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ABSTRACT 

Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few 

studies have addressed the adaptive significance of this morphological trait in foraging and 

eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a 

diversifying gradient of coregonids was used as the natural setting to explore correlations 

between gill raker numbers and planktivory as well as the impact of coregonid radiation on 

zooplankton communities. Results from 19 populations covering most of the total gill raker 

number gradient of the genus Coregonus, confirm that the number of gill rakers has a central 

role in determining the foraging ability towards zooplankton prey. Both at the individual and 

population levels, gill raker number was correlated with pelagic niche use and the size of 

utilized zooplankton prey. Furthermore, the average body size and the abundance and 

diversity of the zooplankton community decreased with the increasing diversity of 

coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop 

that may further shape the gill raker morphology since natural selection intensifies under 

resource competition for depleted prey communities. Eco-evolutionary interactions may thus 

have a central role creating and maintaining the divergence of coregonid morphs in 

postglacial lakes.  
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INTRODUCTION 

In adaptive radiation, a common ancestor is diverged into two or more species via ecological 

processes and morphological adaptations to utilize different niches (Schluter 2000; Grant and 

Grant 2008). Foraging trait evolution in relation to adaptive radiations has been intensively 

studied in simplified and isolated ecosystems such as distant islands or their continental 

counterparts, newly formed lakes (Dieckmann et al 2004; Losos and Ricklefs 2009). A 

classic text book example is the adaptive radiation of the beak size and shape of Geospiza 

spp., where a common ancestor has diversified into a variety of species specialized to feed on 

specific types of plant seeds within a wide range of seed sizes and hardnesses (Grant and 

Grant 2008). In fishes, the adaptive radiation of East African cichlids represents an excellent 

example of distinct morphological adaptations of head and jaws correlated with specific 

foraging niches (Clabaut et al 2007; Salzburger 2009). However, adaptive radiations also 

occur in much less diverse environments such as in many fish lineages in postglacial lakes 

(Schluter 1996). The general pattern is a divergence along the pelagic-benthic resource axis, 

where morphological adaptations in body and head shape seem to be important in the 

radiation process (Schluter and McPhail 1993; Robinson and Parsons 2002, Amundsen et al 

2004a). We focus on one of these traits, the gill raker number, as surprisingly few large scale 

studies have been made to reveal the adaptive significance of this trait even though it is an 

important trophic trait in variety of fish species (see e.g., Janssen 1980; Gibson 1988; 

Friedland et al 2006). 

 

Coregonid fishes have a circumpolar distribution with frequent co-occurrence of multiple 

ecologically and morphologically distinct morphs (Svärdson 1979; Bernatchez et al 1999; 

Amundsen et al 2004b). Both ecological and genetic evidence suggests that adaptive 

radiation is the most likely explanation for the observed patterns (Bernatchez 2004; Østbye et 
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al 2006; Hudson et al 2007). Different morphs of coregonids have traditionally been 

identified from the number of gill rakers (Svärdson 1952; Lindsey 1981; Bernatchez 2004) 

which is a heritable and ecologically important trait (Svärdson 1979; Rogers and Bernatchez 

2007). The European whitefish (Coregonus lavaretus (L.)) is the most diverse coregonid 

species, and have repeatedly and independently radiated from a common ancestor into 

multiple morphs in a large number of postglacial lakes (Østbye et al 2005). Genetic results 

indicated similar divergence of pelagic and littoral morphs in replicate lakes suggesting 

parallel evolution within each lake (Østbye et al 2006). Due to highly similar radiation 

patterns of morphs in different lakes, we clustered whitefish as three different groups 

according to their specific ecomorphology.  Here, whitefish exhibit distinct morphs for all 

three principal lake habitats (i.e. the littoral, profundal and pelagic), in which each has 

specific prey resources (Kahilainen et al 2003, 2005; Jensen et al 2008). The littoral is 

structurally complex with diverse benthic resources, comprising a sharp contrast to the low 

light conditions and scanty sediment-buried benthic resources in the profundal habitat (i.e., 

the deep benthic zone). The pelagic zone is a structurally homogenous habitat providing 

zooplankton resources for fish. These principal lacustrine habitats can be considered as peaks 

in an adaptive landscape that requires morphological adaptations to enhance utilization of 

their specific diet resources. Accordingly, one should expect morphs from these principal 

habitats to differ in important foraging related traits such as the gill raker apparatus (Schluter 

and McPhail 1993; Robinson and Parsons 2002, Amundsen et al 2004a).  

 

The trophic role of the gill raker apparatus is related to prey retention efficiency, where the 

gill rakers function as a cross-flow filter forcing the prey items towards the oesophagus of the 

fish (Sanderson et al 2001, Smith and Sanderson 2008). An increasing number of gill rakers 

enhance crossflow filtering and the closely spaced gill rakers also limit the escape 



 5 

possibilities of small prey, further improving the foraging efficiency. However, a dense 

gillraker apparatus is more likely to be clogged by sediments than more sparse gillrakers, and 

foraging in the muddy bottom of the profundal most likely require other gillraker adaptations 

than e.g. feeding on small-sized zooplankton. Accordingly, a high number of long gill rakers 

is common in planktivorous fish species and morphs, whereas benthic species and morphs 

usually display a lower number of shorter gill rakers (Janssen 1980; Schluter and McPhail 

1992; Robinson and Parsons 2002). Coregonids have a wider gillraker range than other 

polymorphic fish lineages and thus represent an excellent candidate taxon to evaluate the 

significance of such phenotype-environment associations. Furthermore, the principal prey 

resource associated with this trait (i.e. zooplankton) can be examined in detail qualitatively 

and quantitatively both in the environment and the predator diet. Such comparisons in natural 

settings are ideal to explore the adaptive significance of the predator’s functional 

morphology. In their seminal paper, Brooks and Dodson (1965) revealed that size selective 

predation of planktivorous fish alters the species composition and reduces the body size of 

prey communities. This has lead to a wide consensus that planktivorous fish regulates 

zooplankton communities (Zaret 1980; Lampert and Sommer 2007). When a proportion of 

fish population is adapting to a zooplankton resource, the zooplankton community response 

by decreased body sizes provides a feedback loop that further strengthen the selection 

pressure towards high foraging efficiency on small prey items. Such eco-evolutionary 

interactions have rarely been addressed in relation to adaptive radiations of postglacial fish.   

 

Here, we used a set of subarctic lakes that comprises a diversity gradient of coregonid 

assemblages with increasing range and numbers of gill rakers, including 1) monomorphic 

whitefish with ca 20-30 gill rakers, 2) polymorphic whitefish populations with ca 15-40 

rakers, and 3) polymorphic whitefish and vendace, Coregonus albula (L.) with ca 15-50 
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rakers). This range constitutes a natural setting to explore the role of increasing gill raker 

numbers in zooplankton foraging, including the impact of coregonid radiation on zooplankton 

prey communities. We assumed that foraging efficiency is associated with the ability to 

utilize small prey, and predicted that zooplankton prey utilization is correlated to the gill 

raker number. Furthermore, we predicted that zooplankton size, density and community 

structure would change along the gradient from monomorphic to polymorphic and finally to 

polymorphic whitefish and vendace lakes. Such a pattern would provide an eco-evolutionary 

feedback mechanism where the prey community over evolutionary time (e.g. under adaptive 

radiation) could shape the morphology of the predator.  

 

 

MATERIALS AND METHODS 

Study area and fish populations 

We examined a set of eight northern Fennoscandian postglacial lakes situated in the large 

subarctic Paatsjoki/Pasvik watercourse, including five Finnish (Lakes Aksujärvi, 

Vuontisjärvi, Vastusjärvi, Muddusjärvi and Paadar) and three Norwegian (Lakes Ellentjern, 

Tjærebukta and Skrukkebukta) lakes (Fig. 1). This set of lakes represents a wide gradient of 

coregonid populations. The Finnish headwater lakes discharge into the large Lake Inarijärvi 

(hereafter L. Inari), whereas Norwegian lakes are situated in the lower reaches of the 

watercourse (Fig. 1b). The study lakes are all oligotrophic (totP 3–9 µg/l, totN 145–240 µg/l), 

well-oxygenated with neutral pH-values (6.8–7.2). Surface areas range from 1 to 48 km2 and 

maximum depths from 7 to 73 m (Table 1).  The ice-free season generally lasts from May-

June to October-November. Coregonids, represented by three different whitefish morphs and 

vendace, are the main zooplankton predators and the dominant fish species (70-91% of 

numerical catches) in all lakes, except L. Ellentjern, but the composition of the coregonid 

assemblage differs among the lakes. 
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The lakes were classified according to an increasing diversity of coregonids. Lakes Aksujärvi 

(hereafter L. Aksu), Ellentjern and Vuontisjärvi (L. Vuontis) were classified as type 1, with 

only one whitefish morph present, the large sparsely rakered (LSR) morph. LSR whitefish is 

identified and named according to body size and number of gill rakers, which usually ranges 

from approx. 20-30 (Fig. 2). In lake type 2, LSR whitefish co-exist with a densely rakered 

(DR) whitefish morph with approx. 30-40 gill rakers (L. Vastus) or with DR whitefish and a 

small sparsely rakered (SSR) whitefish morph with approx. 15-20 gill rakers (Lakes Muddus 

and Paadar). In the most complex lake type 3 (Lakes Tjærebukta and Skrukkebukta), 

polymorphic whitefish (LSR, DR and SSR whitefish morphs) co-exist with vendace, which 

has the highest number of gill rakers (approx. 40-50) (Fig. 2).  Vendace is a pelagic 

zooplankton specialist (Helland et al 2008) and does not occur naturally in the 

Paatsjoki/Pasvik watercourse (Amundsen et al 1999). Vendace was introduced to L. Inari in 

the 1950-60’s and formed a very dense population during the 1980’s leading to an invasion 

and colonization of the lower Paatsjoki lakes around 1990 (Amundsen et al 1999). As a 

superior planktivore competitor over DR whitefish, vendace has become the dominant fish 

species in the pelagic food web in many lakes in the lower parts of the Paatsjoki/Pasvik 

watercourse (Bøhn and Amundsen 2001; Gjelland et al 2007; Bøhn et al 2008).  

 

Fish sampling 

Sampling was conducted during September (years 2000-2007) in all the lakes. A long 

sampling period was needed to include several lakes and coregonid populations from both 

countries. This should not have any significant influence on the main patterns, since gill raker 

traits, habitat and diet selection of the studied coregonid populations are highly stable among 

different years (Amundsen et al 2004a, b; Kahilainen et al 2004, 2007, 2009). Coregonids 
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were sampled from the three main habitats (littoral, pelagic and profundal) using a 

combination of gill net series and pelagic trawling. The Finnish lakes were sampled using a 

gill net set with eight nets, each having a length of 30 m and a height of 1.8 m, with mesh 

sizes 12, 15, 20, 25, 30, 35, 45 and 60 mm from knot to knot. In addition, we used a small 

pair trawl (5 m high, 8 m wide and cod-end mesh size 3 mm) in the pelagic zone of these 

headwater lakes (see Kahilainen et al 2004 for details). In the Norwegian lakes coregonids 

were caught in the littoral and profundal habitats using benthic gill nets series (length 40 m 

and height 1.5 m) with the mesh sizes of 10, 12.5, 15, 18.5, 22, 26, 35 and 45 mm, and in the 

pelagic using floating gill net series (length 40 m and height 6 m) with mesh sizes of 8, 10, 

12.5, 15, 18.5, 22, 26 and 35 mm.  

 

Coregonids were field-identified to morph/species according to their overall habitus, head 

shape and gill rakers (Amundsen et al 2004b; Kahilainen and Østbye 2006). Minor overlap of 

gill raker counts exist between the whitefish morphs, but these individuals can be classified 

using combined information from body, head and gill rakers morphology. Uncertain SSR 

whitefish can be defined from LSR whitefish due to its very peculiar habitus with large eye, 

robust head, pronounced subterminal mouth and short bend gill rakers (Kahilainen and 

Østbye 2006, Harrod et al 2010). Uncertain DR whitefish was classified according to longer 

gill rakers, terminal mouth and pointed head shape (Amundsen et al 2004b; Harrod et al 

2010). Vendace can be separated from DR whitefish accurately as it has a characteristic up-

pointing protruding lower jaw, very pointed head, and very long and slender gill rakers.    

 

The number of gill rakers was counted from the first left gill arch under a preparation 

microscope. Stomachs were removed and prey items were identified as accurately as 

possible. The relative contribution of each prey category was estimated (Amundsen et al 
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1996). The coregonids diet consisted of pelagic zooplankton (mainly Bosmina spp., Daphnia 

spp., Holopedium gibberum, calanoid and cyclopoid copepods) and benthic invertebrates 

(mainly molluscs, insect larvae and some benthic crustaceans). In the present study, we 

focused on zooplankton prey, which is the only diet category considered hereafter. Body 

length of up to 30 individuals of undigested zooplankton was measured from each stomach, 

when possible. In copepods, we measured the length from rostrum to furca and in cladocerans 

from head to base of the tail spine (Kahilainen et al 2005). 

 

Zooplankton sampling 

Zooplankton was sampled in September from the whole water column using two replicate 

samples from each lake. In the Finnish lakes, samples were taken with a Limnos-tube (1 m, 

volume 7.1 L) and zooplankton net (diameter 25 cm, mesh size 50 μm). Tube samples were 

sieved through 50 μm zooplankton net and all samples were stored in 5% formalin solution. 

In the Norwegian lakes, samples were taken with a 30L Schindler-Patalas trap or with a 

vertically hauled zooplankton net (diameter 26 cm, mesh size 90 μm) and stored in 4% 

formalin solution. Differences in sampling gears between countries may have effect on 

zooplankton community results. The somewhat larger mesh size of zooplankton net and 

higher volume of Schindler-Patalas trap used in Norwegian lakes could more effective to 

capture larger individuals as well as higher density and diversity of zooplankton community 

than the smaller gear used in Finnish side (Kalff 2002). We recognize this potential bias in 

the interpretation of results and take this into account in prey size comparisons among 

coregonids. However, the smallest zooplankton found in coregonid diet (0.30 mm, Bøhn and 

Amundsen 1998) is substantially larger than the largest zooplankton net mesh sizes used in 

this study (0.09 mm), ensuring that both sampling methods have captured zooplankton sizes 

available to fish. Zooplankton samples were counted and measured in the laboratory, 
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excluding nauplii since they were not observed in the fish diet. The body length of 30-50 

randomly selected individuals from each zooplankton taxa (Bosmina, Daphnia, Calanoid and 

Cyclopoid copepods) was measured. The average zooplankton density per litre in the whole 

water column and the relative proportion of the main taxa were calculated. 

 

 Statistical analyses 

At the population level, the average number of gill rakers was compared with the proportion 

of pelagic habitat use and diet as well as zooplankton prey size in the stomachs using 

Spearman correlations. The same approach was used to explore potential correlations 

between gill raker number and the proportion of pelagic diet and zooplankton prey size at the 

individual level. In individual diet data, we calibrated datasets according to the lowest 

samples sizes per morph/lake and then used random re-sampling for other morph/lake 

combinations. Differences in zooplankton prey length data among morphs/species types were 

harmonized by random re-sampling of 25 samples from a morphs/species within a lake when 

available. This approach enabled separation of effects at the individual and population levels. 

Differences in the zooplankton prey size among whitefish morphs and vendace were tested 

with analysis of covariance (ANCOVA) using the zooplankton average length in each lake as 

a covariate. The effect of individual gill raker number on median zooplankton prey length in 

the stomach was tested with a general linear model (GLM) using gill raker number, mean 

zooplankton length in the environment, and species/morph as predictor variables. The effect 

of individual gill raker number on median zooplankton prey length was finally tested with 

regressions within each species/morph on the full dataset, using prey length as the response 

and gill raker number as the predictor variable. 
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 A GLM was used to test for zooplankton size differences among lake types using different 

zooplankton taxa and lake type as categorical variables. Analysis of variance (ANOVA) was 

used to test for differences in the average zooplankton abundance (log (x+1) transformed 

data) among lake types. The number of samples used for zooplankton length measurements in 

coregonid stomachs and in the environment was different among the lakes and we used 

bootstrapping for calibration of sample sizes before performing ANCOVA, GLM and 

ANOVA. Subsequent pairwise comparisons in these analyses were made with Tukey’s HSD 

tests.  

 

 

RESULTS 

 

Strong positive correlations were found at the population level between the number of gill 

rakers and both the pelagic habitat use (Fig. 3a, n=19, Spearman correlation; rs=0.83, p<0.01) 

and the proportion of zooplankton in the diet (Fig. 3b, n=19, rs=0.84, p<0.01). Polymorphic 

SSR and LSR whitefish populations with an average number of gill rakers from 16-21 and 

22-25, respectively, mainly used the benthic niche. Monomorphic LSR whitefish populations 

had an average number of gill rakers from 24 to 28 and used both pelagic and benthic prey 

and habitat. DR whitefish had in average 33-35 gill rakers and was the most pelagic and 

planktivorous whitefish morph. Vendace had on average 43 gill rakers and was consistently a 

pelagic planktivore. In accordance with the niche utilization, a significant negative 

correlation was observed between the average number of gill rakers and zooplankton prey 

size (n=19, rs=-0.83, p<0.01) (Fig. 3c). The ANCOVA indicated that the average length of 

ingested zooplankton was dependent on coregonid morph/species (F3,187=91, p<0.001), but 

not on the observed average zooplankton length in the pelagic environment (F1,187=2, 
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p=0.13). The average length of zooplankton prey gradually decreased from 1.90 mm in SSR 

whitefish, 0.95 mm in LSR, 0.61 mm in DR to 0.57 mm in vendace. These size differences in 

ingested prey were different between all coregonid taxa (Tukey’s HSD tests, p<0.001), 

except between DR whitefish and vendace (p=NS). At the individual level, the general 

patterns observed at the population level were supported by a positive correlation between the 

number of gill rakers and the proportion of zooplankton in diet (Fig. 4a, n=48, rs=0.68, 

p<0.01) and a negative correlation between number of gill rakers and zooplankton prey size 

(Fig. 4b, n=245, rs=-0.69, p<0.01).  The GLM-analysis (adj. r2=0.59) confirmed a strong 

effect of morph/species on median zooplankton prey size (P<0.05 for all morphs/species), 

and also indicated a negative effect of individual gill raker number within the morph/species 

(p=0.082). The regressions within each morph/species revealed that the negative effect of 

individual gill raker number on zooplankton prey size was significant only within the LSR 

and SSR whitefish (Table 2).  

 

There were distinct trends in the zooplankton community structure along the increasing 

coregonid diversity gradient (Fig. 5). The average size of zooplankton differed among lake 

types (GLM, F2,1025=67, p<0.01) and gradually decreased from 0.65 mm in lake type 1, 0.60 

mm in type 2 to 0.54 mm in lake type 3 (Tukey’s HSD tests, p<0.05) (Fig. 5a). A decreasing 

trend along the coregonid diversity gradient was observed also in zooplankton abundance 

(Fig. 5b), but with no statistical significance (ANOVA, F2, 13=0.41, p=0.67). The average 

density in lake type 1 (8.2 ind/l) tended to be higher than in lake type 2 and 3 (5.4 and 5.8 

ind/l, respectively). Zooplankton community composition changed from equal proportions of 

copepods and cladocerans in lake type 1 to a clear dominance of cladocerans in lake type 3 

(Fig. 5c). This was mainly due to a decrease in the proportion of cyclopoid copepods and an 
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increase in the proportion of Daphnia spp., in particular the small-sized and transparent 

species D. cristata, in lake type 3.  

   

 

DISCUSSION  

We documented a strong relationship between gill raker numbers and the degree of 

planktivory; a pattern that appears to be common in polymorphic fish populations in the 

northern hemisphere (Schluter and McPhail 1992, Skúlason et al 1999; Amundsen et al 

2004a). The current study extended this common pattern to a much larger scale by including 

all principal habitat types and a very wide range of gill raker number utilizing 19 different 

populations.  There were strong positive correlations between predator trophic morphology 

(gill rakers) and pelagic niche utilization (habitat and diet) as well as an adaptive significance 

of increasing number of gill rakers facilitating the utilization of smaller prey. The study 

furthermore extends the link between gill raker traits and niche utilization from the 

commonly occurring littoral-pelagic morph pairs of various fish species in the northern 

hemisphere (e.g. Schluter and McPhail 1993; Robinson & Parsons 2002), to also include the 

far less explored profundal niche. The fish with the lowest gill raker numbers (<20) were 

almost exclusively associated with the profundal habitat, the intermediate numbers (20-30) 

mainly with the littoral, whereas the highest numbers (whitefish: 30-40; vendace >40) were 

associated with the pelagic habitat and a typical zooplanktivore niche. These phenotype-

environment correlations proved to be strong both at the individual and population levels, 

suggesting that gill raker trait divergence is central in adaptive radiation of whitefish between 

these three principal habitats of subarctic lakes. 
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The number of gill rakers is a single heritable trait in coregonid fishes (Svärdson 1979; 

Rogers and Bernatchez 2007), but apparently it also effectively captures much of other 

morphological traits. Several trophic traits (i.e. head and body morphology) are associated to 

fish feeding niche utilization along traditional pelagic-littoral resource axis in many 

postglacial fish morphs (Schluter 1996; Robinson and Parsons 2002), but very little is known 

about profundal adaptations. The SSR whitefish typically residing in the profundal habitat, 

has the lowest gill raker counts among the explored whitefish morphs and a body and head 

morphology that likely have an adaptive value in profundal foraging (Kahilainen and Østbye 

2006). Similar adaptations in trophic related traits were shown to be heritable in a profundal 

Arctic charr morph specializing on soft bottom benthos (Klemetsen et al 2002, Knudsen et al 

2006). Foraging on prey items buried in soft bottom profundal sediments requires some 

suction of mud (Kahilainen et al 2003). A low number of short, widely spaced gill rakers is 

probably sufficient to retain typical profundal prey types (i.e. Pisidium bivalves and 

chironomid larvae) while allowing the mud to be disposed through the gillraker slits 

(Kahilainen and Østbye 2006). A dense gillraker apparatus would in contrast likely be 

clogged by mud (Amundsen et al 2004b). The SSR whitefish mainly consumed relatively 

large-sized prey, suggesting a limited foraging efficiency on zooplankton. The LSR whitefish 

morph has intermediate numbers, length and spacing of gill rakers and subterminal mouth 

which likely facilitate benthic foraging (Kahilainen and Østbye 2006; Harrod et al 2010). 

LSR whitefish is apparently less efficient in predation of small-sized zooplankton than the 

specialized planktivore DR whitefish morph that has large number of long and dense gill 

rakers and a terminal mouth and slender body shape (Kahilainen and Østbye 2006). These 

morphological traits of DR whitefish are well suited for pelagic planktivores (Webb 1984) 

and are likely to have evolved in the absence of resource competitors like ciscoes/vendace 

(Bernatchez 2004; Bøhn et al 2008).          
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The differences between coregonids in gill raker apparatus can be compared to the 

divergence of beak shape in birds, jaw shape in amphibians, mandible shape in bats or baleen 

plates in whales which all facilitate the use of different dietary niches (Werth 2004; Pfennig 

et al 2006; Price 2008, Nogueira et al 2009). In fish, there is a common trend of increasing 

number of gill rakers from piscivores to benthivores and finally to planktivores (Gibson 

1988; Langeland and Nøst 1995). Our results on Coregonus demonstrate a similar intra-genus 

benthivore-planktivore trend in gill raker numbers. Our field data furthermore show a 

negative correlation between the number of gill rakers and zooplankton prey size both at the 

population and individual levels. Zooplankton prey is available in all principal lake habitats 

(littoral, profundal and pelagic zones), providing an opportunity for planktivory for all 

whitefish morphs. The gill raker apparatus functions as a crossflow filter that directs prey 

particles towards the oesophagus (Sanderson et al 2001), and explains why increasing 

number of gill rakers facilitates the retention of smaller prey sizes. Previous studies failing to 

find similar correlations between gill raker traits and prey size in salmonids (Seghers 1975; 

Sandlund et al 1987; Budy et al 2005), may not have captured the essential range of trait 

variation that is demonstrated among the coregonids in the present study.  

 

The observed strong correlation between gill raker number and prey utilization at the 

individual level suggests a significant role of gill rakers in individual foraging efficiency that 

may promote disruptive selection.  Adaptive evolution and divergence of trophic traits are 

generally linked to unequal utilization efficiency of prey resources between individuals 

(Knudsen et al 2007; Araújo et al 2008), which may ultimately lead to differences in fitness 

and promote disruptive selection that may act in the formation of new morphs (Rueffler et al 

2006). In a monomorphic three-spined stickleback population, Bolnick and Lau (2008) found 
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evidence for disruptive selection via intraspecific competition, as individuals with high or 

low gill raker counts had higher growth rates than individuals with intermediate gill raker 

numbers.  In addition, if mating is assortative between phenotypically and ecologically 

similar individuals, the disruptive selection provides a pathway to population divergence into 

morphs (Snowberg and Bolnick 2008) and subsequently to speciation (Dieckmann and 

Doebeli 1999; Schluter 2000). Monomorphic LSR whitefish with intermediate number of gill 

rakers is the most common population type in northern Fennoscandia and probably represents 

the ancestral morphotype (Østbye et al 2006), since allopatric SSR or DR whitefish 

populations have not been found in the region (Lehtonen and Niemelä 1998; Amundsen et al 

2004b). During the early colonization of these postglacial lakes, ecological opportunities 

have presumably been high for specialization to each of the principal habitat types and their 

associated prey communities. These three principal trophic niches may promote disruptive 

selection on gill raker traits by constituting peaks in an adaptive landscape, where each 

whitefish morph has adapted morphologically to utilize one of these peaks.  Monomorphic 

LSR whitefish with intermediate gill raker number use all the principal lake habitats foraging 

both on zooplankton and benthic macroinvertebrates (Amundsen et al 2004b; Kahilainen et al 

2007). In sympatry with other morphs (i.e. in polymorphic lakes) the LSR whitefish prefers 

littoral macroinvertebrates, whereas the SSR whitefish utilizes profundal benthos and DR 

whitefish zooplankton (Harrod et al 2010). Interestingly, the effect of gill raker number on 

zooplankton prey size was strongest in the SSR whitefish, weaker but still significant in the 

LSR whitefish, and with no significant effect in the DR whitefish and vendace. This suggests 

a directional selection towards increasing gillraker numbers for SSR and LSR whitefish 

individuals that utilize a planktivorous niche, whereas there seems to be little support  for 

directional selection on increasing gill raker number in DR whitefish or vendace in these 

lakes. Taken collectively, our results support a scenario where LSR whitefish has diverged 



 17 

into SSR and DR whitefish morphs via disruptive selection primarily acting on gill raker 

morphology and foraging abilities (Østbye et al 2006).  

 

The differences in zooplankton community structure among the three lake types suggest a 

general importance of gill raker numbers in relation to planktivore predation.  Although the 

sampling was performed only in September, the previous seasonal open water datasets of 

zooplankton and niche utilization of whitefish morphs and vendace support the observed 

patterns in this study (Bøhn & Amundsen 1998; 2001; Kahilainen et al 2004; 2005; Gjelland 

et al 2009). However, there is a need for winter sampling during ice cover when zooplankton 

community is certainly different due to lack of cladocerans (Tolonen 1998) and niche 

utilization of coregonids may also differ (Jurvelius and Marjomäki 2008). In this study, we 

found that zooplankton body size and density decreased with increasing coregonid diversity, 

a pattern commonly observed in zooplankton communities when the number of specialized 

planktivorous fish species increases (Nilsson and Pejler 1973; Post et al 2008; Amundsen et 

al 2009). However, this pattern has previously not been connected to adaptive radiation in 

postglacial fish. These zooplankton community patterns could have been even stronger, if 

sampling gear had been identical. The vendace-whitefish lakes (lake type 3) were sampled 

using larger zooplankton gear that may have increased the average length of zooplankton. In 

lakes with only LSR whitefish present the competition for zooplankton resources in the 

pelagic habitat is expected to be weak. Accordingly, we observed large body size, high 

density and wide diversity of zooplankton in these lakes. In lakes including DR whitefish, 

however, increased competition for zooplankton was indicated by reduced body size, density 

and availability of zooplankton. Under such conditions, the frequency of planktivory in the 

LSR whitefish is low (Amundsen et al 2004b; Kahilainen et al 2007). This trend was even 

more pronounced in polymorphic lakes with vendace present as  both the LSR and even the 
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DR whitefish morphs were forced to utilize the benthic food resources (Bøhn and Amundsen 

2001; Bøhn et al 2008). Hence, in each step of increased coregonid diversity, predation 

efficiency for zooplankton increases and accordingly modifies the zooplankton community. 

Subsequently, this reduces the opportunities of SSR and LSR whitefish morphs to utilize the 

zooplanktivore dietary niche. We argue that this represents an eco-evolutionary process with 

a feedback loop that reduces the formation of intermediate phenotypes (and hybrids), and 

increases resource segregation among morphs. Similar feedback loops between predator 

morphology and resources have been found in zooplanktivore alewife Alosa pseudoharengus 

populations (Palkovacs and Post 2008, 2009) and in seed-feeding Geospiza finches (Grant 

and Grant 2008). This process is able both to create and maintain polymorphism in various 

ecosystems, and may over time lead to the formation of new species. Our data represent 

empirical support for the early stages of this process in pristine and relatively young fish 

communities. In a broader perspective, including the well known adaptive radiation in much 

older systems (like e.g. the speciation of cichlids), a profound link between ecological and 

evolutionary timescales is strongly indicated (see also Hairston et al 2005).  

  

In conclusion, our study demonstrates the adaptive significance of gill rakers in foraging: an 

increasing number of gill rakers facilitates the utilization of smaller prey and is advantageous 

to planktivory, but at the same time disadvantageous to benthivory, in particular to feeding in 

the profundal sediments (Fig. 6). Apparently, the three principal lacustrine habitats represent 

adaptive peaks, promoting disruptive selection leading to gill raker divergence and 

polymorphism. The phenotype-environment correlations between gill raker number and 

pelagic niche utilization proved to be strong both at the individual and population levels. 

Evidently, the coregonid gill raker divergence influences the zooplankton community 
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structure and likely creates an eco-evolutionary feedback loop maintaining and possibly 

strengthening the segregation of pelagic and benthic morphs. 
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FIGURE CAPTIONS 

Fig. 1. Map of (a) the northern Fennoscandia and (b) Paatsjoki/Pasvik watercourse. Study 

lakes with lake type definition indicated in the parenthesis (1=monomorphic whitefish, 

2=polymorphic whitefish and 3=polymorphic whitefish and vendace).  

Fig. 2. Combined gill raker distributions of whitefish morphs (SSR=small sparsely rakered, 

LSR=large sparsely rakered, DR=densely rakered) and vendace in study lakes. Line 

illustrations present the first left gill arch and gill raker morphology of different whitefish 

morphs. 

Fig. 3. Correlations between gill raker number and (a) the proportion of pelagic habitat use, 

(b) the proportion of zooplankton in the diet and (c) the zooplankton prey size at the 

population level. Population types are marked with different labels: SSR whitefish 

(circle), LSR whitefish (triangle), DR whitefish (square) and vendace (diamond). 

Fig. 4. Individual level correlations between gill raker number and (a) the proportion of 

zooplankton in the diet and (b) the average zooplankton prey size. Population types are 

marked with different labels: SSR whitefish (circle), LSR whitefish (triangle), DR 

whitefish (square) and vendace (diamond). 

Fig. 5. Zooplankton (a) body length, (b) density and (c) community composition along an 

increased diversity gradient of coregonids (lake types: 1=monomorphic whitefish, 

2=polymorphic whitefish and 3=polymorphic whitefish and vendace). Zooplankton taxa 

indicated in bars are Bosmina spp. (white), Daphnia spp. (grey), Holopedium gibberum 

(black), Calanoid (vertical hatching) and Cyclopoid copepods (diamond hatching). In lake 

type 3, Daphnia spp. refers mainly to Daphnia cristata. 

Fig. 6. Ecomorphological gradient of studied coregonid populations. Whitefish morphs 

(SSR=small sparsely rakered, LSR=large sparsely rakered, DR=densely rakered) and 

vendace body shapes are illustrated with line drawings. Normal distributions illustrate 
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niche widths and accompanying text indicates main habitat, diet and ecological 

classification of different coregonids. Lowest arrow indicates increasing morphological 

specialization towards zooplanktivory.   
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Table 1. Background data on location, morphometry, water chemistry and fish fauna of the 

study lakes. Coregonids and other fish species present in the study lakes are indicated with 

abbreviations. Lake type refers to the diversity of coregonid fish communities 

(1=monomorphic whitefish, 2=polymorphic whitefish, 3=polymorphic whitefish and 

vendace).  

 

Parameter Lake 

Aksu 

Lake 

Ellentjern 

Lake 

Vuontis 

Lake  

Vastus 

Lake 

Muddus 

Lake 

Paadar  

Lake 

Skrukkebukta 

Lake 

Tjærebukta 

Lake type 1 1 1 2 2 2 3 3 

Latitude (°N) 69°33’ 69°20’ 69°01’  69°03’ 69°00’ 68°52’ 69°33’ 69°13’ 

Longitude (°E) 26°53’ 20°49’ 27°04’ 27°07’ 26°50’ 26°35’ 30°70’ 29°14’ 

Surface area 

(km2) 

4 1 11 4 48 21 7 15 

Altitude 

(m.a.s.l.) 

206 71 151 146 146 144 21 52 

Max depth (m) 10 7 31 15 73 56 38 30 

Mean depth (m) 3.5 2.5 6.5 2.7 8.5* 11.7 14 4 

Secchi depth (m) 2.5 4.5 8 2 3 6* 4–5.5 3–4.5 

pH - 6.9 7.2* 7.0 7.2* 7.1* 6.9 6.8 

Tot P (µg/l) - 3 7* 7 5* 6* 7 9 

Tot N (µg/l) - 165 170* 240 160* 160* 156 145 

Coregonid 

proportion (%) 

81 39 90 70 86 91 85 78 

Species/ 

morphs present  

b,f,g,i,j,

k,l, m 

b,g, i, j, k, l b,f,g,h,i, 

j,k,l,m 

a,b,f,g,h,i

,j,k,l,m 

a,b,c,e,f,g, 

h,i,j,k,l,m 

a,b,c,f,g

,h,i,j,k,l

,m 

a,b,c,d,f,g, 

i,j,k,l,m  

a,b,c,d,f,g, 

i,j,k,l,m 

Note: *, Data from Lapland Regional Environment Centre; a, DR whitefish; b, LSR 

whitefish, c, SSR whitefish; d, vendace; e, arctic charr; f, grayling; g, minnow; h, three-

spined stickleback; i, nine-spined stickleback; j, perch; k, pike; l, burbot; m, brown trout. 
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Table 2. Results from the regression model prey length (in mm) = constant (a) + gill raker 

number (Grn). Level of significance (P) is included for constant, gill raker number and 

overall model. Zooplankton length in the environment was initially included in the models, 

but removed from all as it had no significant contribution. 

Species/morph a P(a) Grn P(Grn) adj. r2 P(overall) n 

SSR 2.9 <0.001 -0.052 0.002 0.1 0.002 88 

LSR 2.3 <0.002 -0.043 0.007 0.03 0.007 212 

DR 0.23 0.46 0.011 0.24 0.001 0.24 331 

Vendace 0.8 0.017 -0.007 0.22 0.18 0.22 6 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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