proceeds by applying all rules that
have a condition matching some aspect of the anoma-
lous situation or by matching a conclusion of an al-
ready applied rule. Rule application continues in this
manner until no matches remain.

The class of diagnostic rules associated with a guard-
ian is typically very small-about 10 to 20 rules. This
modularization gives the expert being modeled a small
system of closely related rules to focus on while work-

curred, it creates and initializes a monitor representing
an expert for that problem. The monitor’s task is to
watch the evolution of the problem and make recom-
mendations to the satellite operator. When initialized, a
monitor may establish its own demons in the satellite
model and put itself to sleep for a fixed period of time.
Each time a monitor wakes itself up or is awakened by
a message from one of its demons, it invokes a class of
rules to analyze the status of the satellite. If the moni-
tor is waking itself after a fixed period of time, the rules
are typically invoked by a backward-chaining rule inter-
preter that tests specific hypotheses about the problem.
The backward chainer attempts to find a sequence of
rule applications that will conclude one of the hy-
potheses. When such a sequence is found, the rules are

September 1985 Volume 28 Number 9 Communications of the ACM 919

Special Section

applied so that the hypothesis is asserted in the knowl-
edge base. Depending on the conclusions reached by
the rules, the monitor will then either put itself to sleep
again or mak’e recommendations to the operator. When
a monitor concludes that the problem has been solved,
it removes its; demons from the satellite model and de-
letes itself. In so doing, it frees up memory and CPU
time for the rest of the system.

The dynamic creation and deletion of monitors in the
STAR-PLAN system model the way satellite problems
are actually handled by human experts and operators.
When a probllem is recognized, the appropriate expert
is called in, works with the team until the problem has
been resolved, and then withdraws. A monitor’s rules
represent a small, problem-specific subsection of an ex-
pert’s knowledge about a satellite. This modularization
of rules and a familiar organizational structure makes it
easier for each domain expert to create and debug
rules.

CONCLUSIONS
We have described the characteristic features of frame-
based knowledge representation facilities and indicated
how they can provide a foundation for a variety of
knowledge-system functions. We focused on how
frames can contribute to a knowledge system’s reason-
ing activities and how they can be used to organize and
direct those activities.

We have also discussed the advantages of integrating
frames and production rules into a single unified repre-
sentation facility. The utility of such hybrid facilities is
becoming incireasingly evident with experience. One of
the major advantages of this kind of hybrid facility is
that it makes the organizational and expressive power
of object-oriented programming available to domain ex-
perts who are not programmers. That is, it enables non-
programmers to build behavioral models of application
domains that include structural descriptions of the do-
main objects and declarative specifications of both the
behavior of the objects and the behavior of experts that
work with the objects. Thus, such facilities play a ma-
jor role in making knowledge-system technology di-
rectly available to the application-domain experts who
most need it to solve their problems.

Acknowledgments. The authors thank Bob Nado for
contributions to the section on frames as a foundation
for production-rule systems, and Ron Brachman, Jack
Dynis, and Blob Filman for valuable comments on early
drafts of this paper.

REFERENCES
1. Aikins, J.S. A representation scheme using both frames and rules. In

Rule-Based Expert Systems. B.G. Buchanan and E.H. Shortliffe. Eds.
Addison-Wesley, Reading, Mass., 1984, pp. 424440.

2. Bobrow, D.G., and Winograd. T. An overview of KRL, a knowledge
representation language. Cognitive Sci. I, 1 (Jan. 1977) 346.

3. Brachman, R.J. What IS-A is and isn’t: An analysis of taxonomic
links in semantic networks. Computer 16, 10 (Oct. 1983) 30-36.

4. Brachman, F!.J., and Schmolze, J.G. An overview of the KL-ONE
knowledge representation system. Cognitive Sci. 9.2 (Apr. 1985)
171-216.

6.

7.

5. Brachman, R.J.. Fikes, R.E., and Levesaue. H.I. KRYPTON: A func-
tional approach to knowledge representation: Computer 16.10 (Oct.
1983). 67-74.
Davis, R., and King, J. An overview of production systems. In Ma-
chine Intelligence 8: Machine Representations of Knowledge, E. Elcock,
and D. Michie, Eds. Wiley, New York, 1977, pp. 300-332.
Fain, J., Gorlin, D., Hayes-Roth, F., Rosenschein, S.J., Sowizral, H.,
and Waterman, D. The ROSIE language reference manual. Tech.
Rep. N-1647-ARPA, Rand Corp., Santa Monica, Calif., 1981.
Ferguson, J.C., Siemens, R.. and Wagner, R.E. STAR-PLAN: A satel-
lite anomaly resolution and planning system. Intern. Rep., Ford
Aerospace and Communications Corp., Sunnyvale, Calif., 1985.
Fikes, R.E. Odyssey: A knowledge-based assistant. Artif ~ntell. 16. 3
(July 1981). 331-361.

Green, C. Application of theorem proving to problem solving. In
Proceedings of the 1st International Joint Conference on Artificial lntelli-
gence (Washington, D.C., Aug.). Mitre Corp., McLean, Va.. 1969. pp.
219-239.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Hendrix, G.G. Encoding knowledge in partitioned networks. In Asso-
ciative Networks: Representation and Use of Knowledge by Computers.
N.V. Finder, Ed. Academic Press, New York, 1979, pp. 51-92.
Kehler, T.P., and Clemenson, G.D. An application development sys-
tem for expert systems. Syst. Softw. 3, 1 (Jan. 1984) 212-224.
Lipkis, T.A. A KL-ONE classifier. In Proceeding of the 1981 IX-ONE
Workshop. Bolt, Beranek and Newman, Cambridge, Mass., June 1982,
pp. 128-145.

Minsky, M. A framework for representing knowledge. In The Psy-
chology of Computer Vision, P. Winston, Ed. McGraw-Hill, New York,
1975, pp. 211-277.
Newell, A. The knowledge level. Artif Intell. Mag. 2, 2 (Summer
1981), l-20.
Pople, H.E., Jr. Heuristic methods for imposing structure on ill-
structured problems: The structuring of medical diagnostics. In Arti-
ficial InfeQence in Medicine, P. Szolovitz. Ed. Westview Press, Boul-
der, Colo., 1981, pp. 119-185.

Stefik, M.J. An examination of a frame-structured representation
system. In Proceedings of the 6th International Joint Conference on
Artificial Intelligence (Tokyo, Japan, Aug.). Kaufmann, Los Altos,
CaIif., 1979, pp. 845-852.
Stefik, M., Bobrow. D.G., Mittal. S.. and Conway, L. Knowledge pro-
gramming in LOOPS: Report on an experimental course. Arfif Well’.
4, 3 (Fall 1983) 3-14.
Woods, W.A. What’s important about knowledge representation?
Computer 15, 10 [Oct. 1983). 22-29.

FURTHER READING
Useful collections of papers on knowledge representation include the
following

Bobrow, D.G., and Collins, A.M., Eds. Representation and Understanding.
Academic Press, New York, 1975. Includes papers describing early
work on frame-based representation languages.

Findler, N.V., Ed. Associative Nekoorks: Representation and Use of Knowl-
edge by Computers. Academic Press, New York, 1979. Contains pa-
pers focused specifically on semantic networks.

IEEE Computer Society. Computer, Special Issue on Knowledge Repre-
sentation, 16, 10 (Oct. 1983). Provides a representative sampling of
recent work in knowledge representation.

CR Categories and Subject Descriptors: 1.2.1 [Artificial Intelligence]:
Applications and Expert Systems; 1.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods; 1.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods and Search

General Terms: Design, Languages
Additional Key Words and Phrases: deductive retrieval, definition

by specialization. frames, knowledge systems, managIng rule-based rea.
soning, object-oriented representation, prototype descriptions

Authors’ Present Address: Richard Fikes and Tom Kehler, IntelliCorp,
Knowledge Systems Division, 707 Laurel Street, Menlo Park, CA 94025.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer
cial advantage, the ACM copyright notice and the title of the publicaticmn
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

929 Communicatiot~s of the ACh4 September 1985 Volume 28 Number 9

