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Abstract 

Increased glutamine metabolism (glutaminolysis) is a hallmark of cancer and is recognised as 

a key metabolic change in cancer cells. As a heterogeneous disease with different morpholog-

ical and molecular subtypes and response to therapy, breast cancer cells are known to rewire 

glutamine metabolism to support survival and proliferation. Glutaminase isoenzymes (GLS 

and GLS2) are key enzymes for glutamine metabolism. Interestingly, GLS and GLS2 display 

contrasting functions in tumourigenesis. In this review, we explore the role of glutaminase in 

cancer, primarily focussing on breast cancer, address the role played by oncogenes and tu-

mour suppressor genes in regulating glutaminase, and discuss current therapeutic approaches 

in targeting glutaminase. 
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Introduction  

An established hallmark of cancer is undergoing metabolic reprogramming to maintain high 

demand for energy needed to sustain proliferation and survival [1]. Cancer cells alter their 

glucose and glutamine metabolism to acquire sufficient energy and cellular building blocks 

needed to support this unremitting growth. Some consume more glucose showing aerobic 

glycolysis or the ‘Warburg effect’, where glucose is converted mainly to lactic acid instead of 

engaging in the mitochondrial oxidative phosphorylation to allow proper respiration [2-4]. 

Other cancer cell types fail to grow or proliferate in the absence of glutamine and display 

‘glutamine addiction’ [5], which helps the cells to sustain high proliferative rates under condi-

tions of hypoxia and glucose depletion [6-8] (Figure 1).  

The intracellular processing of glutamine begins with its catalysis by glutaminase. In this re-

view we discuss the role, regulation and relevance of glutaminase and its isozymes and splice 

variants in cancer particularly focussing on breast cancer (BC). We further highlight the op-

portunities that exist in utilising glutaminase as a therapeutic target. 

Glutamine metabolism and addiction in cancer 

Glutamine metabolism plays an important role in normal cell metabolism and generating en-

ergy for the rapidly proliferating cells and tissues. As the most abundant amino acid in blood 

circulation, glutamine serves directly or indirectly, via its metabolic products glutamate and 

alpha ketoglutarate, as carbon and nitrogen sources needed for the biosynthesis of nucleic 

acids, fatty acids and proteins. Some cancers can become highly dependent on glutamine [1, 

4, 9] such that the demand for glutamine outpaces supply. Additionally, some tumour cells in 

vitro are unable to survive in the absence of an exogenous supply of glutamine [8, 10]. Con-

sequently cells develop a metabolic strategy to provide an alternative source of carbon other 

than glucose to derive carbon necessary to fuel the TCA cycle [11]. Recently, it has been 

shown that glutamine can enhance cancer progression independent of its metabolic role as it 

can act as a signalling agent to activate the transcription factor STAT3 which is required to 

mediate the proliferative effects of glutamine on cancer cells [12]. Furthermore, glutamine 

can indirectly activate other signalling pathways, such as the mammalian target of rapamycin 

complex 1 (mTORC1), a critical kinase that regulates cell growth and proliferation, as gluta-

mine derived α-ketoglutarate is required for GTP loading of RagB and subsequent activation 
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of mTORC1[13]. Additionally, glutamine efflux through SLC7A5 is coupled by leucine up-

take. The latter is known as a potent activator of mTORC1 [14]. 

The maintenance of redox homeostasis in cancer is important because the highly proliferating 

cells that encounter increased reactive oxygen species (ROS) production due to enhanced 

glutamine metabolism need a defence mechanism to avoid apoptosis [15]. Glutamine has a 

role in maintaining the redox balance through different mechanisms. Metabolites produced 

during the TCA cycle, serve as precursors for the reducing agent, Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH). Furthermore, exchange of intracellular glutamate through 

the transporter SLC7A11 mediates the Cysteine uptake. This amino acid is then reduced to 

cysteine, the rate-limiting product for glutathione (GSH) biosynthesis [16]. Both, NADPH 

and GSH, act as a key regulator of cellular redox status [11, 15].   

Glutaminase isoforms 

In humans, glutaminase exists as two isoforms; kidney-type (GLS) and liver-type (GLS2), 

which not only differ in kinetic properties but also in protein structure and tissue distribution 

[17]. GLS and GLS2 are encoded by the GLS and GLS2 genes respectively [18] and both can 

undergo alternative splicing to produce several variants (Figure 2). GLS (KGA; long tran-

script), GLS C (GAC; short transcript) and GAM are encoded by the GLS gene. However, 

GAM is significantly shorter than KGA or GAC and exhibits no measurable catalytic activity 

whereas GAC has greater catalytic activity and is frequently upregulated in cancer cells [19, 

20]. GLS2 (LGA; shorter transcript) and GAB (long transcript isoform) splice variants en-

coded by the GLS2 gene also exist [17, 18, 21].  

Role of Glutaminase in Cancer 

In cancer, the two GLS isozymes have opposing roles in tumourigenesis. GLS correlates with 

tumour growth rate and malignancy and is regulated by the oncogene c-MYC, whereas GLS2 

tends to have tumour suppressive features and is regulated by p53 [17, 22-24]. Upregulation 

of GLS is observed in cancers including breast, liver, colorectal, brain, cervix, lung and 

melanoma [20, 25]. Rapidly growing malignant cells have elevated mRNA levels and en-
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hanced GLS protein expression [24, 26-28] and GLS enzymatic activity correlates with poor 

disease outcome in liver, lung, colorectal, breast and brain tumours [24, 25, 29-32]. It is how-

ever the GAC variant which is a key enzyme for cancer cell growth [20, 28, 33, 34]. 

It appears that post-translational phosphorylation of GAC at specific regions of the enzyme 

by different signalling pathways can alter GLS activity [28, 33, 35]. Phosphorylation of GAC 

at Ser314 by oncogenic proteins Rho-C regulated PKCε kinase is responsible for elevated 

GAC activity [35]. In contrast, serine 95 phosphorylation at the GLS N-terminal region leads 

to decreased GLS activity [33].  

The expression of GLS2 variants are markedly increased in tumour cells that are more differ-

entiated and is associated with a significantly prolonged survival time [24, 25, 36, 37]. GLS2 

negatively regulates the activity of PI3K/AKT signalling [38] and Rac1 by mediating p53 

function in HCC resulting in the inhibition of migration, invasion and metastasis of cancer 

cells [25, 27]. 

Glutamine Dependency in Breast Cancer 

The need for glutamine varies according to different BC molecular subtypes [34-35, 41] 

where only some require an exogenous supply of glutamine and demonstrate glutamine de-

pendence [38]. For example, triple-negative BC (TNBC) and HER2+ cell lines are highly 

glutamine dependent whereas luminal tumours have variable glutamine dependence [32, 39, 

40]. Luminal A tumours are primarily glutamine independent as they exhibit only moderate 

effects on growth and viability in a glutamine-deprived environment whereas Luminal B cells 

show much higher glutamine metabolic activity [41]. 

Glutaminase in Breast Cancer 

When interrogating Breast Cancer Gene-Expression Miner v4.3 (http://bcgenex.centre-

gauducheau.fr), GLS and GLS2 mRNA expression are negatively correlated (Figure 3). GLS 

is associated with high grade (p=0.006) whereas GLS2 is associated with low grade 

(p<0.0001) tumours . In a relatively small study of breast tumours, high GLS protein was as-

sociated with high tumour grade and high grade metastatic BC but not tumour size, or nodal 
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stage [42][20]. In terms of BC patient outcome, GLS mRNA expression predicts poor patient 

survival (Figure 4a) and high GLS2 mRNA predicts a better survival (Figure 4b). 

In biological subtypes, GLS mRNA and/or protein expression is higher in basal-like/TNBC 

and HER2+ tumours and associated with poor-disease free survival in patients with positive 

lymph node metastasis [40]. Luminal B tumours have higher expression of GLS protein 

compared with Luminal A tumours and is predictive of poor patient outcome [30, 42-45]

(Figure 3). 

In contrast, GLS2 mRNA is significantly higher in luminal A tumours compared with luminal 

B, HER2+ and TNBC (Figure 3). However, there is very little published information on 

GLS2 protein expression in cancer, including BC. Interestingly, patients with tumours ex-

pressing GLS but not GLS2 confers a worse survival (Figure 4c) which is only observed in 

Luminal B tumours (Figure 4d).  

Glutaminase Regulation in Cancer - Role of Oncogenes and Tumour Suppressor Genes 

c-Myc plays a key role in the induction of glutamine dependence as it can enhance glutamine 

influx and metabolism. There is evidence that GLS, both splice variants KGA and GAC, are 

positively regulated by c-myc and are strongly expressed in c-Myc induced tumours [26, 34, 

46, 47]. Tumours exhibiting overexpression of c-Myc with elevated GLS expression, together 

with a high influx of glutamine into the cells, consequently become glutamine addicted [10, 

48]. 

c-Myc transcription stimulates GLS expression through different mechanisms [34, 48-50]. 

GLS is partly upregulated by microRNAs (miRNAs) where its translation is repressed by 

miR-23a/b through the mTORC1 pathway. Moreover, cancer cells that are dependent on Rho 

GTPase signaling via NF-κB activity for progression of malignancy have activated GAC and 

consequently elevated level of GLS activity [28, 51, 52].  
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Conversely, GLS2 is induced by p53, in response to oxidative stress, to engage antioxidant 

responses in order to decrease ROS levels and participate in DNA damage repair processes 

[53]. Hu et al, 2010 showed that GLS2 is a p53 target gene containing p53 DNA-binding 

elements in the promoter region and that in turn GLS2 mediates p53 function in the regula-

tion of energy metabolism and antioxidant defence in cells [22, 54]. 

 
The difference in the catalytic activity of GLS and GLS2 could be due to the underlying regu-

latory mechanisms. The deamination of glutamate by GLS results in the release of ammonia 

which is essential to support cell survival processes through providing alpha-ketoglutarate 

and intermediates for biosynthesis.  However, glutamate produced from GLS2 activity sup-

ports the antioxidant machinery/mechanism (glutathione) in the cell cycle. 

Potential Therapeutic Uses 

Since glutaminase is critical for tumour growth and predominantly upregulated in highly pro-

liferating breast tumours and a key enzyme in the first step of glutamine catabolism, it has the 

potential for acting as a target for therapy. 

Glutaminase Inhibitors 

6-diazo-5-oxo-L-norleucine (L-DON) GLS inhibitor is the earliest inhibitor of both GLS and 

GLS2 to be used in preclinical models. As a result of its non-selectivity and undesirable ef-

fects due to having similar structure to glutamine and having reactive chemical compounds, 

other compounds were developed [55]. Recently, two small molecules that inhibit both GLS 

and GLS2 have been determined: Bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl 

sulfide (BPTES) and dibenzophenanthridine-968. In vitro and mouse model xenograft studies 

show that BPTES significantly inhibits GLS over GLS2 [28, 55, 56] in various cancer types. 

Whereas the 968-class of inhibitors inhibit GLS and GLS2 with similar potency [17, 57]. 

On the other hand, BPTES is a potent GLS inhibitor with minimal toxicity. The inhibitor does 

not exhibit structural similarities to glutamate or glutamine. However, it forms an inactive 

tetramer complex site where it interacts with GLS and not at the site where glutamine is 

catalysed. Thus there is no competition in the inhibition of GLS with the molecule [58]. 
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BPTES inhibits GLS activity in glioma cells where glutamate and α-KG levels are decreased 

leading to a decrease in subsequent TCA cycle intermediates and its downstream products 

and slowed tumour growth [56]. BPTES also suppresses cell proliferation in HER2+ BC cells 

associated with increased GLS activity [59]. Although BPTES selectively inhibits GLS over 

GLS2 [53], it is described to have limitation in pharmacological application due to its poor 

metabolic stability, low solubility and moderate potency [57]. Like BPTES, Compound 968 is 

an allosteric inhibitor of GLS and inhibits the activity of KGA and GAC [60]. In vitro and 

mouse Xenograft model studies have shown anti-tumour activity of the compound in lym-

phoma, BC, ovarian and glioblastoma cells [24, 28, 61]. 

Very recently, evidence regarding inhibition of glutaminase as a therapeutic approach in 

treatment of cancer has resulted in the development of a BPTES derivative, 2-(pyridin-2-yl)-

N-(5-(4-(6-(2-(3-(trifluoromethoxy) phenyl) acetamido) pyridazin-3-yl) butyl)-1, 3, 4-thiadi-

azol-2-yl) acetamide (CB-839) [8]. Like BPTES, CB-839 is a member of the 

benzo[a]phenanthridinone family containing a pryridazine ring. The small molecule is a GLS 

inhibitor that regulates the enzymatic activity of KGA and predominantly the GAC splice 

variant isoenzyme [28, 40] by targeting the allosteric site of GLS. The inhibitor works by 

binding to and stabilising an inactive tetrameric state of the enzyme, rather than by competi-

tion with glutamine for binding to the active site where glutamine is hydrolysed [53, 56]. CB-

839 is a more potent compound in terms of inhibition of GLS compared with BPTES [28, 55, 

58]. In addition, CB-839 has an inhibitory concentration of 30- and 50-fold lower than 

BPTES [62]. 

Pre-clinical models demonstrate that CB-839 displays significant growth inhibition in certain 

subtypes of BC. Gross et al, 2014 demonstrated that TNBC are sensitive to CB-839 com-

pared to luminal A/ER+ cells (MCF-7) mainly because of their high glutamine dependence 

and enhanced glutamine utilisation. Treatment of TNBC with CB-839 lowered levels of 

glutamate suggesting blockage of glutamine metabolism by inhibiting GLS [8]. Consistent 

with the findings, CB-839 inhibits signaling pathways in transformed cells via Rho GTPases 

which are linked to the activation of GLS hence, inhibiting the enzyme invasive activity. The 

treatment with CB-839 resulted in reduced TNBC growth in mice models injected with tu-
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mour cells by half. However, the inhibitory effect of CB-839 on the growth of the other 

highly proliferative BC subtypes, i.e. luminal B and HER2+, has yet to be comprehensively 

confirmed. 

FUTURE PERSPECTIVES 

The GLS inhibitor CB-839 has already shown promising results in several solid cancers in-

cluding TNBC and therefore has a strong therapeutic potential particularly in those exhibiting 

high glutamine dependency [63]. Phase I and II clinical trials currently being conducted are 

summarised in Table 2. A further GLS allosteric inhibitor, UPGL00004, shows similar poten-

cy in TNBC with additional growth inhibition in combination with the anti-vascular endothe-

lial growth factor antibody bevacizumab [64].  

Whilst TNBC have high dependence on glutamine, it certainly appears that glutaminase, par-

ticularly GLS but potentially GLS2, also plays an important role in the aggressive subclass of 

luminal BC. Therefore it is essential to elucidate the role of glutaminolysis in luminal B BC 

growth and progression and whether GLS offers a potential new therapeutic option for these 

BC patients whom have an uncertain prognosis due to relapse and/or development of resis-

tance to current therapies. 

 
Indeed, a most recent finding has provided some initial evidence that a luminal B-like patient 

xenograft is sensitive to CB-839 [65] demonstrating its potential use against other BC sub-

types than TNBC alone. GLS inhibition in the luminal B xenograft model resulted in inhibi-

tion of the downstream metabolites proline and alanine indicating that its sensitivity is per-

haps linked to it not being able to adapt to hypoxic environment through activation of proline 

mechanisms. It certainly suggests that BC subtypes might possibly be dependent on different 

glutamine metabolic characteristics. 

Conclusion 

Glutaminase plays a key role in various tumours including BC, which exhibit deregulated 

glutaminolysis because of overexpression and/or regulation of glutaminase. Both GLS isoen-
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zymes are expressed in BC and GLS, particularly the GAC splice variant, is primarily linked 

to cancer progression and overexpression. Allosteric inhibitors, such as the small molecule 

CB-839, offers a unique opportunity to regulate this important metabolic enzyme. Clinical 

trials in TNBC and haematological malignancies are underway and look promising. However, 

there is still need to understand the role of both GLS and GLS2 in other rapidly proliferating 

BC subtypes including luminal B tumours where inhibition of BC could be a potential thera-

peutic approach, in addition to endocrine therapies that have limited success.  
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Table 1. Glutaminase expression and clinical outcome in different cancers. 

Cancer
Glutaminase expres-
sion

Observation on clinical out-
come References

Liver

GLS overexpressed Poor prognosis

[25, 27, 67, 68] GLS2 overexpressed Good prognosis

Colorectal

GLS overexpressed Poor prognosis  [29]

GLS2  yet to be studied

Lung

GLS overexpressed Poor prognosis [31, 58]

GLS2 yet to be studied 

Leukaemia

GLS overexpressed Poor prognosis  [69]

GLS2 yet to be studied

Lymphoma

GLS overexpressed Poor prognosis  [40]

GLS2 yet to be studied

Breast

GLS overexpressed
Poor prognosis in TNBC &   
ER+ (highly proliferative)

[30, 32, 40, 42, 
45]

GLS2 varies among 
subtypes Yet to be studied 

Melanoma

GLS overexpressed Poor prognosis  [70]

GLS2 yet to be studied

Brain

GLS overexpressed Poor prognosis

[24]GLS2 overexpressed Good prognosis

Prostate

GLS overexpressed Poor prognosis  [40, 71]

GLS2  yet to be studied
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Table 2. Clinical trials using GLS inhibitor CB-839  

Source: National Cancer Institute 

Cancer type Clinical trial phase Clinical Trial  number

Renal Cell carcinoma Phase II NCT03428217

Melanoma Phase I/II NCT02771626

NSCLC Phase I/II NCT02771626

Colorectal Phase I/II NCT02861300

Myelodysplastic syndrome Phase I/II NCT02071927

Breast (TNBC) Phase I/II NCT02071862
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Figure 1: Glutamine metabolism in cancer cell. Glutamine is an essential amino acid that 

serves as a carbon and nitrogen source for energy production and nucleotide biosynthesis. 

Amino acid transporters regulate glutamine supply into the intercellular space. Glutamine is 

transported across the plasma membrane mainly by transporters: SLC1A5, SLC7A5. In the 

mitochondrion, either glutaminase, GLS, or GLS2 converts glutamine to glutamate. The latter 

is converted into α-ketoglutarate and enters the TCA cycle for processing. Oncogene c-MYC 

upregulation is responsible for the direct promotion of the expression of glutamine trans-

porters enhancing glutamine entry into the cell and upregulation of GLS. Tumour suppressor 

p53 is a transcriptional target for the GLS2 gene increasing its expression under both stressed 

and non-stressed conditions. GLS inhibitors used to target GLS directly are 6-diazo-5-oxy-L-

norleucine DON, 968, bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulphide 

(BPTES) and CB-839 [1, 58, 66]. 

Figure 2: Structure of the GLS and GLS2 gene. (A) GLS gene is 82kb and contains 19 exons 

on chromosome 2. Alternative splicing of the gene produce KGA and GAC splice variants, 

which share identical N-terminal region and GAM splice variant. KGA is derived from exon 

1-14 and 16-19 while GAC protein is from 1-15 exons but have unique C-termini sequences. 

The central region is the catalytic active site. (B) GLS2 has 18 exons that are 18kb on chro-

mosome 12. Alternative splicing of the gene produce LGA (short transcript) and GAB (long 

transcript) isoforms. The splice variants share a common C-terminus and differ at their N-

termini region. Adapted from [17, 67]. 

Figure 3: GLS and GLS2 mRNA levels in the molecular subtypes of breast cancer and their 

correlation using GeneMiner (a, c, e) and METABRIC (b, d, f) datasets 
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Figure 4: Association of GLS and GLS2 mRNA expression and patient outcome in breast 

cancer using GeneMiner for (a) GLS (b) GLS2 showing low gene (less than the median) ex-

pression is associated with poor patient survival. Combined expression of GLS and GLS2 

mRNA expression and patient outcome in the METABRIC dataset for (c) all breast cancers 

(d) luminal B tumours. 

Figure 5: Immunohistochemical expression of GLS and GLS2 protein in invasive ductal 

breast cancers of no special type. Cytoplasmic GLS showing homogenous and granular im-

munoreactivity, (a) x10 magnification and (b) x20, and GLS2, showing homogenous immun-

oreactivity, (d) x10 and (e) x20, expression. Negative controls for GLS (c, x10) and GLS2 (f, 

x10). 
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