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Abstract

Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal

stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells

and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells

by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6
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proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface

of the cells allowing the release of different intracellular factors to the extracellular space. GJs

provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct

exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites,

as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation,

differentiation, metabolism, cell survival and death. Despite their essential functions in

physiological conditions, relatively little is known about the role of GJs and uHC in human

diseases, especially within the nervous system. The focus of this review is to summarize recent

findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central

nervous system.
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General introduction

Gap junction (GJ) channels are formed by two hemichannels, each contributed by one cell,

which are hexamers of homologous subunit proteins, termed connexins (Cxs), that connect

the cytoplasm of adjacent cells (Bennett et al. 2003; Sáez et al. 2003a) (Fig. 1a). Connexin

hemichannels (Cx HCs) can be formed by one (homomeric connexon) or several

(heteromeric connexon) types of Cxs, while GJ channels can be formed by either two

identical, homotypic, or different, heterotypic, hemichannel subunits. These different

subunit combinations enable GJs to differ in their biophysical and permeability properties

(Harris 2001, 2007). In addition, it was shown that unapposed hemichannels (uHC), before

their cell-to-cell docking to form GJ, also open on the surface of the cell allowing exchange

of small factors between the cytoplasm and the extracellular environment. Both GJ and uHC

have an internal pore of approximately 12 A°, allowing ions and intracellular messengers up

to ~1 kDa in molecular mass to diffuse between connected cells or from the cytoplasm to the

extracellular space (Bennett et al. 2003; Sáez et al. 2003a) (Fig. 1b). The diffusion of these

second messengers through GJ and uHC results in the coordination of multiple physiologic

functions (Sáez et al. 2003a). Here, we will review the pattern of Cx expression in each cell

type of the central nervous system (CNS) and the function of GJ and uHC under normal and

pathologic conditions.

Expression of connexins in different cell types in the CNS

Astrocytes

Astrocytes participate in many brain functions, including CNS differentiation, neuronal

excitability, production of neurotrophic factors, control of extracellular synaptic metabolites,

syncytial signaling, synaptic plasticity, formation of scar tissue after neuronal loss, immune

activation, inflammation, and blood brain barrier (BBB) integrity. In all of these functions,

GJ and uHC have a critical role (Rouach et al. 2002c; Kielian and Esen 2004; Sáez et al.

2005; Kielian 2008). Astrocytes form extended networks regions of the brain parenchyma

by direct communication through GJs between coupled cells. Reverse transcription-PCR and

protein analyses showed that Cx43 and Cx30 are the main Cxs expressed in astrocytes

(Dermietzel et al. 1989, 1991; Giaume et al. 1991; Rash et al. 2001a, b; Nagy et al. 2003b;

Nakase and Naus 2004). Cx43/Cx30 double-knockout mice only have minimal gap

junctional communication (GJC) between astrocytes (Wallraff et al. 2006; Rouach et al.

2008), suggesting that both proteins are the main components of functional astroglial GJ

channels. The original studies on Cx43 did not consider the expression of Cx30. However,

recent data indicate that Cx30 plays an important role in hippocampus GJ coupling, cellular
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degeneration and cochlear function (Cohen-Salmon et al. 2007; Chang et al. 2008; Sun et al.

2009; Gosejacob et al. 2011). Thus, further studies are required to clarify the role of Cx43

and Cx30 in physiologic and pathologic conditions.

Synaptic molecules released in response to neuronal activity, including K+, glutamate and

other neurotransmitters, are normally taken up by astrocytes and extensively diluted in the

astrocytic network through GJ channels. However, in pathologic conditions, GJC is

compromised and these molecules can be toxic in the absence of functional GJ channels

(Orkand et al. 1966; Rose and Ransom 1997; Wallraff et al. 2006). High neuronal activity

enhances astrocyte GJ communication (Marrero and Orkand 1996), and also induces

vasodilation of pial arterioles through connexin-based channels (Xu et al. 2008), suggesting

a relationship between neuronal activity and blood supply through GJ, in eliminating these

toxic molecules by providing better perfusion in areas subjected to high neuronal activity. In

addition, GJC enables the coordination of several signaling events, including intercellular

Ca2+ waves that control Ca2+-dependent glutamate release, and metabolic and electrical

synchronization among astrocytes and neurons and astrocyte and endothelial cells (ECs) to

control synaptic plasticity, neuronal survival and/or vascular tone (Guthrie et al. 1999;

Paemeleire and Leybaert 2000; Sáez et al. 2003b; Simard et al. 2003; Dale 2008). All these

findings indicate that GJs play a key role in the coordination of astrocyte signaling and

metabolic events usually altered in many brain-associated diseases.

The opening of Cx uHC allows exchange of diverse molecules between the cytoplasm and

extracellular environment, especially in conditions of cellular stress, to mediate autocrine/

paracrine signaling. More recently, another gene family similar to the Cx family, encoding a

set of three membrane proteins, named pannexins (Panxs 1–3), has been identified in

different cell types, including astrocytes (Bruzzone et al. 2003). To date, the absence of

ultrastructural evidence for GJ like structures by pannexins in mammalian cells suggests that

the main function of pannexin is as pannexin (Panx) uHC. However, a recent study indicated

that pannexin 3 expressed in osteblast can work as a uHC in the ER and the plasma

membrane and also as a GJ, suggesting that this protein may have multiple functions

depending on it cellular localization (Ishikawa et al. 2011). In astrocytes, along with Cx43

uHC, astrocytes also express functional Panx1 uHC (Iglesias et al. 2008, 2009; Iwabuchi

and Kawahara 2011). However, the regulation of Panx1 uHC and their role in the function

of astrocytes is still under investigation. Astroglial uHC are potential regulators of

homeostatic imbalances present in diverse brain diseases or cellular stress conditions, but

normally uHC are closed due to their high permeability that can result in cell death when the

channels are opened (Abrams et al. 2002; Contreras et al. 2002; Iglesias et al. 2009; Orellana

et al. 2011a). Astroglial dysregulation induced by ischemia-like conditions and metabolic

inhibition resulted in opening of Cx43 uHC (Contreras et al. 2002). It was also demonstrated

that fibroblast growth factor-1 (FGF-1), cytokines, hypoxia, oxidative stress and changes in

intracellular/extracellular calcium result in opening of Cx43 uHC, allowing release of ATP,

glutamate, nicotinamide adenine dinucleotide (NADH) and prostaglandins to the

extracellular space mainly in pathologic conditions (Contreras et al. 2002; Stout et al. 2002;

Retamal et al. 2006, 2007; Froger et al. 2009; Sánchez et al. 2009; Schalper et al. 2009;

Garre et al. 2010; Orellana et al. 2010; Retamal et al. 2010; Sáez et al. 2010). Astrocytes

provide metabolic and framework support to neurons. Therefore, damage associated with the

opening of uHC has been proposed to increase neuronal susceptibility to insults (Sánchez et

al. 2009a; Orellana et al. 2010; Sáez et al. 2010b; Orellana et al. 2011b). In agreement with

this concept, it was demonstrated that opening of astroglial uHC potentiates glutamate-

induced neurotoxicity by pro-inflammatory cytokines (Froger et al. 2010) and it has been

shown that glutamate can be released through astroglial Cx43 uHC (Ye et al. 2003; Parpura

et al. 2004; Malarkey and Parpura 2008; Orellana et al. 2011a), which can lead to neuronal

death (Orellana et al. 2011a). Cx43 is the major Cx that forms uHC in astrocytes and Fig. 2
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shows an example of activation of Cx43 uHC using whole cell electrophysiological

recordings in HeLaCx43-EGFP cells subjected to metabolic inhibition (MI). The cartoon in

this figure summarizes some of the conditions that mediate opening/closing events of Cx43

uHCs, such as low pH, high calcium (high Ca2+), DTT, MI and changes to positive voltage

(+Vm) (Fig. 2). Under control conditions, Cx43 uHC are open with relatively low

probability (data not shown). MI increases the incidence of opening/closing events of Cx43

uHC with a conductance of ~220 pS (Fig. 2). Non-transfected HeLa cells do not show such

activity of uHC in response to MI (Contreras et al. 2002).

Opening of uHC, in addition to mediating the release of several intracellular factors, also

participates in the coordination of signaling of other receptors, such as purinergic receptors.

However, most of these data were obtained in immune cells. The complex between Panx-1/

Cx uHC and ATP receptors mediates enhanced recognition of bacterial molecules, likely by

autocrine release of ATP through uHC and subsequent activation of ATP receptors,

including P2Y1 and P2Y2 (Kanneganti et al. 2007). This loop, involving uHC, ATP and

purinergic receptors, participates in HIV infection and cell-to-cell fusion of immune cells,

suggesting an essential role during the pathogenesis of HIV CNS disease (Lemaire et al.

2011; Seror et al. 2011). In agreement, a positive loop involving activation of Panx-1 uHC

and ATP receptors has been described in many cell types (Dahl and Locovei 2006; Locovei

et al. 2006). In addition, down regulation of Panx-1 uHC prevents the amplification of

calcium waves (Locovei et al. 2007), usually spread through GJs and purinergic receptors,

suggesting a co-participation of Panx-1 uHC, ATP receptors and GJ channels. Thus, in the

CNS there may be interactions between GJs and uHC as well purinergic ATP receptors,

which regulate cellular activation and inflammation. However, limited studies on these

interactions have been performed in astrocytes.

Under pathologic conditions, the role of astroglial GJs and UHCs is controversial.

Contradictory data may be explained by differences in the models used, intensity of the

injury and method of analysis. Some studies indicate that inhibition of GJ channels increases

neuronal vulnerability to oxidative stress or ischemic insult (Blanc et al. 1998; Siushansian

et al. 2001; Nakase et al. 2003; Nakase and Naus 2004; Nakase et al. 2006). In contrast,

other studies indicate that functional GJ channels amplify ischemic damage (Lin et al. 1998),

and apoptosis during HIV infection (Eugenín and Berman 2007; Eugenín et al. 2011). Our

data obtained using HIV-infected astrocytes indicated that only ~5 % of cells are infected

with minimal to undetectable viral production. However, bystander killing of neighboring

uninfected astrocytes, neurons and endothelial cells occurs by a GJ-dependent mechanism

(Eugenín and Berman 2007; Eugenín et al. 2011) (see supplemental Fig. 1). We also

demonstrated that HIV infection of a low percentage of astrocytes mediated endothelial

apoptosis and BBB disruption by a mechanism that involved dysregulation of several

signaling pathways present at the end-feet of the astrocytes that under physiologic

conditions regulate blood flow (Eugenín et al. 2011). This BBB disruption was GJ-

dependent, because blocking these channels with uncouplers, including 18-α-glycyrrhetinic

acid (AGA, 32 μM), or carbenoxolone (CBX; 10 μM), reduced the spread of toxic signals

from HIV infected astrocytes to uninfected neighboring astrocytes (Eugenín and Berman

2007), neurons (Supplemental Fig. 1A), and endothelial BBB cells (Eugenín et al. 2011).

These data indicate that GJs channels in pathologic conditions, such as HIV infection of the

CNS, promote the spread of apoptotic signals among connected cells. Our data indicated that

extracellular glutamate does not play a role in bystander apoptosis, because although HIV

infection increased glutamate release, blocking GJs increased further its release

(Supplemental Fig. 1B). This is the same condition that was neuroprotective in

Supplemental Fig. 1A. Thus extracellular glutamate did not contribute directly to HIV-

astrocyte-neuronal apoptosis.
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In humans it is impossible to examine the dynamic role of GJ channels during the active

process of different CNS diseases; therefore, most data addressing these processes were

accrued using postmortem human tissue or rodent models. One of the best animal models to

examine the role of Cx43 in astrocytes is the Cx43fl/fl;hGFAP-Cre mouse. These animals

develop normally and upon activation of expression of Cre in astrocytes, Cx43 expression is

abolished in these cells specifically. This Cx43 deletion in astrocytes resulted in increased

spreading depression and locomotor activity in these animals (Zhuo et al. 2001; Theis et al.

2003). One of the most striking findings using this mouse is the relationship between glial

proliferation and the generation of gliotic areas, as astrogliosis was less pronounced in the

Cx43 Cre(+) mice (lacking Cx43). Cx43 is important for control of astroglial proliferation in

the penumbra area of the damaged brain (Nakase et al. 2004). In agreement with these

reports the inhibition of GJs has been associated with increased levels of cyclins D1, D3,

P21 and p27, all of which support proliferation (Sanchez-Alvarez et al. 2006; Tabernero et

al. 2006), suggesting a close correlation between GJs, cellular proliferation and hypertrophy.

Although there is a clear metabolic relationship between astrocytes and neurons, the role of

GJs in this interaction is not fully understood. Cocultures of astrocyte-neurons increased

Cx43 expression and GJC in astrocytes (Rouach et al. 2004a, b). Treatment of astrocyte-

neuronal cultures with NMDA or acetylcholine resulted in a prominent reduction of

astrocytic GJ channels (Rouach et al. 2002a), suggesting that neuronal activity can have

different effects on GJ channels. Inflammatory and stress factors, such as IL-1β (John et al.

1999; Duffy et al. 2000), NO (Bolanos and Medina 1996), ATP (Meme et al. 2004), FGF-2

(Reuss et al. 1998), TGF-β (Reuss et al. 1998), arachidonic acid (Martinez and Saez 1999),

endothelins (Giaume et al. 1992), glutamate/kainate (Muller et al. 1996), and acidification

(H+ and lactic acid) (Morley et al. 1996, 1997; Dunina-Barkovskaya 1998; Trexler et al.

1999; Duffy et al. 2002; Yamaguchi and Ma 2003; Duffy et al. 2004; Gonzalez-Nieto et al.

2008) reduce Cx43 expression and opening of GJ channels. This indicates that the reduction

in GJs and Cx expression perhaps reduces the spread of damage. In contrast, some reports

indicated that mild depolarization with K+ (Granda et al. 1998; De Pina-Benabou et al.

2001), glutamate/kainate (Enkvist and McCarthy 1994; Robe et al. 2000) or TGF-β (Robe et

al. 2000) enhances GJC. Therefore, the functional state of GJs is altered during

inflammation or by neuronal activity depending on the intensity and nature of the damage.

Neurons

Neurons express mainly Cx36, 30.2 and 45 and other Cxs with limited expression and

localization (Rouach et al. 2002c; Sohl et al. 2005). Most neurons express Cx36, and Cx30.2

is mainly detected in interneurons in the retina and hippocampus (Kreuzberg et al. 2008;

Muller et al. 2010). Our experiments using human fetal neurons obtained from the cortex

and hippocampus indicated that these neurons also express Cx43. Additionally, Cx45 has

been detected in neurons in the retina and the hippocampus (Schubert et al. 2005; Li et al.

2008; Zlomuzica et al. 2010; Blankenship et al. 2011). Interestingly, the function of these

specific Cxs can be compensated in mouse KO models suggesting that their function can be

replaced by other Cxs regardless of the differences in sequences and pore permeability

(Frank et al. 2010). Despite the fact that extensive research on the Cxs in neurons has been

performed, only a few examples of functional GJs were detected in vivo. Some of the best

examples were demonstrated in GABAergic neurons in the striatum (Venance et al. 2004),

neonatal/developmental cortex neurons (Peinado et al. 1993a, b; Bittman et al. 2002), motor

neurons in the spinal cord (Chang et al. 1999; Chang and Balice-Gordon 2000), neurons of

the inferior olivary nucleus (Benardo and Foster 1986; Devor and Yarom 2002a, b, c),

interneurons in CA3 (Condorelli et al. 1998; Condorelli et al. 2003), visual cortex and

dentate regions (Venance et al. 2000; Hormuzdi et al. 2001), in cortex fast-spiking

interneurons (Galarreta and Hestrin 1999; Gibson et al. 1999), in the cerebellum (Mann-
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Metzer and Yarom 1999) and in almost all types of cells in the retina (Vaney 2002; Sohl et

al. 2005).

It is known that Cx36 GJs in the hippocampus are required for normal spatial coding and

short term spatial memory between interneurons (Allen et al. 2011) and participate in

neuronal remodeling by altering differentiation of neuronal stem cells (Hartfield et al. 2011).

The proposed functions of these channels in all these systems are to coordinate neuronal

firing, spike frequency modulation (Moortgat et al. 2000), fast oscillations (Friedman and

Strowbridge 2003; Migliore et al. 2005), neuronal remodeling, and other synchronization

properties required under physiologic conditions.

Oligodendrocytes

Oligodendrocytes express Cx29, Cx32, Cx31.3, Cx45 and Cx47 (Kunzelmann et al. 1997;

Nagy and Rash 2000; Nagy et al. 2003a; Kleopa et al. 2004; Kamasawa et al. 2005; Rash et

al. 2005; Ahn et al. 2008; Orthmann-Murphy et al. 2008; Sargiannidou et al. 2008;

Sargiannidou et al. 2009; Maglione et al. 2010; Parenti et al. 2010; Magnotti et al. 2011).

Cx29 is present along cell processes, especially in the juxtaparanodal region, but does not

colocalize with Cx32 (Altevogt et al. 2002; Menichella et al. 2003; Nagy et al. 2003a; Meier

et al. 2004). Cx32 is expressed in paranodal loops, Schmidt-Lanterman incisures and

between the outer two layers of internodal myelin, between compact and uncompact myelin

(Meier et al. 2004; Kamasawa et al. 2005). Cx47 colocalizes with Cx32 in GJ plaques

(Menichella et al. 2003). Cx45 expression in oligodendrocytes is controversial (Dermietzel

et al. 1997; Pastor et al. 1998; Maxeiner et al. 2003) and appears to be associated with the

cerebral vasculature (Kleopa et al. 2004), most likely with smooth muscle cells close to

vessels (Li and Simard 2001). It has also been proposed that oligodendrocytes form GJs with

astrocytes (Butt and Ransom 1989; Menichella et al. 2003; Orthmann-Murphy et al. 2008),

and perhaps with axons, although this has only been shown between axons and Schwann

cells in sciatic nerve using electron microscopy (Dezawa and Nagano 1996). Our data

clearly indicated that oligodendrocyte interaction have a unique membrane specialization,

such as desmosomes and GJ plaques that likely coordinate heterocellular signaling (see Fig.

3). These GJ structures are particularly dense in EM, due to a more intense accumulation of

glial filaments (Soffer and Raine 1980). Desmosomes and GJs are common between glial

processes or between astrocytes and oligodendrocytes (Fig. 3). In these cases, GJ have also

been proposed to reduce high extracellular concentrations of K+ by providing a mechanism

of lateral diffusion and dispersion. Thus, alterations in GJ channels as well as desmosomes

may contribute to the pathology observed in several demyelinating diseases.

In animal models, Cx32 deletion resulted in abnormalities in the sciatic nerve, associated

with degeneration (Nelles et al. 1996; Anzini et al. 1997). However, Cx43/Cx47

compensatory mechanisms in the absence of Cx32 have been described (Nagy et al. 2003a).

It also remains to be determined whether alterations in Cx32 or other oligodendrocytic Cxs

impact different regions of the myelin sheath, such as uncompacted, compacted and/or

internodal areas. Cx32 and Cx47 KO mice showed major abnormalities in myelin formation,

such as hypomyelination and axonal loss, and oligodendrocyte survival (Odermatt et al.

2003). Similar myelin problems were found in human diseases, such as multiple sclerosis

and Pelizaeus-Merzbacher disease (Martini 2000; Kleopa and Scherer 2002; Kleopa et al.

2004) (see section about MS). Experiments in the Cx47 mouse indicated that a missense

mutation in the Cx47 gene causes Pelizaeus-Merzbacher disease and results in a pathologic

phenotype in this animal model, suggesting that Cx47 significantly participates in the

pathogenesis of this disease (Tress et al. 2011). The proposed role for GJs in

oligodendrocyte physiology is to provide a shortcut for nutrients and second messengers

across the different myelin layers to the axon, and therefore alterations in GJs might

contribute to the pathogenesis of myelin/axonal diseases.
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Microglia

Microglia express low to undetectable levels of Cx43 and Cx36 under resting conditions

(Eugenín et al. 2001; Parenti et al. 2002; Dobrenis et al. 2005; Garg et al. 2005; Lee et al.

2005). Expression of Cx43 and formation of GJ channels can be induced by treatment of rat/

mouse microglia with LPS or TNF-α plus IFN-γ (Eugenín et al. 2001), calcium ionophore

plus PMA (Martínez et al. 2002), or Staphylococcus aureus-derived peptidoglycan (Garg et

al. 2005). Cx36 expression in microglia has been shown using immunohistochemistry and

RT-PCR under resting conditions (Parenti et al. 2002). Cxs in microglia may enable these

cells to establish direct communication with other cells in the CNS to increase inflammation

or to promote the repair of damaged tissue. Interestingly, activation of microglia can down-

regulate Cx43 expression and GJ channels among astrocytes when both cell types are in co-

culture suggesting a cell-specific control of Cx43 expression (Rouach et al. 2002b;

Faustmann et al. 2003; Meme et al. 2006). Findings in dendritic cells indicated that GJC

could be used for the sharing of antigenic peptides (Neijssen et al. 2005; Matsue et al. 2006;

Corvalan et al. 2007; Handel et al. 2007; Mendoza-Naranjo et al. 2007; Pang et al. 2009),

suggesting the possibility that GJs between microglia also coordinate the CNS immune

response. Our data using cultures of rat microglia showed that under control conditions, the

release of TNF-α, IL-1β and IL-6 was minimal (Supplemental Fig. 2a and b, white bars).

Treatment of microglia cultures with LPS plus IFN-γ for 1 to 9 h, a condition that increased

GJC, increased secretion of TNF-α and IL-1β (Supplemental Fig. 2A), but not IL-6

(Supplemental Fig. 2B, cross line bands). The secretion of these cytokines was partially

blocked by a GJ blocker, AGA (Supplemental Fig. 2A, cross line bars), suggesting that

functional GJs are important in microglia cytokine secretion. Thus, GJs in microglia are

induced by specific inflammatory factors and the proposed function of these channels is to

help to coordinate the microglial mediated inflammation.

Blood–brain barrier (BBB)

The BBB is composed of dynamic vessels that are capable of responding to rapid changes in

the brain or in the blood stream (Gloor et al. 2001; Ballabh et al. 2004). The BBB is

composed of endothelial cells (EC) in close contact with astrocytic end-feet across a basal

lamina, perivascular macrophages and pericytes. These cellular interactions function in

combination with other systems specialized for the transport of metabolites required for

brain function, as well as tight junction proteins (TJP), which seal the intercellular gaps

between EC-EC and EC-astrocytes, to establish impermeability to most macromolecules and

blood cells (Ballabh et al. 2004). EC isolated from blood vessels of different organs express

Cxs 37, 40 and 43 (Haefliger et al. 2004; Burnier et al. 2009). Cx45 has been detected in

cerebral blood vessels but its expression is associated with smooth muscle cells (Li and

Simard 2001). However, deletion of Cx45 results in defective vascular development,

suggesting a critical role of Cx45 in the development of brain vasculature (Kruger et al.

2000). In the systemic vasculature, deletion of Cx40 results in hypertension (Firouzi et al.

2006a; Firouzi et al. 2006b; Hauer et al. 2006). Endothelial-specific deletion of Cx43 results

in hypotension and bradycardia (Liao et al. 2001), suggesting that expression of these Cxs

participates in the regulation of blood pressure. In agreement, the control of blood flow by a

GJ-dependent mechanism has been described in peripheral arterioles (de Wit et al. 2000; de

Wit et al. 2003). Our data demonstrated that HIV infection of just a few astrocytes in a BBB

tissue culture model amplifies endothelial apoptosis by dysregulation of astrocyte end-feet

signaling in a GJ-dependent manner (Eugenín et al. 2011). However, little is known about

the expression of Cxs and their role in the physiology and pathogenesis of the BBB under

normal and pathologic conditions.
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Neuronal stem cells

Neuronal precursors express Cx26, Cx30, Cx33, Cx36, Cx37, Cx40, Cx43 and Cx47

depending on the area of the brain from which these cells were isolated, the differentiation

stage and the cell culture conditions (Rozental et al. 1998; Duval et al. 2002; Maxeiner et al.

2003; Trosko and Chang 2003; Elias et al. 2007; Elias and Kriegstein 2008; Wen et al. 2008;

Cina et al. 2009). Expression of Cxs 30, 36, 37 and 43, but not Cxs 26, 32 or 47, has been

reported in NT2/D1 progenitor cells. These cells were obtained from a teratocarcinoma

progenitor line that can be induced to differentiate into hNT neurons and NT-G non-

neuronal cells (Bani-Yaghoub et al. 1999). hNT/NT-G cells differentiated with retinoic acid,

express Cxs 36, 37 and 47. However, only undifferentiated cells are capable of dye transfer

to other cells (Boucher and Bennett 2003). Functional GJ are required to maintain cortical

neural progenitor cells in a proliferative state (Cheng et al. 2004) as well as for their radial

migration in the neocortex (Elias et al. 2007). It has also been described that the carboxyl-

terminal domain of Cx43 regulates neuronal differentiation (Cina et al. 2009; Santiago et al.

2010). In addition, Panx-2 uHC are expressed in postnatal hippocampus neuronal

progenitors and also modulate the differentiation of neurons (Swayne et al. 2010). Thus, it is

clear that GJs and uHC are critical for multiple functions involving neuronal differentiation

and migration. However, the question whether GJ and uHC are involved in diseases

involved in migration and differentiation is still under investigation.

Gap junctions and connexin expression in human diseases

Cx32 mutations linked to the X-linked hereditary motor and sensory neuropathy Charcot-
Marie-Tooth (CMTX)

More than 305 different Cx32 mutations have been associated with CMTX (see for details;

http://www.molgen.ua.ac.be/CMTMutations/), but only a few results in evident pathologic

conditions (Kleopa et al. 2002). One explanation is that not all Cx32 mutations destabilize

the myelin sheath and/or compromise communication in a significant manner. An alternative

or additional explanation is that other Cxs expressed in oligodendrocytes or Schwann cells

can be compensatory. Little is known about the functions of Cx32 in the PNS and CNS, due

to difficulties in evaluating the function(s) of these channels in vivo, or during the

pathogenesis of CMTX disease (Bergoffen et al. 1993; Ionasescu et al. 1996; Ionasescu

1998). Cx32-deficient mice did not show any evident oligodendrocyte-dependent

myelination (Scherer et al. 1998). Neurons isolated from Cx32-deficient mice did not

display impaired excitability and synaptic formation/stability (Sutor et al. 2000). However,

Cx32/Cx47 KO mice exhibited motor problems and a myelin defect (vacuolization) when

compared to single Cx47 KO or Cx32 KO mice (Odermatt et al. 2003). This suggests that

deficiencies in both Cxs are required to result in a pathologic phenotype. Cx32 is also

important in mediating GJ communication between oligodendrocytes and astrocytes or

neurons, and these interactions may be altered in CMTX (Angaut and Sotelo 1973; Sotelo

and Angaut 1973; Kettenmann et al. 1983; Butt and Ransom 1989; Menichella et al. 2003;

Orthmann-Murphy et al. 2008).

Cxs and multiple sclerosis

Multiple sclerosis (MS) is a primary demyelinating disease in humans. As described above,

Cx32 plays a key role in maintaining the structure and function of the myelin sheath.

Deletions or mutations in this gene in rodents and humans can result in myelin

abnormalities, similar to those characterized in MS. In the EAE, an animal model of MS,

Cx43 expression was down-regulated and Cx30 upregulated in sites in close association

with inflammation (Brand-Schieber et al. 2005). Our data using human tissue sections

indicated that in control non inflammatory conditions, colocalization between myelin basic

protein (MBP) and Cx32 was observed (Fig. 4). Tissue sections obtained from individuals
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with chronic active and silent MS lesions demonstrated that Cx32 is down regulated in

oligodendrocytes in chronic active lesions at sites of inflammation (Fig. 4). In contrast,

upregulation of Cx32 was observed in silent lesions from individuals with chronic silent

MS, characterized by the absence of inflammation and re-myelination (Fig. 4). In active MS

lesions, Cx32 staining was reduced (Fig. 4). Cx43, which is mainly expressed in astrocytes,

was upregulated in areas around the lesion, suggesting that scar tissue has high expression of

Cx43, most likely due to astrocyte proliferation (Fig. 4). However, astrocytes in the center of

the lesions were negative for Cx43 in active chronic lesions (Fig. 4). Thus, our data

indicated that Cx32 expression is associated with the degree of damage and remyelination,

while Cx43 is associated with astrocyte activation/proliferation as well as inflammation.

Future studies will be essential to understand the role of other Cxs expressed in

oligodendrocytes, Schwann cells, astrocytes and neurons during the pathogenesis of

demyelinating diseases.

HIV and NeuroAIDS

HIV infection of the CNS induces different degrees of cognitive and motor impairment,

collectively termed HIV associated neurologic disorders (HAND). Approximately 60 % of

individuals infected with HIV have HAND even in the current anti-retroviral era (González-

Scarano and Martín-García 2005; Boisse et al. 2008; Kraft-Terry et al. 2009). However, the

mechanisms that mediate HAND in most HIV infected individuals are not completely

understood. The neuropathology of HIV-infection includes microglial nodules,

multinucleated giant cells and astrogliosis, as well as neuronal injury and loss (Albright et

al. 1999; Kaul et al. 2001; González-Scarano and Martín-García 2005). Macrophages and

microglia support high viral replication within the CNS (González-Scarano and Martín-

García 2005). HIV-infected astrocytes have also been detected in vivo and in vitro (Tontsch

and Bauer 1991; Tornatore et al. 1991; Conant et al. 1994; Tornatore et al. 1994a; Tornatore

et al. 1994b; Bagasra et al. 1996; Ohagen et al. 1999; Gorry et al. 2003; Churchill et al.

2006; Eugenín and Berman 2007; Churchill et al. 2009; Eugenín et al. 2011) and was

characterized by low to undetectable viral replication and a low numbers of cells that are

infected (Tornatore et al. 1994a; Ohagen et al. 1999; Schweighardt and Atwood 2001;

Eugenín and Berman 2007; Eugenín et al. 2011). In general, inflammation and infectious

agents reduce Cx43 expression and GJS (see details below). However, HIV is different

because despite its inflammatory nature, Cx43 expression and GJ channels are maintained in

astrocytes (Eugenín and Berman 2007). Functional GJ channels promote the spread of toxic

signals from a few HIV-infected astrocytes to uninfected astrocytes, neurons and endothelial

cells resulting in the spread of toxic mediators and dysregulation of glutamate and CCL2

secretion (Eugenín and Berman 2007; Eugenín et al. 2011). Interestingly, the few HIV

infected astrocytes are protected from apoptosis by a viral-dependent mechanism, resulting

in a viral reservoir within the CNS to perpetuate the presence of the virus.

Despite extensive evidence of pathological changes in the CNS of HIV-infected people, the

role of GJs has been minimally examined. An accepted mechanism by which cognitive

impairment and dementia occurs involves the transmigration of HIV-infected monocytes

across the BBB into the CNS parenchyma and the accumulation of macrophages and

microglia within the CNS in correlation with several inflammatory factors (Persidsky et al.

1997; Weiss et al. 1998; Eugenín et al. 2006; Roberts et al. 2010). Normally, macrophages/

microglia express low to undetectable levels of Cxs, however, we and others demonstrated

that macrophages/microglia express higher levels of Cxs under inflammatory conditions

(Eugenín et al. 2001; Martínez et al. 2002; Parenti et al. 2002; Dobrenis et al. 2005; Garg et

al. 2005). In Supplemental Fig. 3, our data demonstrate that during HIV associated dementia

(HAD) or HIV encephalitis (HIVE), alterations in GJs occur in HIV-infected leukocytes,

microglia and astrocytes. HIV-infected leukocytes after HIV infection begin to express high
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levels of Cx43 (Supplemental Fig. 3A) that may be necessary for transmigration across the

BBB, as we previously described in uninfected peripheral blood mononuclear cells (Eugenín

et al. 2003). In addition, confocal analyses of HIVE human tissue demonstrated that

microglia/macrophages express Cx43 (Supplemental Fig. 3B) and Cx36 (data not shown) in

close contact with neuronal cell bodies (Supplemental Fig. 3B). An example is shown in

Supplemental Fig. 3, showing Cx43 expression between a neuron and microglia/macrophage

(CD68 positive cells) in HIVE tissue. We did not detect either Cx in microglia/macrophages

in brain tissue sections obtained from normal or non-encephalitic HIV positive individuals

(data not shown). In addition, Cx43 expressed in astrocytes and Cx36 in neurons were

down-regulated in HIVE tissue sections as compared to cells in tissue sections obtained

from uninfected brains. In addition, our findings indicated that uHC are opened in response

to HIV infection in astrocytes, suggesting their participation in the pathogenesis of HIV

CNS disease. These findings that Cxs participate in the pathogenesis of NeuroAIDS open a

new avenue of investigation to study the mechanisms by which HIV “hijacks” this

communication system, GJs and perhaps uHCs, to spread toxicity, inflammation, and

increase leukocyte transmigration into the CNS.

Viral and bacterial infections

In general, both viral and bacterial infections reduce GJ channels and Cx expression. For

example, swine Flu virus down-regulates endothelial Cx43 expression by an ERK and

increased degradation dependent mechanism (Hsiao et al. 2010). Borna virus also down

regulates Cx36 in the CNS in specific brain cell types (Koster-Patzlaff et al. 2007, 2008,

2009). Influenza viral infection during pregnancy alters development of the brain of the

fetus, suggesting that viruses can impact neuronal development by affecting GJs (Fatemi et

al. 2008) required for development and function of the CNS. Studies in Vero cells

demonstrated that infection with Herpes Simplex Virus-2 (HSV-2), down-regulated GJ

channels and Cxs expression (Fischer et al. 2001; Musee et al. 2002; Knabb et al. 2007). It

was reported that an increase in tyrosine phosphorylation by HSV-2 and Rous sarcoma virus

leads to an inhibition of GJ channels and Cx43 expression (Crow et al. 1990; Filson et al.

1990; Crow et al. 1992). Bovine papillomavirus type 4 E8, when bound to ductin, causes

loss of GJ channels between primary fibroblasts (Faccini et al. 1996; Ashrafi et al. 2000). In

contrast, our preliminary data show that HIV infection of astrocytes is different because it

maintains/increases Cx43, Cx30 and GJ channels allowing toxic signals generated in a few

infected cells to spread through GJs to uninfected cells (Eugenín and Berman 2007; Eugenín

et al. 2011). In addition, GJ channels increase invasion and dissemination of Shigella in

epithelial cells (Tran Van Nhieu et al. 2003), suggesting the possibility that specific

infectious agents, such as Shigella and HIV, can use GJ channels to sensitize uninfected

cells and spread infection/toxicity to healthy cells. Future experiments are necessary to

identify the signals generated by infected cells that cross through GJs to sensitize uninfected

cells and enable them to become targets of these infectious agents.

Alternatively, GJs benefit the host immune system by mediating a phenomenon termed

cross-antigen presentation. This enables coupled cells to share viral peptides (antigens) and

trigger a response in CTL cells, even when some cells were never directly exposed to the

pathogen (Neijssen et al. 2005). GJ-mediated immune coupling suggests the possibility that

GJs expressed by monocytes/macrophages in inflammatory conditions cross-present

antigens to lymphocytes and other inflammatory cells to maintain an immune memory in

cells never exposed directly to specific antigen (Neijssen et al. 2005). In agreement, Cx43 is

recruited to the immunologic synapse during T cell priming, suggesting that GJ and uHCs

also participate in antigen presentation (Mendoza-Naranjo et al. 2011).
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Alzheimer’s disease (AD)

Aβ peptide is required for CNS function. However, under certain conditions, this peptide

aggregates and produces toxic effects (Palop and Mucke 2010; Parihar and Brewer 2010).

Up-regulation of Cx43 has been detected in cortical astrocytes in the brain containing Aβ
peptide plaques as compared to normal brains (Nagy et al. 1996; Mei et al. 2010).

Experiments using rat astrocytes demonstrated that β/A4 amyloid resulted in an increase in

the amplitude, velocity and travel distance of evoked calcium waves, by an ATP- and GJC-

dependent mechanism (Haughey and Mattson 2003). Recently, it was shown that Aβ peptide

induces the release of ATP and glutamate through glial uHC, which leads to further neuronal

death by activation of Panx-1 uHC in neurons (Orellana et al. 2011b). Additionally,

expression of β/A4 amyloid in PC12 cells increased Cx43 expression and dye coupling

(Lynn et al. 1995), suggesting that Aβ peptide increases GJC in CNS cells by an unknown

mechanism. However, in all of these studies it is unclear whether normal regulation of Cx is

a product of a physiologic or pathogenic effect of Aβ or due to the damage observed in the

end stages of the disease. Thus, further examination of the role of Cxs and GJ during the

pathogenesis of AD is required.

Parkinson’s disease (PD)

PD is a neurodegenerative disease characterized by loss of dopaminergic neurons, especially

in the substantia nigra-striatum, that results in progressive tremor, and muscle and gait

abnormalities (Lim et al. 2002; Lotharius and Brundin 2002). The mouse MTPT model of

PD showed increased levels of Cx43 in the stratium (Rufer et al. 1996), but this may be

related to gliosis and not be specific to PD. The dysfunction of astrocytic Cx43 induced by

rotenone to trigger a PD phenotype, as a model of PD, can be reversed by opening

mitochondrial ATP-sensitive potassium channels, suggesting the involvement of these

channels in the mitochondria regulated Cx43 expression (Kawasaki et al. 2009; Zhang et al.

2010).

Interestingly, treatment of the Cx36 KO mouse with harmaline, a beta-carboline derivative,

induced tremors by altering rhythmogenesis in a similar way to PD, but did not show any

differences when compared to wild type mice, suggesting that Cx36 may not play a role in

the initial pathogenesis of the disease (Long et al. 2002a). However, a compensatory

mechanism should not be ruled out, as it has already been described in the Cx36 KO mice in

coordinating rhythmic activity between the neurons of the inferior olive and suprachiasmatic

nucleus (Long et al. 2002b, 2005), which is believed to be the region that generates the

tremors (Elble 1996). In conclusion, there are only a few studies that characterize the

expression, function and localization of Cxs in PD brains or animal models and the

participation of these channels in the pathogenesis of PD is unclear.

Huntington disease

Huntington disease is an autosomal dominant neurodegenerative disorder characterized by

motor dysfunctions, cognitive impairment and personality changes that is due to mutations

in the protein huntingtin (htt). Studies using human tissue sections obtained from individuals

with Huntington disease showed a similar distribution of Cx32 and Cx26 as compared to

normal brain tissue sections, but Cx43 immunoreactivity was increased in the caudate

nucleus, especially in regions richer in GFAP staining (Vis et al. 1998), perhaps due to

gliosis. Studies in retina using a transgenic R6/2 mice expressing the mutant form of htt

demonstrated decreased expression of Cx45 while Cx36 and Cx43 were not significantly

altered (Petrasch-Parwez et al. 2004). Further studies are required to dissect whether these

changes in Cx expression participate in the pathogenesis of the disease or are a consequence

of the cellular damage characteristic of Huntington disease.
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Epilepsy

Epileptic seizures may be associated with abnormal stimulation of certain brain areas

causing abnormal depolarization, which expands by spreading to neighboring areas (Ure and

Perassolo 2000; Ure et al. 2006). This process can be mediated by glutamate (Meldrum

1994; Moldrich et al. 2003), auto antibodies that activate AMPA receptors (GluR3) (Levite

et al. 1999; Levite and Hermelin 1999; Palmer et al. 1999), and aberrant activation or

deactivation of NMDA receptors, GABA receptors, potassium channels, sodium channels

and GJs (Naus et al. 1991; Carlen et al. 2000; Samoilova et al. 2003; Brooks-Kayal et al.

2009; Kang and Macdonald 2009; Planells-Cases and Jentsch 2009; Galanopoulou 2010).

Astrocytic GJ channels increase in epileptic tissue of cats as demonstrated by morphological

studies (Vaquero et al. 1978) and an increase in Cx43 mRNA was found in human epileptic

tissue (Naus et al. 1991), suggesting a potential role of Cx43 in the pathogenesis of this

disease. In addition, increased GJ channels have been shown between astrocytes isolated

from human epileptic tissue as assayed by the enhanced propagation of a calcium wave in

response to glutamate (Lee et al. 1995). Based on these data, it has been proposed that Cxs

are involved in expanding the spread of an epileptic wave during seizures (Perez Velazquez

and Carlen 2000; Perez Velazquez et al. 2001). This hypothesis is supported by studies

showing that GJ blockers reduced seizures in different models of epilepsy in vitro and in

vivo (Sohl et al. 2000; Jahromi et al. 2002; Samoilova et al. 2003; Gareri et al. 2004; Gajda

et al. 2005; Gareri et al. 2005; Bostanci and Bagirici 2006; Nilsen et al. 2006; Meldrum and

Rogawski 2007; Jacobson et al. 2010). Studies using the Cx36 KO mouse showed that loss

of GJ channels reduced kainate- or 4-aminopyridine-induced seizures (Hormuzdi et al. 2001;

Maier et al. 2002; Christie et al. 2005), suggesting a key role of GJ channels in the

development and sustaining of epileptic seizures. In human tissue, upregulation of Cx43 and

Cx32 has been detected in different types of epilepsy (Elisevich et al. 1997; Aronica et al.

2001; Li et al. 2001; Fonseca et al. 2002; Samoilova et al. 2008; Yao et al. 2009).

Additionally, Cx30, which is normally expressed in astrocytes, was detected in neurons after

kainate-induced seizures (Condorelli et al. 2002). All these data suggest that de novo

synthesis of Cxs causes changes in permeability and distribution of Cxs during

epileptogenesis. While these data in humans are consistent, results in animal models are

more variable and difficult to interpret. This may be due to the use of different experimental

approaches to generate the epileptic phenotype and the methods to examine the disease that

may or may not be good models for epilepsy in humans resulting in different patterns of Cxs

expression and functions of GJ channels. Thus, design of better animal models and studies

in humans are required to compare both systems.

CNS tumors

Gliomas are the most common tumor in the brain (Behin et al. 2003), characterized by high

intracranial pressure, brain edema and vessel occlusion (Behin et al. 2003). Cx expression

and GJ channels are low in tumors, primary glioma cells or glioma cell lines (Huang et al.

1999; Zhang et al. 1999; Soroceanu et al. 2001; Lin et al. 2002; Pu et al. 2004; Oliveira et al.

2005; Kubota et al. 2006; Bates et al. 2007; Lai et al. 2007). Tumor cells can directly couple

with normal cells through GJs (Zhang et al. 1999). This communication results in a

phenotypic transformation of astrocytes that may contribute to the susceptibility of

surrounding tissue to glioma invasion. There are reports indicating a beneficial role of Cxs

in glioma treatment. Cx43 expression by itself is considered to be a tumor suppressor gene

independent of formation of functional GJs (Huang et al. 1998; Yamasaki et al. 1999;

Moorby and Patel 2001; Omori et al. 2001; Zhang et al. 2003a, b, c; Del Monte and Statuto

2004). In addition, transfection of Cx43 and herpes simplex virus thymidine kinase (HSVtk)

resulted in bystander cell death in a Cx43 dependent manner upon treatment with

ganciclovir (GCV), a nucleoside analogue (Shinoura et al. 1996; Cirenei et al. 1998;

Grignet-Debrus et al. 2000; Marconi et al. 2000; Namba et al. 2001; Asklund et al. 2003;
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Huang et al. 2010). GVC is phosphorylated by HSVtk into a monophosphate form and

subsequently to GCV-triphosphate by endogenous kinases, and is incorporated into the

DNA of the target cell, leading to strand breaks and cell death. Interestingly, neighboring

cells coupled by GJs also die, although these cells do not express the enzyme. This

phenomenon is believed to be a bystander effect mediated by the transfer of toxic GVC-

metabolites through GJs from the cell infected with HSVtk to uninfected neighboring cells

(Dilber et al. 1997). Cx43 transfection into tumor cells results in functional coupling and in

enhancement of the bystander effect in vivo (Mesnil et al. 1996; Cirenei et al. 1998;

Andrade-Rozental et al. 2000) and in vitro (Mesnil et al. 1996; Cirenei et al. 1998; Andrade-

Rozental et al. 2000; Marconi et al. 2000; Musee et al. 2002; Asklund et al. 2003; Huang et

al. 2010). Currently, several groups continue to examine the potential role of this bystander

effect in the treatment of different types of tumors. The discovery that glioma cells can

express functional uHC also increases the possibility that during pathologic conditions, these

channels contribute to the regulation of proliferation or in protecting tumor cells from

damage induced by GVC or chemotherapy by pumping out toxic metabolites in similar ways

to ABC transporters (Andrade-Rozental et al. 2000). In addition, future studies investigating

the generation of other intracellular toxic metabolites, such as cytochrome C, which has

been shown to cause bystander killing in the retina, could be beneficial.

Conclusions

This review summarizes much of the current data on the role of Cxs in different cell types

and their involvement in human central nervous system diseases. A more complete

understanding of the role of Cxs in different human diseases require a more detailed study of

the function of connexin-and pannexin-based cell-cell channels, GJs and uHC, under normal

and pathologic conditions. A critical point is to examine, in addition to the role of GJs and

uHC in physiologic conditions, the role of these channels during the pathogenesis of human

disease. Recent work indicated that GJs and uHC are key channels involved in resolving, but

also in spreading, disease. Our study with HIV indicates that some pathogens use these

communication systems to their advantage. Thus, a more complete understanding of these

communication systems should provide essential information for the development of novel

therapeutic approaches
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic diagram showing connexin (Cxs) membrane topology and a plaque of GJ

channels. a Model showing membrane topology of Cx E1 and E2, represent the extracellular

loops and IL, the intracellular domain. b Model of the GJ plaque between two cells (cell 1-

cell 2) and its role in mediating communication by diffusion of second messengers smaller

than 1 kDa, such as Ca2+, IP3 and nucleotides
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Fig. 2.
Cartoon representing some of the agents/conditions that open/close hemichannels and an

electrophysiological recording of their activity. The arrows in the diagram show the different

conditions that open hemichannels, such as positive voltages (+Vm), metabolic inhibition

(MI) and changes in redox potential (dithio-treitol, DTT), and the conditions that close

hemichannels, such as low pH and high extracellular calcium (high Ca2+). An example of an

electrophysiological recording obtained in Hela cells transfected with Cx43-EGFP in whole

cell patch, voltage clamp at +30 mV, is shown under metabolic inhibition conditions as

described (Contreras et al. 2002)
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Fig. 3.
Electron microscopy in normal mice CNS sections between astrocytes and oligodendrocytes.

a An oligodendrocyte in the optical nerve lies near the apical surface (*). Note the gap

junctional complex along its lower surface (arrow). x12,500. b Details of the gap junctional

plaque in A, between the oligodendrocyte (above), and an astrocyte process (As). The gap

junction plaque is unusually long and is flanked by desmosome-like contacts (arrows).

Adjacent astrocyte processes are rich in glial filaments and a small desmosome can be seen

(below). x62,000. This is an extraordinary demonstration of large gap junctions between

astrocytes and oligodendrocytes that support the concept that oligodendricyte and astrocyte

communication is active and under pathological conditions, alterations in communication

could result in oligodendrocyte damage
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Fig. 4.
Distribution of Cx43 and Cx32 in human spinal cord sections obtained from normal

individuals and individuals with MS. Confocal microscopy of Cx43 (FITC, green) and MBP

(Cy3, red) staining, colocalization of both proteins is represented as orange staining in the

last panel. A, B and C, represents staining of human tissue sections for GFAP (FITC, green)

and Cx43 (Cy3, red), a small insert shows the Cx43 staining alone, from normal (a), MS

with chronic active lesions (b) and chronic silent lesions (c). d, e and f, represents staining

for Cx32 (FITC, Green) and MBP (Cy3, red) in human sections obtained from spinal cords

from individuals with normal tissue (d), MS with chronic active lesions (e) and silent lesions

(f). The small inserts in each picture show the Cx32 staining alone. These tissue sections

were already characterized for the kind of MS lesions and the damage in the lesion area

(Calderon et al. 2006). Note that in MS tissue it is possible observe oligodendrocyte atrophy

and disorganization of the brain parenchyma. Bar: 70 μm
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