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Abstract

Aims/hypothesis The extent to which effects of BMI on CHD

are mediated by glycaemic and lipid risk factors is unclear. In

this study we examined the effects of these traits using genetic

evidence.

Methods We used two-sample Mendelian randomisation to

determine: (1) the causal effect of BMI on CHD (60,801 case

vs 123,504 control participants), type 2 diabetes (34,840 case

vs 114,981 control participants), fasting glucose (n = 46,186),

insulin (n = 38,238), HbA1c (n = 46,368) and LDL-cholesterol,

HDL-cholesterol and triacylglycerols (n = 188,577); (2) the

causal effects of glycaemic and lipids traits on CHD; and (3) the

extent to which these traits mediate any effect of BMI on CHD.

Results One SD higher BMI (~ 4.5 kg/m2) was associated

with higher risk of CHD (OR 1.45 [95% CI 1.27, 1.66]) and

type 2 diabetes (1.96 [95% CI 1.35, 2.83]), higher levels of

fasting glucose (0.07 mmol/l [95% CI 0.03, 0.11]), HbA1c

(0.05% [95% CI 0.01, 0.08]), fasting insulin (0.18 log pmol/l

[95% CI 0.14, 0.22]) and triacylglycerols (0.20 SD [95% CI

0.14, 0.26]) and lower levels of HDL-cholesterol (−0.23 SD

[95% CI −0.32, −0.15]). There was no evidence for a causal

relation between BMI and LDL-cholesterol. The causal

associations of higher triacylglycerols, HbA1c and diabetes

risk with CHD risk remained after performing sensitivity

analyses that considered different models of horizontal

pleiotropy. The BMI–CHD effect reduced from 1.45 to 1.16

(95% CI 0.99, 1.36) and to 1.36 (95% CI 1.19, 1.57) with

genetic adjustment for triacylglycerols or HbA1c, respectively,

and to 1.09 (95% CI 0.94, 1.27) with adjustment for both.

Conclusions/interpretation Increased triacylglycerol levels

and poor glycaemic control appear to mediate much of the

effect of BMI on CHD.
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Introduction

Greater BMI is a risk factor for a wide range of adverse health

outcomes, including CHD the leading cause of death

worldwide. Whilst preventing overweight and obesity is an

important public health aim, the substantial and increasing

number of people with a high BMI highlights the need for

secondary prevention that aims to reduce risk of the main

disease outcomes of high BMI, such as CHD, by targeting

causal mediators. This is also important because beyond

bariatric surgery there are no effective and sustainable treat-

ments for those who are obese [1].

Large prospective population studies show that higher BMI

is associated with adverse blood lipid levels, higher fasting

glucose and insulin, type 2 diabetes mellitus and CHD.

RCTs show that elevated triacylglycerols, LDL-cholesterol,

glucose and BP increase the risk of CHD [2, 3]. Thus, the

association of BMI with CHD could be mediated by these

established modifiable risk factors. However, the common

method used to test for mediation, by observing how much

the confounder-adjusted multivariable association between a

risk factor (e.g. BMI) and outcome (e.g. CHD) reduces with

further adjustment for potential mediators [4], has been shown

to be biased in many situations [5].

Mendelian randomisation (MR), the use of genetic variants

as instrumental variables to test the causal effect of risk factors

on outcomes, is unlikely to be biased by the extensive

confounders of multivariable observational analyses, is less

prone to measurement error [6] and, because genetic variants

are fixed at conception, cannot be biased by reverse causality

[7, 8]. As such, MR has been used increasingly over the past

decade to provide more robust estimates for the causal effect

of many risk factors on a range of health outcomes, with

results from MR closely resembling those from RCTs where

both are available (e.g. the effect of LDL-cholesterol [9] and

systolic BP [10] on CHD). Recently, methods have been

developed for its use in testing causal mediation using a

two-step approach that is considerably less prone to the

biases inherent in the common multivariable approach [5].

Figure 1 provides a brief description of MR and its

assumptions.

PreviousMR studies using data from three collections have

shown that higher BMI causally relates to higher risk for CHD

(the results of our meta-analysis of these previous MR studies

are presented in the electronic supplementary material [ESM]

Fig. 1) [11–14]. These studies used one-sample MR and were

unable to undertake sensitivity analyses that have been

developed for testing likely bias by pleiotropy [15]. The

number of cases of CHD varied from 3062 to 11,056, which

are modest for MR studies. Although MR is likely to be less

biased than conventional multivariable approaches, it usually

requires a considerably larger sample size. Only one of these

MR studies analysed potential mediators of the impact of BMI

on CHD. It concluded that LDL-cholesterol, remnant

cholesterol and systolic BP, explained 8%, 7% and 7%,

respectively, of the effect of BMI on CHD [14]. That study

was unable to explore potential mediation by insulin

sensitivity or hyperglycaemia, which are strongly influenced

by BMI and are strong risk factors for CHD. Here, we aimed

to investigate the mediating effects of lipid and insulin/

glycaemic traits on the effect of BMI on CHD using a large

MR study, including over 60,000 individuals with CHD, and

to analyse a wider set of potential mediators including

glycaemic traits (fasting glucose and insulin, HbA1c, type 2

diabetes) than previous studies.

Methods

We used two-step two-sample MR [5, 16] with publicly

available datasets that provide genome-wide association

results for BMI, glycaemic traits, lipids and CHD.

Two-sample MR refers to the use of different datasets

(samples) to obtain the gene–risk factor (e.g. BMI) and

gene–outcome (e.g. CHD) associations. First, we tested the

effects of BMI on CHD, and then the effects of potential

mediation using two-step MR. In step one we tested causal

effects of BMI on potential mediators and in step two the

causal effects of potential mediators on CHD [5].

Data sources

Genetic instrumental variable for BMI From the most

updated genome-wide associations studies (GWAS) on BMI,

the Genetic Investigation of ANthropometric Traits (GIANT)

consortium, we obtained 77 SNPs, identified from the primary

meta-analysis of 322,154 European-descent individuals,

independently contributing to BMI at genome-wide

significance (p < 5 × 10−8) [17]. These variants were defined

as being independent of each other on the basis of low

correlation (R2 < 0.1) in HapMap22 or the 1000 Genome

project data. These 77 SNPs account for 2.4% of BMI

phenotypic variance [17]. For sensitivity analyses, we

included 20 SNPs from the secondary analysis of this

GWAS [17]; these include some SNPs that did not reach

genome-wide significance in Europeans.

Potential mediators Associations of SNPs with the

phenotypes were extracted from publicly available GWAS

consortia. Data on type 2 diabetes mellitus GWAS correlates

was obtained from the DIAbetes Genetics Replication And

Meta-analysis (DIAGRAM, http://diagram-consortium.org/

downloads.html, accessed on 22 June 2016), which includes

34,840 case and 114,981 control participants of European

origin [18]. Genetic associations with fasting insulin

(n = 38,238), fasting glucose (n = 46,186) and HbA1c
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(n = 46,368) were obtained from the Meta-Analyses of

Glucose and Insulin-related traits Consortium (MAGIC,

http://www.magicinvestigators.org/, accessed on 22

June 2016); the participants were of European ancestry

without diabetes [19]. Genetic associations with HDL-

cholesterol, LDL-cholesterol and triacylglycerols in 188,577

Europeans were obtained from the Global Lipids Genetics

Consortium (GLGC) investigators (http://csg.sph.umich.edu/

abecasis/public/lipids2013/, accessed on 22 June 2016) [20].

Study outcome: CHD Data on coronary artery disease/

myocardial infarction were obtained from the Coronary

ARtery DIsease Genome wide Repl ica t ion And

Meta-analysis (CARDIoGRAM) plusC4D investigators

(www.CARDIOGRAMPLUSC4D.ORG, accessed on 22

June 2016) [21]. This includes 60,801 CHD case and

123,504 control participants. We first searched the

CARDIoGRAMplusC4D 1000 Genomes-based GWAS, a

meta-analysis of GWAS studies of mainly European, South

Asian and East Asian descent imputed using the 1000

Genomes phase 1 v3 training set with 38 million variants

[22]. If no summary data on the gene–CHD association were

found from the 1000 Genomes data, then we screened in

CARDIoGRAMplusC4D Metabochip. If the targeted SNPs

were not found in either the 1000 Genomes or the

CARDIoGRAMplusC4D Metabochip, we then screened

CARDIoGRAM GWAS.

The genetic variants used as instrumental variables for

CHD, BMI and CHD risk factors (potential mediators) are

all shown in ESM Tables 1–9.

Statistical analysis

As an indication of the strength of the association between

genetic instruments and phenotypes, we report the proportion

of variation in BMI and all mediators explained by their

genetic variant instruments and also the F-statistic for the

regression of BMI and all mediators on their genetic

instruments. The proportion of the BMI–CHD effect that is

explained by a group of mediators will be estimated with bias

if the mediators are related to each other, and/or if the outcome

has an effect on the mediator (i.e. there is reverse causality)

and the instrument affects the mediators through the outcome.

Therefore, we tested for potential bi-directional causal effects

of BMI, potential mediators and CHD with each other using

the inverse variance weighted (IVW) approach described

below.

Horizontal pleiotropy, where the genetic variant influences

the outcome through a pathway other than the exposure,

violates an assumption of MR and can bias causal estimates.

To guard against this we used three different analytical

approaches for both step one (effect of BMI on CHD and

potential mediators) and step two (effect of potential

mediators on CHD) of the two-step MR mediation approach.

Potential confounders

Outcome of 

interest

(e.g. CHD)

Genetic instrumental variable 

(e.g. weighted allele score of 

genetic variants robustly 

associated with BMI)

Risk factor of 

interest 

(e.g. BMI)

Fig. 1 Summary of MR and its assumptions. The underlying

assumptions of MR are that: (1) the genetic instrumental variable(s) are

robustly related to the risk factor of interest (here BMI; this is illustrated

by the arrow from the genetic instruments to BMI); (2) there is no

relationship between any confounders of the risk factor (BMI) and

outcome (CHD) and the genetic instrumental variable (illustrated by the

lack of any arrow between these confounders and the genetic instrument);

and (3) there is no path from the genetic instrument to the outcome other

than through its relationship to the risk factor (illustrated by the lack of

any arrow that goes directly from the genetic instrument to the outcome).

Empirical evidence suggests that the most likely of these three

assumptions to be violated, and result in potentially biased results, is the

last one. This may be violated inMR studies by horizontal pleiotropy (i.e.

where the genetic instrument[s] affect other factors which, independent of

their impact on the risk factor of interest, influence the outcome). If this

horizontal pleiotropy is present then theMR estimate of the effect of a risk

factor on outcomewill be biased, it will actually be the combined effect of

that risk factor and any other (pleiotropic) paths from the genetic

instruments to outcome. The bias could be an exaggeration of the true

effect (if the horizontal pleiotropic paths are in the same direction as that

of the main risk factor of interest) or a diminution of the true effect (if the

horizontal pleiotropic effect is in the opposite direction of the risk factor

of interest). There are a number of different statistical methods that can be

used to estimate causal MR effects. Many of these are related to the ratio,

which is intuitive. If the assumptions above are correct then the causal

effect of the risk factor (BMI) on outcome (CHD) is the ratio of ‘the

association of genetic instruments with CHD’ to ‘the association of

genetic instrument with BMI’. Valid MR estimates can be obtained using

two (independent) samples for the association of the genetic instrument

with outcome and the association of genetic instrument with risk factor

[16]. There are some advantages of this two-sample MR approach over

the one-sample approach (where both parts of the ratio are obtained from

the same sample), including the potential to gain very large sample sizes

by using publicly available aggregate genome-wide data as we have done

here and apply novel methods for testing horizontal pleiotropy that have

been developed for use in two-sample MR with aggregate GWAS data

(see the Methods section and the ESM for detailed descriptions of these)
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Each of the three methods assumes different models of

horizontal pleiotropy. The value of comparing results from

all three is that we have more confidence in results that are

consistent across the different methods. Full details of these

approaches, including their different assumptions, are

provided in Table 1 and ESM Methods 1.

To estimate the effect of BMI on CHD taking account of

genetically determined potential mediators, we used the IVW

MR method, adjusting for the SNP–potential mediator effect

[23]. The proportion of the effect that is mediated by any of

the potential mediators was estimated by the changes in the

total effect of the genetically determined BMI on CHD risk

(for more details see ESM Methods 2). This method assumes

that mediators are continuously measured variables and as

type 2 diabetes is dichotomised we did not assess the

proportion of the BMI–CHD effect due to type 2 diabetes.

An analysis diagram is shown in Fig. 2. All statistical analysis

was performed using STATA 13.1 (Stata Corp LP, College

Station, TX, USA) and R (version 3.2.5, the R Foundation

for statistical Computing, Vienna, Austria) software.

Results

The proportion of variation explained by all of the variants

that we used as instrumental variables for the potential

mediators varied from 1.2% (for fasting insulin) to 5.7% (for

type 2 diabetes) (ESM Tables 1–8). The first stage F-statistic

for all of the MR analyses (i.e. for the regression of BMI and

each of the mediators on their genetic variant instrument

variables) were very large (> 500).

Relationships between potential mediators and CHD

As expected, we observed evidence for association between

fasting plasma glucose and type 2 diabetes, and that both

fasting plasma glucose and type 2 diabetes were associated

with HbA1c (Table 2). LDL-cholesterol, HDL-cholesterol

and triacylglycerols were associated with each other. CHD

appears to be causally positively related to type 2 diabetes,

but was not related to other potential mediators (Table 2).

Effects of BMI on CHD and glycaemic and lipid traits

There was consistent support across all three MR methods for

a causal effect of higher BMI on higher CHD and type 2

diabetes risk, and higher levels of fasting glucose, HbA1c,

fasting insulin and triacylglycerols, together with lower

HDL-cholesterol (Table 3). None of the methods supported

a causal effect of BMI on LDL-cholesterol (Table 3 and

ESM Table 10).

Effects of potential mediators on CHD

There was broadly consistent support across all three MR

methods for a positive effect of type 2 diabetes, HbA1c,

Table 1 Summary of the three methods used for MR analysis

IVW Weighted-median MR-Egger

Assumption All genetic instrumental variables are valid

or any horizontal pleiotropic effects of

instruments are balanced

No more than 50% of the weight of the

estimate is from invalid genetic

instrumental variables

No single instrumental variable contributes

>50% of the weight

InSIDE (instrument strength independent of

direct effect) assumption, which states

that the effect of the instrument on the

exposure is not correlated with any direct

effect of the instrument on the outcome

Equation
β̂IVW ¼

∑K
K¼1EkDkσ

−2
Dk

∑K
K¼1E

2
k
σ−2
Dk

SE
β̂IVW¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

∑k
k¼1

E2
K
σ−2
Dk

q

EK is the mean change in exposure level per

additional effect allele of SNP k;Dk is the

mean change in disease outcomes (e.g.

log odds of CHD or levels of other

cardiovascular disease risk factors) per

additional effect allele of SNP k with SE

σDk

Weighted-median estimator is the median of

a distribution having estimate βj as:

Pj = 100(Sj − Wj/2)
th percentile

P is the percentile for the jth ordered ratio

estimate; Wj is the weight given to the jth

ordered ratio estimate, proportional to the

inverse of the instrumental variable

variance, and Sj is the sum of weights up

to and including the weight of the jth

ordered ratio estimates, calculated using

the following equation:

Sj ¼ ∑
j
K¼1Wk

MR-Egger uses a weighted linear regression

of the gene–outcome coefficients θj on

the gene–exposure coefficients δj:

θj = β0E + βE × δj
All the δj associations are orientated to be

positive. If β0E is truly zero (or were

constrained to be zero) the MR-Egger

slope estimate βE is the same as the β

from IVW

Application The IVW estimate is a statistically efficient

method but it can be biased even if just

one genetic variant is invalid (i.e. if just

one variant has horizontal pleiotropic

effects)

The weighted-median estimator is a

modification of the simple median

approach and takes account of the

variance of the individual genetic

instruments

The MR-Egger method is used to test for

directional horizontal pleiotropy and

correct for this in MR analyses

Diabetologia (2017) 60:2210–2220 2213



triacylglycerols and LDL-cholesterol on CHD risk (Table 4).

For type 2 diabetes the MR-Egger 95% CI just included the

null value, but this method has lower statistical power than the

others and the point estimates were similar across all methods.

For triacylglycerols the estimate of effect (slope) from

MR-Egger was a little weaker than for all of the other methods

(e.g. 1.24 vs 1.13 comparing the IVW and MR-Egger

methods), suggesting that some but not all of the effect of

triacylglycerols estimated by IVW and other methods might

be due to horizontal pleiotropy. In IVW and the median

method analyses, there is evidence for the causal association

of lower HDL-cholesterol and higher fasting glucose and

insulin with higher risk of CHD. However, for all of these

MR-Egger suggested that effects were largely due to

horizontal pleiotropy, with effect estimates markedly

attenuated to the null and the intercepts all being non-zero.

Mediating effects of lipids and glycaemic traits

on BMI–CHD effects

We explored those potential mediators that had causal support

from MR for both an effect of BMI on them (step one) and of

the mediators on CHD (step two): type 2 diabetes, HbA1c and

triacylglycerols (Table 5). Our results suggested that

triacylglycerols were an important mediator, with either type

2 diabetes or HbA1c further contributing to mediation of BMI

on CHD. The BMI–CHD effect reduced from 1.45 (95% CI

1.27, 1.66) to 1.16 (95% CI 0.99, 1.36) and 1.36 (95% CI

1.19, 1.57) with adjustment for the estimated effects of

triacylglycerols and HbA1c, respectively, and to 1.09

(95% CI 0.94, 1.27) with adjustment for both.

Discussion

This is the first paper to explore the extent to which glycaemic

traits mediate a causal path between BMI and CHD, whilst

using statistical approaches that account for horizontal

pleiotropy. Consistent with previous studies [11–14], but

using a larger sample size and more genetic variants, we show

that higher BMI causes greater CHD risk. Our results also

suggest that triacylglycerols, HbA1c and type 2 diabetes play

important roles in causally mediating the effect of BMI on

CHD. In contrast, our results do not support causal

effects for the observed association between BMI and

LDL-cholesterol, or for the associations of HDL-cholesterol,

fasting glucose or insulin with CHD. Secondary prevention,

which aims to reduce obesity-related CHD by targeting causal

mediators is important because of the large, and increasing,

proportions of people globally who are overweight or obese

and the lack, currently, of scalable effective treatments for

obesity. Treating causal mediators of the effect of BMI on

CHD could mitigate its effect, but biases in conventional

epidemiological methods for testing mediation have limited

GIANT SNP-BMI

MR analyses

Crude analysis

IVW, median-based

methods

Analysis accounting for 

horizontal pleiotropy 

(MR-Egger)

SNP-T2DM

MR analyses

Crude analysis

IVW, median-based

methods

Analysis accounting for 

horizontal pleiotropy 

(MR-Egger)
Adjusted analysis 

(IVW method)

SNP-CHD

DIAGRAM

MAGIC

GLGC

CARDIoGRAM/

CARDIoGRAMplusC4D

SNP-FG/HbA1c/FI

SNP-LDL-C/HDL-C/TG

Fig. 2 Analysis diagram.

Summary data for SNP

phenotypes were extracted from

GWAS consortia datasets

(GIANT, CARDIoGRAM, C4D,

DIAGRAM, MAGIC and

GLGC). MR estimates of BMI on

mediators (type 2 diabetes

[T2DM], fasting glucose [FG],

fasting insulin [FI], HbA1c, LDL-

cholesterol [LDL-C], HDL-

cholesterol [HDL-C] and

triacylglycerols [TG]), and of

BMI and mediators on CHDwere

derived using the IVW method
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our understanding of which CHD risk factors mediate BMI

effects. Our findings provide strong support for undertaking

RCTs in obese people to test the effect of triacylglycerol re-

duction and glycaemic control on CHD risk.

Several MR studies have previously examined the

association of BMI with CHD and CHD risk factors [11, 12,

14, 24, 25]. Our results are broadly consistent with those,

including our finding of no evidence for the causal association

between BMI and LDL-cholesterol [12, 24, 26]. This is

further supported by two RCTs of bariatric surgery which

found that in tens ive weight loss d id not lower

LDL-cholesterol [27, 28]. Consistent with our results,

previous MR studies have also shown positive causal effects

of type 2 diabetes, HbA1c , LDL-cholesterol and

triacylglycerols with CHD [29–32], but not for causal effects

of fasting glucose or HDL-cholesterol with CHD once

horizontal pleiotropy has been accounted for. The discrepancy

between finding a causal effect of type 2 diabetes and HbA1c

on CHD, but not of fasting glucose, might suggest that

non-fasting (postprandial) glucose levels, more so than fasting

levels, are most relevant for CHD risk and/or that long-term

hyperglycaemia (as assessed by elevated HbA1c and likely to

be identified as being above the threshold required to diagnose

type 2 diabetes) are important.

To our knowledge only one previous study has tried to

explore potential mediation of the BMI–CHD effect in an

MR framework. That study included 11,056 individuals with

CHD and 75,627 control participants from Copenhagen and

used only three BMI-related SNPs. It concluded that the effect

of BMI on increased CHD risk was partly mediated through

elevated levels of LDL-cholesterol, non-fasting remnant

cholesterol and systolic BP [14]. The evidence for a mediating

role of remnant cholesterol is entirely consistent with our

findings here for triacylglycerols, as remnant cholesterol is

the cholesterol content of triacylglycerol-rich lipoproteins,

particularly so in this previous study where remnant cholesterol

was not directly measured but estimated from other lipids using

Table 3 MR estimates of BMI (SD, 1 SD = 4.5 kg/m2) on cardio-

vascular risk factors and CHD

Exposure: BMI (n = 322,154) Effect

estimate

95% CI p value

CHD (n = 60,801 case and 123,504 control participants)a

IVW 1.45 1.27, 1.66 < 0.001

Weighted-median 1.44 1.24, 1.67 < 0.001

MR-Egger regression

Slope 1.55 1.26, 1.91 < 0.001

Intercept (directional

pleiotropy)

1.00 0.99, 1.00 0.50

Type 2 diabetes mellitus (n = 34,840 case and 114,981 control

participants)a

IVW 1.96 1.35, 2.83 < 0.001

Weighted-median 2.63 2.16, 3.21 < 0.001

MR-Egger regression

Slope 3.42 2.63, 4.46 < 0.001

Intercept (directional

pleiotropy)

0.98 0.98, 0.99 < 0.001

Fasting glucose, mmol/l (n = 46,186)b

IVW 0.07 0.03, 0.11 < 0.001

Weighted-median 0.08 0.05, 0.12 < 0.001

MR-Egger regression

Slope 0.09 0.036, 0.15 < 0.001

Intercept −0.0007 −0.002, 0.001 0.37

HbA1c, % (n = 46,368)b

IVW 0.05 0.01, 0.08 0.005

Weighted-median 0.09 0.04, 0.14 < 0.001

MR-Egger regression

Slope 0.09 0.008, 0.16 0.03

Intercept −0.001 −0.003, 0.001 0.31

Fasting insulin, log-pmol/l (n = 38,238)b

IVW 0.18 0.14, 0.22 < 0.001

Weighted-median 0.18 0.12, 0.24 < 0.001

MR-Egger regression

Slope 0.16 0.07, 0.25 < 0.001

Intercept 0.0007 −0.002, 0.003 0.60

LDL-cholesterol, SD (1 SD = 1.0 mmol/l) (n = 188,577)b

IVW −0.05 −0.19, 0.09 0.50

Weighted-median −0.01 −0.08, 0.05 0.66

MR-Egger regression

Slope −0.10 −0.184,

− 0.02

0.02

Intercept 0.0016 −0.001, 0.004 0.19

HDL-cholesterol, SD (1 SD = 0.40 mmol/l) (n = 188,577)b

IVW −0.23 −0.32, −0.15 < 0.001

Weighted-median −0.21 −0.27, −0.16 < 0.001

MR-Egger regression

Slope −0.23 −0.307, −0.15 < 0.001

Intercept −0.0001 −0.002, 0.002 0.90

Table 3 (continued)

Exposure: BMI (n = 322,154) Effect

estimate

95% CI p value

Triacylglycerol, SD (1 SD = 1.024 mmol/l) (n = 188,577)b

IVW 0.20 0.14, 0.26 < 0.001

Weighted-median 0.21 0.15, 0.27 < 0.001

MR-Egger regression

Slope 0.17 0.09, 0.24 < 0.001

Intercept 0.001 −0.001, 0.003 0.37

aBinary outcome—effect estimate is the OR for a 1 SD increase in BMI
bContinuously measured outcome—effect estimate is the difference in

mean in the unit provided in column 1 for a 1 SD increase in BMI
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a method that would produce an extremely high correlation

between (measured) triacylglycerols and estimated remnant

cholesterol; mediation by remnant cholesterol is thus consistent

with mediation by triacylglycerols [14].

Our study, the previous (Copenhagen) study [13, 14], other

MR studies [12, 24, 26] and RCTs of bariatric surgery [33, 34]

have found no evidence for a causal effect of BMI on

LDL-cholesterol, which suggests it is unlikely to be an

important mediator of BMI on CHD. However, since the

previous study (despite finding no MR evidence for a causal

effect of BMI on LDL-cholesterol) concluded that

LDL-cholesterol was a partial mediator [14], we examined

that possibility in our data. As expected we found no strong

support for a mediating effect of LDL-cholesterol between

BMI and CHD (ESM Table 12). We were unable to explore

any mediating effect of BP in our study. This is because our

approach uses publicly available aggregate genome-wide

results and the International Consortium for Blood Pressure

(ICBP) provides information on SNPs and BP associations

without specifying the risk (or effect) allele for each SNP; thus

the effect of BMI on BP cannot be assessed using the

two-sample MR instrumental variable analysis.

CHD is a major cause of morbidity and mortality and its

prevalence is increasing worldwide, partly because of the

increasing prevalence of obesity. Our results indicate the

extent to which acting on risk factors, such as triacylglycerols,

HbA1c and type 2 diabetes, might counteract the detrimental

effects of obesity on CHD. They highlight the potential

importance of using interventions that lower triacylglycerols

and/or HbA1c and type 2 diabetes specifically in those with

obesity [35, 36]. There is evidence, including from MR

studies, that statins affect triacylglycerols and remnant

cholesterol, as well as LDL-cholesterol [37]. Furthermore, a

rare variant in APOC3 with a marked effect on triacylglycerol

levels provides a potential target for drug development aimed

at reducing triacylglycerol levels, independent of any statin

effects [38, 39]. Thus, targets for reducing triacylglycerols

exist and testing the effect of these in obese populations would

be feasible. Previous RCTs have shown that the oral

Table 5 Multivariate separate-sample MR analysis of the effect of

BMI (per SD, 1 SD = 4.5 kg/m2) on CHD

OR 95% CI p value Mediation

effect (%)

MR-IVW regression, crude 1.45 1.27, 1.66 < 0.001

Multivariate model

(1) Adjusted for

triacylglycerol

1.16 0.99, 1.36 0.06 22

(2) Adjusted for HbA1c 1.36 1.19, 1.57 0.001 4

(3) Adjusted for type 2

diabetes

1.35 1.17, 1.56 0.001 –

(4) Adjusted for

triacylglycerol +

HbA1c

1.09 0.94, 1.27 0.25 38

(5) Adjusted for

triacylglycerol + type 2

diabetes

1.10 0.94, 1.29 0.22 –

Table 4 MR estimates of cardiovascular risk factors on CHD

Risk factor OR 95% CI p value

Type 2 diabetes mellitus

IVW 1.12 1.06, 1.18 < 0.001

Weighted-median 1.11 1.05, 1.17 < 0.001

MR-Egger regression

Slope 1.07 0.99, 1.15 0.10

Intercept 1.01 1.00, 1.01 0.17

Fasting glucose, mmol/l

IVW 1.31 1.09, 1.58 < 0.001

Weighted-median 1.21 1.01, 1.44 0.03

MR-Egger regression

Slope 1.08 0.87, 1.35 0.50

Intercept 1.01 1.00, 1.01 0.04

HbA1c, %

IVW 1.30 1.08, 1.56 0.01

Weighted-median 1.36 1.07, 1.74 0.01

MR-Egger regression

Slope 1.66 1.03, 2.68 0.04

Intercept 0.99 0.97, 1.01 0.27

Fasting insulin, log-pmol/l

IVW 2.80 1.89, 4.16 < 0.001

Weighted-median 2.61 1.61, 4.23 < 0.001

MR-Egger regression

Slope 0.49 0.09, 2.59 0.40

Intercept 1.03 1.00, 1.05 0.04

LDL-cholesterol, SD (1 SD = 1.0 mmol/l)

IVW 1.58 1.43, 1.75 < 0.001

Weighted-median 1.63 1.48, 1.80 < 0.001

MR-Egger regression

Slope 1.74 1.59, 1.90 < 0.001

Intercept 0.99 0.98, 0.99 0.01

HDL-cholesterol, SD (1 SD = 0.4 mmol/l)

IVW 0.86 0.78, 0.95 < 0.001

Weighted-median 0.88 0.81, 0.95 < 0.001

MR-Egger regression

Slope 1.03 0.95, 1.12 0.46

Intercept 0.99 0.98, 0.99 < 0.001

Triacylglycerol, SD (1 SD = 1.024 mmol/l)

IVW 1.24 1.10, 1.41 < 0.001

Weighted-median 1.23 1.11, 1.36 < 0.001

MR-Egger regression

Slope 1.13 1.03, 1.24 0.01

Intercept 1.01 1.003, 1.01 < 0.001
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hypoglycaemic metformin reduces cardiovascular risk factors

[40–42] in non-diabetic at-risk populations, including those

who are obese, but its effect on CHD risk has yet to be

established. Our results suggest that i t might be

cardioprotective in populations with high BMI and supports

the development of RCTs to test its effect on CHD in

these people.

Strengths and limitations

Two-sample MR exploits the fact that it is not necessary to

obtain both gene–exposure association (ratio denominator)

and gene–outcome association (ratio numerator) from the

same sample of participants. There are some advantages to

obtaining them from two different sets of participants. For

example, ‘winners’ curse’ [16] can bias true causal effects

towards observational results in one-sample MR but is less

likely to generate false-positive findings in two-sample MR.

In addition, the weak instrument bias, which biases effects

towards the confounded multivariable regression result in

one-sample MR, biases the effect towards the null in

two-sample MR (with non-overlapping datasets). The main

advantage of two-sample MR is the increased statistical

power, particularly in relation to testing effects on binary

disease outcomes (i.e. CHD or type 2 diabetes) because of

the use of summary data from GWAS consortia [16].

Our study is extremely large and uses genetic variants to

avoid some of the key limitations of traditional multivariable

regression approaches to mediation. Horizontal pleiotropy is

one of the major concerns in relation to limitations of MR

studies. However, to explore the potential effects of this

pleiotropy, we used different MR methods (IVW, median-

based estimators and MR-Egger) that have different

assumptions and we assessed the consistency across each of

these estimators. The mediators that we took forward into

MR-based mediation analyses (triacylglycerols, HbA1c and

type 2 diabetes) had consistent causal effects across these

different methods for both steps (i.e. the effect of BMI on them

and of them on CHD). In the mediation analyses, where we

include both genetically predicted triacylglycerols and HbA1c,

we are assuming that these factors are not causally related to

each other. We tested for causal relationships between

potential mediators prior to our main two-step MR analyses

and these do not suggest any causal effects between

triacylglycerols and HbAlc or other glycaemic traits.

However, MR studies cannot completely rule out a causal

relationship between the two. Previous large prospective

studies showed triacylglycerols predicted the development of

type 2 diabetes [43, 44], if this association is casual, the

est imated mediat ion effect by dysglycaemia and

triacylglycerols could be inflated. Our results would be biased

if the mediators we have tested caused variation in BMI

(i.e. there was reverse causality from mediators to BMI). If

this were the case, we would expect a bi-directional MR effect

between BMI and the mediating risk factors. However, we

found no evidence that triacylglycerols or HbA1c caused

variation in BMI (though the causal effect of BMI to these

mediators was present).

Whilst all three MR methods suggest a casual effect of

triacylglycerols on CHD, the MR-Egger intercept suggests

that directional horizontal pleiotropy may be exhibited by

the instruments. It is plausible that the genetic variants we

used as instruments for triacylglycerols also affect other

remnant cholesterols or other lipids and those also contribute

to mediating BMI effects on CHD. Another potential

limitation to our study is that we have assumed no interaction

between BMI andmediators, but we are not able to test for this

because we have used aggregated genome-wide data.

Previous observational studies suggest that the association

between BMI and CHD may be modified by hypertension

[45], but have not found effect modification by the glycaemic

and lipid traits that we have examined here [46]. In two-

sample MR, with independent samples, weak instrument bias

can result in bias towards the null. In mediation analyses this

could result in an underestimation of mediating effects.

However, given our large sample size and the fact that our

genetic instruments explained 2.1% and 2.4% of the variation

in triacylglycerols and HbA1c, respectively, and had very large

first stage F-statistics, we think this is unlikely to have had a

major effect on our results. In addition, there is a partial

overlap in studies that contributed to both GWAS (i.e. some

cohort studies have contributed both to GWAS of exposure

and also of outcomes). Of the 38 studies included in the

CARDIoGRAMplusC4D, 24 appear in GIANT (about 30%

of participant overlap) [47]. In the case of weak instruments,

the sample overlap between the exposure- and outcome-

consortia could bias two-sample MR estimates towards the

confounded association between the exposure and the out-

come [16, 47]. Nevertheless, as we used genetic instruments

strongly associated with our exposure, as suggested by large

F-statistics, it is unlikely that our results were biased by weak

instruments [47].

In conclusion, our results support a causal effect of higher

BMI on CHD risk that is, at least partially, mediated through

the effect of BMI on triacylglycerols, HbA1c and type 2

diabetes. These findings support the need for interventional

studies examining whether lowering triacylglycerols or

providing glucose-lowering therapy for people who are

overweight or obese is effective at reducing their increased

risk (in comparison with people of healthy weight) of CHD.
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